V. F. Babenko, N. V. Parfinovych, D. S. Skorokhodov

OPTIMAL RECOVERY OF OPERATOR SEQUENCES

V. F. Babenko ${ }^{1}$, N. V. Parfinovych ${ }^{2}$, D. S. Skorokhodov ${ }^{3}$. Optimal recovery of operator sequences, Mat. Stud. 56 (2021), 193-207.

In this paper we solve two problems of optimal recovery based on information given with an error. The first one is the problem of optimal recovery of the class

$$
W_{q}^{T}=\left\{\left(t_{1} h_{1}, t_{2} h_{2}, \ldots\right):\|h\|_{\ell_{q}} \leq 1\right\}
$$

where $1 \leq q<\infty$ and $t_{1} \geq t_{2} \geq \ldots \geq 0$ are given, in the space ℓ_{q}. Information available about a sequence $x \in W_{q}^{T}$ is provided either (i) by an element $y \in \mathbb{R}^{n}, n \in \mathbb{N}$, whose distance to the first n coordinates $\left(x_{1}, \ldots, x_{n}\right)$ of x in the space $\ell_{r}^{n}, 0<r \leq \infty$, does not exceed given $\varepsilon \geq 0$, or (ii) by a sequence $y \in \ell_{\infty}$ whose distance to x in the space ℓ_{r} does not exceed ε. We show that the optimal method of recovery in this problem is either operator Φ_{m}^{*} with some $m \in \mathbb{Z}_{+}$ ($m \leq n$ in case $y \in \ell_{r}^{n}$), where

$$
\Phi_{m}^{*}(y)=\left\{y_{1}\left(1-\frac{t_{m+1}^{q}}{t_{1}^{q}}\right), \ldots, y_{m}\left(1-\frac{t_{m+1}^{q}}{t_{m}^{q}}\right), 0, \ldots\right\}, \quad y \in \mathbb{R}^{n} \text { or } y \in \ell_{\infty}
$$

or convex combination $(1-\lambda) \Phi_{m+1}^{*}+\lambda \Phi_{m}^{*}$.
The second one is the problem of optimal recovery of the scalar product operator acting on the Cartesian product $W_{p, q}^{T, S}$ of classes W_{p}^{T} and W_{q}^{S}, where $1<p, q<\infty, \frac{1}{p}+\frac{1}{q}=1$ and $s_{1} \geq s_{2} \geq \ldots \geq 0$ are given. Information available about elements $x \in W_{p}^{T}$ and $y \in W_{q}^{S}$ is provided by elements $z, w \in \mathbb{R}^{n}$ such that the distance between vectors ($x_{1} y_{1}, x_{2} y_{2}, \ldots, x_{n} y_{n}$) and $\left(z_{1} w_{1}, \ldots, z_{n} w_{n}\right)$ in the space ℓ_{r}^{n} does not exceed ε. We show that the optimal method of recovery is delivered either by operator Ψ_{m}^{*} with some $m \in\{0,1, \ldots, n\}$, where

$$
\Psi_{m}^{*}=\sum_{k=1}^{m} z_{k} w_{k}\left(1-\frac{t_{m+1} s_{m+1}}{t_{k} s_{k}}\right), \quad z, w \in \mathbb{R}^{n}
$$

or by convex combination $(1-\lambda) \Psi_{m+1}^{*}+\lambda \Psi_{m}^{*}$.
As an application of our results we consider the problem of optimal recovery of classes in Hilbert spaces by the Fourier coefficients of its elements known with an error measured in the space ℓ_{p} with $p>2$.

