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Dirichlet series F/(s) = e*+> po, fre*** with the exponents 1 < A\, T 400 and the abscissa
of absolute convergence o,[F] > 0 is said to be pseudostarlike of order o € [0, 1) and type

Be(0,1]if
F'(s F'(s
' F((s)) — 1’ <p F((s)) — (2 —1)| for all s € IIp = {s: Res < 0}.
Similarly, the function F is said to be pseudoconvex of order « € [0, 1) and type 3 € (0, 1] if
F//(S) F//(S)
— — (2a—1)| for all 1I,.
Fs) <p Fis) (2ac = 1)| for all s € Ty

Some conditions are found on the parameters by, b1, co, 1, c2 and the coefficients a,,, under
which the differential equation

d*w dw &
e + (bge® + by)— + (coe®* +cre® + c2)w = > a,e™
s ds n=1

has an entire solution which is pseudostarlike or pseudoconvex of order a € [0, 1) and type
B € (0, 1]. Tt is proved that by some conditions for such solution the asymptotic equality holds

In max{|F (o + it)|: t € R} = Lo(l)

5 <|b0|+ |b0|2+4\co\) as o — +00.

1. Introduction and auxiliary results. An analytic univalent in D = {z: |2 < 1}
function f(z) = >~ fnz" is said to be convex if f(ID) is a convex domain. It is well known
[1, p. 203] that the condition Re {14+zf"(2)/f'(2)} > 0 (2 € D) is necessary and sufficient for
the convexity of f. By W. Kaplan [2| the function f is said to be close-to-convex in I (see also
[1, p. 583]) if there exists a convex in I function ® such that Re (f'(z)/®'(z)) > 0(z € D).
Close-to-convex function f has a characteristic property that the complement G of the
domain f(ID) can be filled with rays L which go from 0G and lie in G. Every close-to-convex
in D function f is univalent in D and, therefore, f'(0) # 0. Hence, it follows that the function
[ is close-to-convex in D if and only if the function g(z) = z+ > 7, g,2" is close-to-convex
in D, where g, = f,/f1. Such function g is said to be starlike if f(D) is a starlike domain. It
is well known [1, p. 203] that the condition Re{zf'(2)/f(2)} > 0 (z € D) is necessary and
sufficient for the starlikeness of g.

S.M. Shah [3] indicated conditions on real parameters [y, 81, Yo, 71, V2 of the differential
equation z?w” + (Bpz? + Br2)w’ + (102 + 712 + 72)w = 0, under which there exists an entire
transcendental solution f such that f and all its derivatives are close-to-convex in ID. The
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investigations are continued in the papers [4-9]. In [10, 11] it is studied the closeness-to-
convexity of the second order non-homogeneous linear differential equation

2w’ 4 (Bo2® + Brz)w’ + (9027 + 1z +P)w = A(2),
where A(z) = Zn L a,2" and radius of convergence of the last power series is R[A] > 1.
Substituting z = e® we obtain the differential equation

d*w dw
F -+ (bo@ + bl) ds

[e.e]
(C0€28 -+ Cles + CQ)w = Z anens7 (1>
where by = o, by = 1 — 1, ¢; = 7; and Dirichlet series > >~ | a,e™ is absolutely convergent
in a half-plane {s: Res < a} with a > 0.

Now, let A = ()\;) be an increasing to +o0o sequence of positive numbers (A\; > 1) and
SD(A,0) be a class of Dirichlet series

F(s)=¢€’+ Z frexp{sAt}, fe#0, s=o+it, (2)
k=1

with the exponents A and the abscissa of absolute convergence o,[F] = 0. It is known [12] (see
also [13, p. 135] that each function F' € SD(A,0) is non-univalent in Ty = {s: Res < 0}, but

there exist conformal in IIy functions (2), and if Z Akl fr] < 1 then function (2) is conformal

in ITy. A conformal function (2) in IIj is said to be pseudostarhke if Re{F'(s)/F(s)} > 0 for

s € . In [12] (see also [13, p. 139]) it is proved that if Z k| frl <1 then function (2) is
k=1
pseudostarlike.

