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Let G be a paratopological group. Following F. Lin and S. Lin, we say that the group
G is pseudobounded, if for any neighborhood U of the identity of G, there exists a natural
number n such that Un = G. The group G is ω-pseudobounded, if for any neighborhood U of
the identity of G, the group G is a union of sets Un, where n is a natural number. The group
G is premeager, if G ̸= Nn for any nowhere dense subset N of G and any positive integer n.
In this paper we investigate relations between the above classes of groups and answer some
questions posed by F. Lin, S. Lin, and Sánchez.

A topologized group (G, τ) is a group G endowed with a topology τ . A left topological
group is a topologized group such that each left shift G → G, x 7→ gx, g ∈ G, is continuous.
A semitopological group G is a topologized group such that the multiplication map G×G →
G, (x, y) 7→ xy, is separately continuous. Moreover, if the multiplication is continuous then
G is called a paratopological group. A paratopological group with the continuous inversion
map G → G, x 7→ x−1, is called a topological group. A classical example of a paratopological
group failing to be a topological group is the Sorgenfrey line S, that is the group R endowed
with the topology generated by the base consisting of all half-intervals [a, b), a < b.

Whereas an investigation of topological groups already is one of fundamental branches
of topological algebra (see, for instance, [6, 17] and [1]), other topologized groups are not
so well-investigated and have more variable structure.

Basic properties of semitopological or paratopological groups are described in book [1]
by Arhangel’skii and Tkachenko, in author’s PhD thesis [21] and papers [19, 20]. New
Tkachenko’s survey [23] presents recent advances in this area. Let ω be the set of finite
ordinals and N = ω \ {0}.

A subset A of a left topological group G is

• left (resp. right) precompact, if for any neighborhood U of the identity of G there exists
a finite subset F of G such that FU ⊇ A (resp. UF ⊇ A);
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• precompact, if A is both left and right precompact;
• left ω-precompact, if for any neighborhood U of the identity of G there exists a

countable set F ⊆ G such that FU ⊇ A;
• pseudobounded, if for any neighborhood U of the identity of G there exists n ∈ N such

that Un = G;
• ω-pseudobounded, if for any neighborhood U of the identity of G, G =

⋃
n∈N U

n.
Proposition 2.1 from [20] implies that a paratopological group is left precompact iff it

is right precompact, so iff it is precompact. Moreover, precompact Hausdorff topological
groups are exactly subgroups of compact Hausdorff groups [24]. A left topological group is
called locally left (resp. ω-)precompact if it has a left (resp. ω-)precompact neighborhood of
the identity.

The notion of ω-pseudobounded paratopological groups was introduced by F. Lin and
S. Lin in their paper [13], generalizing a notion of Azar [2] provided for topological groups.
In [13] and also in a subsequent paper [14] with Sánchez they investigated basic properties
of these groups and asked some related questions. In this paper we answer some of them.

Similarly to the proof of Theorems 3 and 6 from [13] we can show that if H is a normal
subgroup of a topologized group G then G is (ω-)pseudobounded provided both groups H
and G/H are (ω-)pseudobounded.

In Problem 2.27 from [14] is asked whether every pseudobounded (para)topological
group is (ω)-precompact. The following example provides its negative solution.

Example 1. Consider the compact topological group T = {z ∈ C : |z| = 1} ⊂ C endowed
with the operation of multiplication of complex numbers. Let G be Tω endowed with the
topology, generated by the sup-metric d(x, y) = supi∈ω |x(i)− y(i)| for x, y ∈ Tω. It is easy
to check that G is pseudobounded but not locally ω-precompact.

On the other hand, the following proposition provides an affirmative solution to a special
case of the above problem. Recall that a neighborhood U of an identity of a paratopological
group G is invariant, if U = g−1Ug for each g ∈ G. A paratopological group G is a SIN-
group, if it has a base at the identity consisting of invariant neighborhoods.

Proposition 1. Each pseudobounded locally precompact paratopological SIN -group G
is precompact.

Proof. Let U be any left precompact neighborhood of the identity e of G. Since the group G
is pseudobounded, there exists a natural number n such that G = Un. Since G is a SIN-
group, there exists an invariant neighborhood V of e such that V n ⊆ U . Since the set U
is precompact, there exists a finite subset F of G such that FV ⊇ U . Then G = Un ⊆
(FV )n = F nV n ⊆ F nU .