1. Introduction. Let X, Z be complex linear spaces, Y be a complex normed space, $A: X \rightarrow$ Y be an operator, in general non-linear, with domain $\mathcal{D}(A), W \subset \mathcal{D}(A)$ be some class of elements. Denote by $\mathfrak{B}(Z)$ the set of non-empty subsets of Z, and let I : $\overline{\operatorname{span} W} \rightarrow \mathfrak{B}(Z)$ be a given mapping called information. When saying that information about element $x \in W$ is available we mean that some element $z \in I(x)$ is known. An arbitrary mapping $\Phi: Z \rightarrow Y$ is called a method of recovery of the operator A. Define the error of method of recovery Φ of the operator A on the set W given information I :

$$
\begin{equation*}
\mathcal{E}(A, W, I, \Phi)=\sup _{x \in W} \sup _{z \in I(x)}\|A x-\Phi(z)\|_{Y} . \tag{1}
\end{equation*}
$$

2010 Mathematics Subject Classification: 41A65, 46A45.
Keywords: optimal recovery of operators; method of recovery; recovery with non-exact information; sequence spaces.
doi:10.30970/ms.56.2.193-207

The quantity

$$
\begin{equation*}
\mathcal{E}(A, W, I)=\inf _{\Phi: Z \rightarrow Y} \mathcal{E}(A, W, I, \Phi) \tag{2}
\end{equation*}
$$

is called the error of optimal recovery of the operator A on elements of class W given information I. The method Φ^{*} delivering inf in (2) (if any exists) is called optimal.

The problem of recovery of linear operators in Hilbert spaces based on exact information was studied in [14]. In the case when information mapping I has the form $I x=i(x)+B$, where i is a linear operator and B is a ball of some radius defining information error, recovery problem (2) was considered in [12] (see also [15]-[16]). Alternative approach to the study of optimal recovery problems based on standard principles of convex optimization was proposed in [10]. In [12] it was shown that among optimal methods of recovery there exists a linear one, and in [10] explicit representations for optimal methods of recovery were found in cases when the error of information is measured with respect to the uniform metric. For a thorough overview of optimal recovery and related problems we refer the reader to books [17, 16] and survey [1].

Remark that results of the present work supplement and generalize results of paper [10] on optimal recovery of functions and its derivatives and paper [7].
2. Elementary lower estimate. Let us present a trivial yet effective lower estimate for the error of optimal recovery (2). Denote by θ_{Z} the null element of the space Z and let I be some information mapping.
Lemma 1. Let $\theta_{Z} \in I(W)$. Then

$$
\mathcal{E}(A, W, I) \geq \frac{1}{2} \sup _{\substack{x, y \in W: \\ \theta \in I X \cap I}}\|A x-A y\|_{Y}
$$

Proof. Indeed, for every method of recovery $\Phi: Z \rightarrow Y$,

$$
\begin{aligned}
& \mathcal{E}(A, W, I, \Phi) \geq \sup _{\substack{x \in W: \\
\theta_{Z} \in I x}}\left\|A x-\Phi\left(\theta_{Z}\right)\right\|_{Y} \geq \frac{1}{2}\left(\sup _{\substack{x \in W: \\
\theta_{Z} \in I x}}\left\|A x-\Phi\left(\theta_{Z}\right)\right\|_{Y}+\right. \\
& \left.\quad+\sup _{\substack{y \in W: \\
\theta_{Z} \in I y}}\left\|A y-\Phi\left(\theta_{Z}\right)\right\|_{Y}\right) \geq \frac{1}{2} \sup _{\substack{x, y \in W: \\
\theta_{Z} \in I x \cap I y}}\|A x-A y\|_{Y}
\end{aligned}
$$

Taking inf over methods Φ we finish the proof.
From Lemma 1 we easily derive the following consequences.
Corollary 1. Let A be an odd operator, $\tilde{x} \in W$ be such that $-\tilde{x} \in W$ and $\theta_{Z} \in I(\tilde{x}) \cap I(-\tilde{x})$. Then

$$
\mathcal{E}(A, W, I) \geq\|A \tilde{x}\|_{X}
$$

Corollary 2. Let $Y=\mathbb{C}, R$ be a (complex) normed space, $X=R \times R^{*}, W_{1} \subset R$ and $W_{2} \subset R^{*}$ be given classes. Also, let A be the scalar product of elements in $R \times R^{*}$, i.e. $A(x, y)=\langle y, x\rangle, x \in R$ and $y \in R^{*}$. Assume that there exist $\tilde{x}_{1} \in W_{1}$ and $\tilde{x}_{2} \in W_{2}$ such that either