A conformal function (2) in Iy is said to be pseudostarlike of order « if
Re{F'(s)/F(s)} >a €0,1), s e€Il,. (3)

Since the inequality |w — 1| < |w — (2a — 1)| holds if and only if Rew > «, function (3) is
pseudostarlike of the order « if and only if
F(s) F'(s)

-1 — (2 -1
w1 <[ e
Therefore, as in [14] the conformal function (2) in Iy is called pseudostarlike of order « €
[0, 1) and type 5 € (0, 1] if

for s € Ilj.

'?8—1% —(204—1)‘, s € Tl,. (4)
Lemma 1 ([14]). If
Y A+ B = B(2a = 1) = 1}|fil <26(1 —a) (5)

then (2) is pseudostarlike of order o and type 5.
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Similarly, a conformal function (2) in Ilj is said to be pseudoconvez if
Re{F"(s)/F'(s)} > 0 for s € Il,.

In [12] and [13, p. 139] it is proved that if
>Nl <1
k=1

then function (2) is pseudoconvex. Here we call the function (2) pseudoconvex of the order
a €0, 1)if Re{F"(s)/F'(s)} > a, and pseudoconvex of order o and type 5 € (0, 1] if [14]

F//(S)
Fi(s)

—(205—]_>, SEHo.

‘ F"(s)
F(s)

Since F"(s)/F'(s) = G'(s)/G(s), where G(s) = e* + >~ grexp{sA;} and g = g fs, the
function F is pseudoconvex of order a € [0, 1) and type 5 € (0, 1] if and only if the function
G is pseudostarlike of order o € [0, 1) and type 5 € (0, 1]. Therefore, from Lemma 1 one
can easily obtain the corresponding result for pseudoconvex functions.

Lemma 2 ([14]). If
D N1+ BN = B2a—1) — 1} f <28(1—a)

then (2) is pseudoconvex of order o and type 3.

Here we investigate the conditions under which equation (1) has solutions that are
pseudostarlike or pseudoconvex of order o and type S. We remark that if b9 = by = 0
then such a problem is solved in [12-13] for the case of & =0, 8 = 1.

2. Recurrent formulas. Suppose that Dirichlet series (2) satisfies (1). Then

(14 by + ca)e” + (bo + c1)e* + +coe™ + Z(Ai + b1A + c2) fr exp{sAr}+
k=1

—I—Z boAk + c1) frexp{s(A\x + 1)} + Zcofk exp{s(A\x +2)} = a1e’ + Zan . (6)
k=1

k=1 n=2

Since A\; > 1, hence as s — —oo we have (1+b;+c2)e® = (140(1))are®,i. e. 1+by+ ¢ = ay.
Therefore, (6) implies

(bo + c1)e* + coe® + (A3 + byAy + ca) frexp{sA} + Z(/\Z + b1, + c2) fr exp{sA}+
k=2

+ Z bok + c1) frrexp{s(A\x + 1)} + Z cofrexp{s(\p +2)} = aze™ + Z ane™.  (7)
k=1 k=1

n=3

Since A\ +1 > 1 and Ay > Ay, hence as s — —oo we have

(A2 + by Ay + co) frexp{sA} + o(es’\l) = (ay — by — c1)e* + o(e*).
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Therefore, if A2 + by \; + ¢y # 0 then A\, = 2 and

(IQ—bO—Cl

f1:4—|—2b1—|—02.