Example 2. Each real or complex linear topological space is ω-pseudobounded. Since
a first countable topological group (in particular, a normed space) is ω-precompact iff it is
separable, each nonseparable real or complex normed topological space is ω-pseudobounded
but not ω-precompact. For instance, so is the Banach space ℓ∞(X) of bounded real-valued
functions on an infinite set X, endowed with the supremum norm.
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A left topological group G is 2-pseudocompact if
⋂

n∈ω U
−1
n ̸= ∅ for each nonincreasing

sequence (Un)n∈ω of nonempty open subsets of G. By [14, Proposition 2.9], each ω-pseudo-
bounded 2-pseudocompact paratopological group is pseudobounded. Since each 2-pseudo-
compact left topological group is feebly compact and Baire (by Proposition 3.13 and Lemma
3.7 from [4]), the following proposition generalizes this result.

Proposition 2. Each ω-pseudobounded feebly compact Baire left topological group G is
pseudobounded.

Proof. Let U be any neighborhood of the identity of G. Since the group G is ω-pseudo-
bounded, G =

⋃
n∈N U

−n. Since the space G is Baire, there exists n ∈ N such that U−n

contains a nonempty open set V . Then U−n−1 = U−nU−1 ⊇ U−n ⊇ V . Pick any point
y ∈ V . Since G =

⋃
n∈N U

n, there exists m ∈ N such that y ∈ Um−1. Then

W := y−1V ⊆ U−m+1U−n−1 = U−m−n.

Suppose for a contradiction that G ̸= Uk for every k ∈ N. Taking into account that
U−k ⊆ U−kU−1, we conclude that U−k ̸= G for every k ∈ N. Since the group G is feebly
compact, there exists a point x ∈

⋂
k∈N G \ U−k. Since the group G is ω-pseudobounded,

there exists l ∈ N such that x ∈ W l ⊆ U−l(m+n). But then W l is a neighborhood of x,
disjoint from G \ U−l(m+n), a contradiction.

The following proposition answers Question 6 from [13].

Proposition 3. Let G be a pseudobounded left topological group and d be any left-
invariant quasi-pseudometric generating the topology of G. Then d is bounded on G.

Proof. Since G is pseudobounded, for the neighborhood U = {x ∈ G : d(e, x) < 1} of the
identity e in G, there exists a number n ∈ N such that G = Un. Now let y, z be any
elements of G. There exist elements x1, . . . , xn ∈ G such that y−1z = x1 · · ·xn. Then

d(y, z) = d(e, y−1z) = d(e, x1 · · ·xn) ≤
≤ d(e, x1) + d(x1, x1x2) + · · ·+ d(x1 · · ·xn−1, x1 · · ·xn) =

= d(e, x1) + d(e, x2) + · · ·+ d(e, xn) < n.

Following F. Lin and S. Lin [13], we call a left topological group G premeager, if G ̸= Nn

for any nowhere dense subset N of G and any n ∈ N.
A Lusin space is an uncountable crowded T1 space containing no uncountable nowhere

dense subsets. A space X is crowded if every nonempty open set in X is infinite. Clearly,
each Lusin left topological group is premeger. A trivial example of a Lusin space is any
uncountable space X endowed with the T1-topology {∅} ∪ {X \ A : A is finite}. On the
other hand, the existence of a Hausdorff Lusin space is independent of the axioms of ZFC:
Lusin [16] showed that such a space exists under Continuum Hypothesis, and Kunen [12]
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showed that there are no Hausdorff Lusin spaces under Martin’s Axiom and the negation
of Continuum Hypothesis.

In order to construct a nonpremeager paratopological group we introduce the following
definition. A subset of a space X is meager, if it is contained in a countable union of
nowhere dense subsets of X. By MX we denote the family of all meager subsets of X. Let

• cov(MX) = min{|A| : A ⊆ MX (
⋃
A = X)} and

• cof(MX) = min{|A| : A ⊆ MX ∀B ∈ MX ∃A ∈ A (B ⊆ A)}.

The family A in the latter definition is called a cofinal in MX . The family MR will
be denoted by M. A space is called Polish, if it is homeomorphic to a separable complete
metric space. By Theorem 15.6 in [11], for any crowded Polish space X we have cof(MX) =
cof(M) and cof(MX) = cof(M).