$$
-\tilde{x}_{1} \in W_{1} \quad \text { and } \quad \theta_{Z} \in I\left(\tilde{x}_{1}, \tilde{x}_{2}\right) \cap I\left(-\tilde{x}_{1}, \tilde{x}_{2}\right)
$$

or

$$
-\tilde{x}_{2} \in W_{2} \quad \text { and } \quad \theta_{Z} \in I\left(\tilde{x}_{1}, \tilde{x}_{2}\right) \cap I\left(\tilde{x}_{1},-\tilde{x}_{2}\right)
$$

Then

$$
\mathcal{E}\left(A, W_{1} \times W_{2}, I\right) \geq\left|\left\langle\tilde{x}_{2}, \tilde{x}_{1}\right\rangle\right|
$$

Remark that similar and related lower estimates were established in many papers (see, e.g., $[10,5])$.
3. Optimal recovery of sequences. Let us present notations used in the rest of the paper. Let $1 \leq p, q \leq \infty, \ell_{q}$ be the standard space of sequences $x=\left\{x_{k}\right\}_{k=1}^{\infty}$, complex-valued in general, with corresponding norm $\|x\|_{q}$, and $\ell_{q}^{n}, n \in \mathbb{N}$, be the spaces of finite sequences. Denote by θ the null element of ℓ_{q} and by θ^{n} the null element of ℓ_{q}^{n}.

For a given non-increasing sequence $t=\left\{t_{k}\right\}_{k=1}^{\infty}$ of non-negative numbers, consider a bounded operator $T: \ell_{q} \rightarrow \ell_{q}$ defined as follows

$$
T h:=\left\{t_{k} h_{k}\right\}_{k=1}^{\infty}, \quad h \in \ell_{q},
$$

and the class

$$
W_{q}^{T}:=\left\{x=T h: h \in \ell_{q},\|h\|_{q} \leq 1\right\} .
$$

In this section we will study the problem of optimal recovery of identity operator $A=$ id_{X} on the class W_{q}^{T}, also called the problem of optimal recovery of class W_{q}^{T}, when the information mapping I is given in one of the following forms:

1. $I x=I_{\bar{\varepsilon}}^{n} x=\left(x_{1}, \ldots, x_{n}\right)+B\left[\varepsilon_{1}\right] \times B\left[\varepsilon_{n}\right]$, where $n \in \mathbb{N}, \varepsilon_{1}, \ldots, \varepsilon_{n} \geq 0$ and $B\left[\varepsilon_{j}\right]=$ $\left[-\varepsilon_{j}, \varepsilon_{j}\right] ;$
2. $I x=I_{\varepsilon, p}^{n} x=\left(x_{1}, \ldots, x_{n}\right)+B\left[\varepsilon, \ell_{p}^{n}\right]$, where $n \in \mathbb{N}, \varepsilon \geq 0$ and $B\left[\varepsilon, \ell_{p}^{n}\right]$ is the ball of radius ε in the space ℓ_{p}^{n} centered at θ^{n};
3. $I x=I_{\varepsilon, p} x=x+B\left[\varepsilon, \ell_{p}\right]$, where $\varepsilon \geq 0$ and $B\left[\varepsilon, \ell_{p}\right]$ is the ball of radius ε in the space ℓ_{p} centered at θ.
To simplify further notations, we set

$$
\mathcal{E}(W, I):=\mathcal{E}\left(\mathrm{id}_{X}, W, I\right), \quad \mathcal{E}(W, I, \Phi):=\mathcal{E}\left(\mathrm{id}_{X}, W, I, \Phi\right)
$$

and, for $m \in \mathbb{N}$ and $q<\infty$, introduce the method of recovery $\Phi_{m}^{*}: \ell_{p} \rightarrow \ell_{q}$:

$$
\Phi_{m}^{*}(a)=\left\{a_{1}\left(1-\frac{t_{m+1}^{q}}{t_{1}^{q}}\right), \ldots, a_{m}\left(1-\frac{t_{m+1}^{q}}{t_{m}^{q}}\right), 0, \ldots\right\}, \quad a \in \ell_{p}
$$