Therefore, (7) implies

coe™ 4+ (A3 + bida + ¢2) faexp{sha} + Z(Ai b1 A+ co) fiy exp{sAi i+
k=3

+(2by + 1) frexp{3s} + Y _(boAr + 1) frexp{s(Ax + 1)} +

k=2

+ Z cofrexp{s(\p +2)} = aze® + Z ane"’
k=1 n=4

Hence, it follows that

(A2 4 b1 o + o) faexp{sda} + 0(e2?) = (a3 — co — (2bg + 1) f1)e* + o(e*),

as s — —oo and if A2 + bj\y + ¢ # 0 then \; = 3 and

as — ¢ 2by + 1

f2:9+3b1+c2 9+3b +cy° "

Therefore, (9) implies

(A3 +bids + o) fexp{ss} + D (Af + bide + ca) fr exp{shi}+
et

+(3b0 + C1)f2€4s + Z(bo/\k + Cl)flc eXp{S()\k + 1>}+
k=3

+cofrel® + Z cofrexp{s(\x +2)} ets 4 Z ane”

k=2

Hence, it follows that

()\§ + b1 A3 + C2)f3 eXp{S}\:’)} + 0(€SA3> = (as —cof1 — (350 + 01)f2)€38 + 0(638)7

as s — —oo and if A2 + bjA\3 + ¢ # 0 then A3 =4 and

ay 3b0 “+ 1 Co

Js = 16 +4b, + ¢y 16+4b1+02f2_ 16 + 4b, + ¢y

fi-

Therefore, (11) implies
(AT + bida + o) faexp{shs} + Z()\i + b1 + ¢2) fr exp{sAg -+
k=5

+(4b0 + Cl>f3€5s + Z(bo/\k + Cl)fk exp{s()\k + 1)}+
k=4

(10)

(11)
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(o) [o¢]
+co foe” + Z cofw exp{s(\ +2)} = aze™ + Z ane™,
k=3 n=~6
whence as above it follows that if A2 + by\y + ¢ # 0 then \; = 5 and

as 4b0+C1 f— Co
25 £ 5b; ¢y 254+ 5by + ey’ 254 5by +

f4 = f2-

Continuing this process, we will come to the formulas A\, = k£ + 1 and

fo = Ak+1 B

T+ D2+ (k+ 1)by + 0
kb0+01 Co
(k12 + (k+ )by + L

(k+ 12+ (k+ )by + ¢ Ji-z (13)

for k > 3, provided A2 + b\ + ¢ # 0.
Thus, the following statement is correct.

Lemma 3. If 1+ b; + ¢y = a; and k* + kb, + ¢y # 0 for all k > 2 then differential equation
(1) has the solution

Fis) =+ frexp{s(h + 1)}, (14
k=1

where the coefficients f; and f, are defined by formulas (8) and (10), and for k > 3 recurrent
formula (13) is true.

2. Pseudostarlikeness. At the first, we remark that for function (14) condition (5) has the
form

Y OBilfil <28(1—a), Bp=(1+p8)k+28(1-a). (15)
k=1
We put Ay = (k+ 1)® + (k + 1)b; + co and suppose that b; > 0 and ¢, > 0. Then Ay > 0
for all £ > 1 and from (8), (10) and (13) we get f; = %=fo=cL f, — asz0 _ 2ota f) and

fo = aZ? kbg+c Lf — &fk o for k > 3. Therefore,

ZBHM < Bi[fil + Balfo| + ZBk\fk\ <
k=1 k=1

— - laki1] | =, Klbol + |e1] — ., |col
< Bi|fi] + Ba|fo| + ZBkA—J; + ZBkA—k’fk—ﬂ + ZBkA—k’fk—ﬂ =
k=3 k=3 k=3

> a > k+1)|bg| + |c > c
:Bl|f1|+B2|f2|+ZBk’Z—J:’+ZBk+1( kaoi | 1‘|fk:|+ZBk+2 | O| |fk|
k=3 k=2 + k=1

> a 2|bg| + ¢
=mm+wm+2&%f—&u%7$m+

(k+1)|bo| +
+ZGL ) B ) 1,

Akt
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Since Bs|fa| — BQ%’;W\‘M < Bg%, hence we obtain

N — by — _
ZBk|fk| < Bl |a2 0 Cl| + B ’a?’ COl ZB | k+1|
k=1

Ay
Bir1 (k+1)[bo| + |er| | Bz |cof )
+ + B . 16
> (Gt S (10
If we put
2(1+ B) +28(1 — a) 3|bo| + |e1] + 2|co]
1+ p54+26(1—a) 9+ 3by
and
1+8+426(1 —a) G 1+Bk+2ﬁ< )
= — by — c1] + 2|az — ¢o]) +
then using (16) we can prove the following theorem.
Theorem 1. Let by > 0, ¢ >0 and a; =1+ by + co. If
Q<26(1-n)1-a) (17)

then differential equation (1) has solution (14) which is pseudostarlike in I1y of order o and
type 3.