A left topological group G meagerly divisible if for every meager subset M of G and
every nonzero integer number n, the set {x ∈ G : xn ∈ M} is meager.

Proposition 4. A paratopological group G is meagerly divisible provided for each positive
integer n, the power map pn : G → G, x 7→ xn, is open.

Proof. Since G is a topological group, for every n ∈ N the openness of the map pn : G → G
implies the openness of the map p−n : G → G, p−n : x 7→ x−n. Let N be any closed nowhere
dense subset of G and n be any nonzero integer. Since the map pn is continuous, the
preimage p−1

n (N) is closed. If p−1
n (N) contains a nonempty open subset U of G then pn(U)

is a nonempty open subset of N , that is impossible.
Let M be any meager subset of G. There exist a countable family A of nowhere dense

closed subsets of G such that M ⊂
⋃
A. Then p−1

n (M) ⊆
⋃
{p−1

n (N) : N ∈ A} and each
set p−1

n (N) is nowhere dense.

Corollary 1. The paratopological groups R, S, R/Z, and S/Z are meagerly divisible.

Proof. The topological group R and R/Z are meagerly divisible by Proposition 4. The
Sorgenfrey line S (resp. S/Z) has a common π-base with the topological group R (resp.
R/Z), so MS (resp. MS/Z) equals M and the group S (resp. S/Z) is meagerly divisible.

We recall that a space is analytic if it is a continuous image of a Polish space. The
Open Mapping Principle (see, for instance, Corollary 3.10 in [3]) states that any continuous
surjective homomorphism from an analytic topological group to a Polish topological group
is open.

Proposition 5. Each divisible Abelian Polish topological group G is meagerly divisible.

Proof. Let n be any nonzero integer and pn : G → G, x 7→ nx, be the power map. We
claim the the map pn is open. Indeed, since G is Abelian, pn is a homomorphism. Since G
is divisible, pn is surjective. By the Open Mapping Principle, pn is open. By Proposition 4,
G is meagerly divisible.
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Proposition 6. If an Abelian Polish topological group G is meagerly divisible, then for
each nonzero integer n, the power map pn : G → G, x 7→ nx, is open.

Proof. Let n be any nonzero integer. Since pn is a homomorphism, it suffices to show that
for each neighborhood U of the identity, pn(U) is a neighborhood of the identity. Pick an
open neighborhood V of the identity such that V −V ⊆ U . Since the group G is Polish, the
set V is nonmeager. The group G is meagerly divisible, the set pn(V ) is nonmeager. Since
the map pn is continuous, the space pn(V ) is analytic. Piccard-Pettis’ Theorem implies
(see, for instance, Corollary 3.9 in [3]) that pn(V )−pn(V ) is a neighborhood of the identity
of G. It remains to note that pn(U) ⊇ pn(V )− pn(V ).

Proposition 7. Let H be a meagerly divisible Abelian semitopological group such that
cov(MH) = cof(MH) = κ > ω. Then H contains a free group G of size κ such that every
meager subset M ⊆ G of H has cardinality less than κ and hence does not generate G. If
H is T1 (and κ = ω1), then G is crowded (and Lusin).

Proof. Let {Sα : α < κ} be a cofinal family in MH such that Sα ∋ e for each α. Since
the group H is meagerly divisible, it contains a nonperiodic element x0. For each nonzero
integer n let pn : H → H, x 7→ nx, be the power map. Since κ = cov(MH) and H is
meagerly divisible, we can inductively choose for each nonzero ordinal β < κ a point

xβ ∈ H \
⋃

{p−1
n (Sα +Gβ) : n ∈ Z \ {0}, α < β},

where Gγ = ⟨{xα : α < γ}⟩ for each γ ≤ κ. Put G = Gκ.
We claim that G is a free Abelian group over the set {xα : α < κ}. Indeed, suppose for

a contradiction that there exist a finite subset F of κ and a map f : F → Z \ {0} such that∑
α∈F f(α)xα = 0. Put γ = maxF . Then xγ ∈ p−1

f(γ)(Gγ), a contradiction.
Let M ⊆ G be a meager subset of the space H. Then M is contained in the set Sβ for

some ordinal β < κ. For every x ∈ M ⊆ G, there exist a finite subset F of κ and a function
f : F → Z \ {0} such that x =

∑
α∈F f(α)xα. Put γ = maxF . Then xγ ∈ p−1

f(γ)(Sβ + Gγ)

and hence γ ≤ β, which implies that x ∈ Gβ+1. Thus M ⊆ Sβ ∩ G ⊆ Gβ+1 and |M | ≤
|Gβ+1| < κ.