that would be optimal in many situations. Also, we set $\Phi_{0}^{*}(a):=\theta, a \in \ell_{p}$.
In what follows we define $\sum_{k=1}^{0} a_{k}:=0$ for numeric a_{k} 's. In addition, for simplicity we assume that $t_{k}>0$ for every $k \in \mathbb{N}$. Results in this paper remain true in the case when t_{k} can attain zero value with the substitution of $1 / t_{k}$ with $+\infty$ and $t_{s} / t_{k}, s \geq k$ with 1 .
3.1. Information mapping $I_{\bar{\varepsilon}}^{n}(x)=\left(x_{1}, \ldots, x_{n}\right)+B\left[\varepsilon_{1}\right] \times \ldots \times B\left[\varepsilon_{n}\right]$.

Theorem 1. Let $n \in \mathbb{N}, 1 \leq q<\infty$ and $\varepsilon_{1}, \ldots, \varepsilon_{n} \geq 0$. If $1-\sum_{k=1}^{n} \frac{\varepsilon_{k}^{q}}{t_{k}^{q}} \geq 0$, we set $m=n$. Otherwise we choose $m \in \mathbb{Z}_{+}, m \leq n$, to be such that $1-\sum_{k=1}^{m} \frac{\varepsilon_{k}^{q}}{t_{k}^{G}} \geq 0$ and $1-\sum_{k=1}^{m+1} \frac{\varepsilon_{k}^{q}}{t_{k}^{G}}<0$. Then

$$
\mathcal{E}\left(W_{q}^{T}, I_{\bar{\varepsilon}}^{n}\right)=\mathcal{E}\left(W_{q}^{T}, I_{\bar{\varepsilon}}^{n}, \Phi_{m}^{*}\right)=\left(t_{m+1}^{q}+\sum_{k=1}^{m}\left(1-\frac{t_{m+1}^{q}}{t_{k}^{q}}\right) \varepsilon_{k}^{q}\right)^{1 / q} .
$$

Proof. Using convexity inequality, relations $\left|x_{k}-a_{k}\right| \leq \varepsilon_{k}, k=1, \ldots, n$, and monotony of the sequence t, we obtain that, for $x=T h \in W_{q}^{T}$ and $a \in I_{\bar{\varepsilon}}^{n}(x)$,

$$
\begin{aligned}
& \quad\left\|x-\Phi_{m}^{*}(a)\right\|_{q}^{q}=\sum_{k=1}^{m}\left|x_{k}-a_{k}\left(1-\frac{t_{m+1}^{q}}{t_{k}^{q}}\right)\right|^{q}+\sum_{k=m+1}^{\infty}\left|x_{k}\right|^{q}= \\
& =\sum_{k=1}^{m}\left|\left(1-\frac{t_{m+1}^{q}}{t_{k}^{q}}\right)\left(x_{k}-a_{k}\right)+\frac{t_{m+1}^{q}}{t_{k}^{q}} x_{k}\right|^{q}+\sum_{k=m+1}^{\infty} t_{k}^{q}\left|h_{k}\right|^{q} \leq \\
& \leq \\
& \sum_{k=1}^{m}\left(\left(1-\frac{t_{m+1}^{q}}{t_{k}^{q}}\right)\left|x_{k}-a_{k}\right|^{q}+\frac{t_{m+1}^{q}}{t_{k}^{q}}\left|x_{k}\right|^{q}\right)+t_{m+1}^{q} \sum_{k=m+1}^{\infty}\left|h_{k}\right|^{q}= \\
& = \\
& \sum_{k=1}^{m}\left(1-\frac{t_{m+1}^{q}}{t_{k}^{q}}\right)\left|x_{k}-a_{k}\right|^{q}+\sum_{k=1}^{m} t_{m+1}^{q}\left|h_{k}\right|^{q}+t_{m+1}^{q} \sum_{k=m+1}^{\infty}\left|h_{k}\right|^{q} \leq \\
& \leq \sum_{k=1}^{m}\left(1-\frac{t_{m+1}^{q}}{t_{k}^{q}}\right) \varepsilon_{k}^{q}+t_{m+1}^{q} .
\end{aligned}
$$