Proof. The conditions b; > 0 and ¢, > 0 imply k% + kb; + c3 # 0 for all k > 2 and, thus, the
conditions of Lemma 3 are valid.
Since Bg“ =1+ (L } 1 as k — oo, we have Butt < By 5 B’““ <

k 1+B8)k+28(1—a) ) for all
k> 1. Also, for k >1

B3
B1

(k + 1)[bo| + |1 _ (k + 1)[bo| + |e1] < (k + 1)[bo| + |ea]
A1 (k+2)2+(k+2)by+co ~ (E+2)2+ (k+2)by —

(k4 2)]bo] |1 < _lbol el 3lbo| + el
k422 +(k+2)b (F+22+(k+2)b —3+b 9+3b 9+3b

and
|00| o |00| |Co| |Co|

Appr (k+3)2+ (k+3)bi+c — (k+3)2+ (k+3)by ~ 16 +4b;

Thus,
Bis1 (k4 Dlbol +fes| | Bite |col
By, A By Apya —

2(14+8) +2B8(1 —a) 3|bg| + |c1|  3(1+p5)+28(1 —a) |
1+6+28(1—a) 943k 1+ 6+28(1—a) 16+ 4b,

3(1+P)+26(1-a) ~ o2(1+5)+26(1-a)
164401 - 9+3b1

and, since , we have

Biey1 (k4 1)]bo| + |ci] o Bria ol
By, Akt Br Agyo

(18)
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By _ 204+P)+428(1-0) ~ 9B _ 9l+B+25(1—a)

Slnce A_2 - 9+3b1+co Aq 4+4+2b1+co

, we have

|a2 — by — Cl| |a3 - Co| C |ak+1|
Bj—————— + By———— E Bi———— =
! A + b2 A + F Ay

|CL2 — by —C1|

laz — co
T +2(1+8)+28(1—a)—————+

9+ 3b; + ¢

3 ap|
+kZ; 1+5k+2ﬁ(1—a>>(k+1)2+(k+1)bl+02g@_ (19)

=(1+p4+258(1—a))

From (16), (18) and (19) we get > oo, Bilfi| < Q + > ooy nBx|fi|- Since condition (17)
implies < 1, it follows that (1 —n)> 7~ Bilfi] < @ < 28(1 —n)(1 — «) and, thus,
condition (15) holds. By Lemma 1 function (14) is pseudoconvex in Il of order o and type

3. 0

3. Pseudoconvexity. By Lemma 2 function (14) is pseudoconvex of order « and type [ if
Y e kBglfi| < 25(1 — ). As above instead (16) we have

S a2 — by — ¢ |ak+1|
kB <B———+ QB + k By,
Sk < ol >
o (k4 1)Bey (k+1)[bo| +|ea| | (k+2)Bipo ool
kB . 20
2 ( kB; Ao T BBy A ) PO (20)

k=1

As above, we have (4DBen < 2By g BE2Brss < 3B3 for all £ > 1 and, therefore,

kB, = Bi % By
(k + 1) By (k + 1)[bo| + [ca] n (k +2)Biiz |col
kB, Agt1 kBy  Agy2 —
41+ B) +45(0 - ) 3lbo| +|er|  9A+B)+68(1—) ool _ . 1)
T 14+84+28(1—a) 943k 1+5+26(1—a) 16+4b; —
where
o _ AL+ B) +4B(1 — @) 3bo + Jea| + 2|col
1+ 54+26(1—«) 9+ 3by '
Finally, since 52 2 < 23 L as above we get
lag — by — c1 Iak-i-l‘
By——— ZB kB, < 22
1 Al + +Z Q ) ( )
where
. 1+8+28(1—a 1+ B)k? +28(1 — a)k
Q — /8 6( )<|a2_b0_cl|+4|a3_co|)+ ( /8) 6( )

44 2by + ¢ (k+1)2+(k‘+1)b1+c2|ak+l|’

k=3
Using (20), (21) and (22) easy to prove the following theorem.