If H is a T1 space, then H is not discrete (otherwise MH = ∅) and cof(MH) = 1 and
the group G is crowded (otherwise G is discrete, meager in H and hence |G| < κ = |G|).

Example 3. The assumption cov(M) = cof(M) = κ > ω is consistent (for instance,
MAcountable implies cov(M) = cof(M) = c). Since, by Corollary 1, the topological group R
is meagerly divisible, by Proposition 7, it contains a premeager crowded group G of size κ.

Corollary 2. The existence of a Lusin Hausdorff (para)topological group is independent
on ZFC.

Proof. By Corollary 1, the topological group R is meagerly divisible. By Proposition 7,
under the consistent assumption cof(M) = ω1, R contains a Lusin group G of size ω1.

On the other hand, by [12], under Martin’s Axiom and the negation of Continuum
Hypothesis, there are no Hausdorff Lusin spaces.
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It turns out that it is independent on ZFC whether each pseudobounded Lusin Hausdorff
paratopological group is a topological group, see Question 4 from [13]. Indeed, under
Martin’s Axiom and the negation of Continuum Hypothesis, each Lusin paratopological
group has an isolated point and so it is a topological group. On the other hand, under
cof(M) = ω1 we have the following example (which is also a counterexample for Questi-
ons 1 and 3 from [13]).

Example 4. Assume cof(M) = ω1. Since, by Corollary 1, the paratopological group S/Z
is meagerly divisible, by Proposition 7, it contains a Lusin free group G of size ω1. It follows
that G is nondiscrete and so not a topological group.

We claim that that the group G is pseudobounded. Indeed, let U be any open nei-
ghborhood of the identity of the group G. Let τ be a topology on G inherited from R/Z.
Since the group R/Z is compact, the group (G, τ) is precompact, see [24]. Since the set U
has nonempty interior in (G, τ), there exists a finite subset F of G such that G = F + U .
Since F is finite, it suffices to show that F is contained in a subsemigroup S of G, generated
by U . We claim that S = G. Indeed, following [4, Section 5.1], consider a (not necessari-
ly Hausdorff) paratopological group GS whose topology consists of the sets A + S where
A ⊆ G is any subset. Since the topology of the group GS is weaker than the topology of G
and G is precompact, the group GS is precompact too, and so by Proposition 5.8 from [4],
S is a subgroup of G. Since G is nondiscrete, U contains cosets a+ Z for arbitrarily small
positive numbers a, so S is dense in G. Since U is open in G, S is open in G. So S is an
open dense subgroup of G, that implies S = G.

Question 1. Whether there exists under ZFC a nondiscrete premeager (regular) Hausdorff
(para)topological group?

The class of nonpremeager topological groups is rather wide. For instance, according
to exercises from [18, Section 13], a topological group G contains a closed nowhere dense
(and left Haar null in all cases below but the first) subset N such that NN−1 = G in the
following cases:

• G is nondiscrete Polish Abelian;

• G is nondiscrete locally compact T1;

• G is metrizable and contains a closed connected Lie subgroup;

• G is a T1 real linear topological space, which is metrizable or locally convex;

• G is the group of homeomorphisms of the Hilbert cube, endowed with the compact-
open topology.

Moreover, according to [18, Question 13.6] it is not known even whether there exists
under ZFC a T1 topological group that cannot be generated by its meager subset.

A special case of a nowhere dense subset of a T1 crowded space is a discrete subset. There
is a known problem when a T1 (para)topological group G can be (topologically) generated
by its discrete subset S such that S∪{e} is closed. Namely, such sets for topological groups
were considered by Hofmann and Morris in [10] and by Tkachenko in [22]. Fundamental
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results were obtained by Comfort et al. in [5] and Dikranjan et al. in [7] and in [8]. In [15]
Lin et al. extended this research to paratopological groups.

A sample result is Theorem 2.2 from [5] stating that each countable Hausdorff topologi-
cal group is generated by a closed discrete set. Protasov and Banakh in Theorem 13.3 of
[18] generalized this and Guran’s [9] results to Hausdorff left topological groups.
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