Theorem 2. Let by > 0, co > 0 and a1 = 1+ by + 0. If Q* < 265(1 — n*)(1 — «) then
differential equation (1) has solution (14) pseudoconvex in 11y of order o and type .
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4. Growth. If a;(2) and a¢(z) # 0 are entire functions then every solution of the homoge-
neous linear differential equation w” + a;(z)w’ 4+ ag(z)w = 0 is entire, and in order to study
its growth there is preferably used the value distribution theory of memorphic functions or
results of the Wiman-Valiron method (see, for example, |15, p. 114-144]). For Dirichlet series
such results are obtained in [16-19].

Using formula (13) here we considerably simpler will obtain information about the growth
of entire solution of differential equation (1). Suppose that by > 0, ¢c; > 0, by < 0, ¢g < 0,
ag — by —c1 >0 and agyq =0 for all k > kg > 3. Then f > 0 for all £ > 1 and (13) implies
for k > ko

_ Kfbo| + |eu] lcol . _ (14 0(1))[bo] (1 + o(1))|eol
Jr = A Jr—1+ A, fr—2 = 2 Jr—1+ K= 1) Ji—2

as kg < k — oo, whence

kfr Ji—2

DI (14 0(1)bo] + (1 + o(1))|co| —LE2 k= 0. 23

D (1 o)l + 1+ o1l 2 — (23)
We put A = klim fkf’“ and a = lim ff’“. Then from (23) we get A = |by| + |co|/a and

oo Jh—1 oo TE1

a = |b| + |col/A, i. e. A2 —|by|A — |co| = 0 and a® — |byla — |cg| = 0. Thus, A > 0 and
a > 0 are the roots of the quadratic equation z* — |by|z — |co| = 0 and, therefore, A = a =

=1 <|b0| ++/]bol? +4|00]>. Hence, it follows that f, = % as k — oo. Therefore,
for every € € (0, a) and k > ki = ky(e)

(a—e)f (a—¢)
k! k!

For entire Dirichlet series (2) we put M(o, F) = sup{|F (o + it)|: t € R}. The values
or = lim M, Arp = lim M, Tr = lim e 2%%In M(o,F) and tp =
o—+00 o—s+00 o——+00

lim e ¢8%In M(o, F') are called R-order, lower R-order, R-type and lower R-type accordi-

o—~+00
ngly. Since fi > 0 for all k& > 1, we have M(0,F) = F(0) = O(e"7) 4+ e > 77, fre" as
o — +o00. From (24) it follows that

k

< /i < (24)

o0 _ k o0
0(7) +espl(a - ey = Y2 0D o < S ok <
k=k1 ) k=k1

o k
<> = Jl;g) e*” = O(eM7) +exp{((a +¢)e’}, o — +oo,

k=k1

whence (a —¢)e? +0(1) <In M(o,F) < (a+¢€)e” +0(1) as 0 — +00, and in view of the
arbitrariness of € we get pg = Ag = 1 and Ty = tg = a. Thus, the following statement is
proved.

Proposition 1. Let by > 0, co > 0, by <0, ¢g <0, a0 —bg—c1 >0, a; =14 by + ¢ and
agy1 = 0 for all k > ko > 3. Then differential equation (1) has entire solution (14) such
that In M (o, F) = H+(1) <]b0| + +/|bo|? —|—4|CO|> as o — 4o0. If @ < 28(1 —n)(1 — ) then

function (14) is pseudostarlike in 11y of order o and type 5. If Q* < 25(1 —n*)(1 — «) then
function (14) is pseudoconvex in 11y of order o and type 5.
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