To obtain the lower estimate, we choose

$$
u_{k}:=\frac{\varepsilon_{k}}{t_{k}}, \quad k=1, \ldots, m, \quad \text { and } \quad u_{m+1}:=\left(1-\sum_{k=1}^{m} \frac{\varepsilon_{k}^{q}}{t_{k}^{q}}\right)^{1 / q}
$$

and consider $h^{*}=\left(u_{1}, \ldots, u_{m+1}, \ldots\right) \in l_{q}$. It is clear that $T h^{*} \in W_{q}^{T}$, as $\left\|h^{*}\right\|_{q} \leq 1$. Furthermore, by the choice of number m we have that $\theta \in I_{\bar{\varepsilon}}^{n}\left(T h^{*}\right)$. Hence, by Corollary 1 ,

$$
\begin{gathered}
\left(\mathcal{E}\left(W_{q}^{T}, I_{\bar{\varepsilon}}^{n}\right)\right)^{q} \geq\left\|T h^{*}\right\|_{q}^{q}=\sum_{k=1}^{m} t_{k}^{q} u_{k}^{q}+t_{m+1}^{q} u_{m+1}^{q}= \\
=\sum_{k=1}^{m} \varepsilon_{k}^{q}+t_{m+1}^{q}\left(1-\sum_{k=1}^{m} \frac{\varepsilon_{k}^{q}}{t_{k}^{q}}\right)=t_{m+1}^{q}+\sum_{k=1}^{m} \varepsilon_{k}^{q}\left(1-\frac{t_{m+1}^{q}}{t_{k}^{q}}\right),
\end{gathered}
$$

which finishes the proof.
3.2. Information mapping $I_{\varepsilon, p}^{n}(x)=\left(x_{1}, \ldots, x_{n}\right)+B\left[\varepsilon, \ell_{p}^{n}\right]$.

We consider three cases separately: $p=\infty, p \leq q$ and $p>q$.

3.2.1. Case $p=\infty$.

Setting $\varepsilon_{1}=\ldots=\varepsilon_{n}=\varepsilon$, we obtain from Theorem 1 the following corollary.
Theorem 2. Let $n \in \mathbb{N}, 1 \leq q<\infty$ and $\varepsilon \geq 0$. If $1-\varepsilon^{q} \sum_{k=1}^{n} \frac{1}{t_{k}^{q}} \geq 0$ then we set $m=n$.
Otherwise we choose $m \in \mathbb{Z}_{+}, m \leq n$, to be such that $1-\varepsilon^{q} \sum_{k=1}^{m} \frac{1}{t_{k}^{q}} \geq 0$ and $1-\varepsilon^{q} \sum_{k=1}^{m+1} \frac{1}{t_{k}^{q}}<0$.
Then

$$
\mathcal{E}\left(W_{q}^{T}, I_{\varepsilon, \infty}^{n}\right)=\mathcal{E}\left(W_{q}^{T}, I_{\varepsilon, \infty}^{n}, \Phi_{m}^{*}\right)=\left(t_{m+1}^{q}+\varepsilon^{q} \sum_{k=1}^{m}\left(1-\frac{t_{m+1}^{q}}{t_{k}^{q}}\right)\right)^{1 / q}
$$

3.2.2. Case $0<p \leq q$.

Theorem 3. Let $n \in \mathbb{N}, 1 \leq q<\infty$ and $0<p \leq q$. If $\varepsilon \in\left[0, t_{1}\right]$ then

$$
\mathcal{E}\left(W_{q}^{T}, I_{\varepsilon, p}^{n}\right)=\mathcal{E}\left(W_{q}^{T}, I_{\varepsilon, p}^{n}, \Phi_{n}^{*}\right)=\left(t_{n+1}^{q}+\varepsilon^{q}\left(1-\frac{t_{n+1}^{q}}{t_{1}^{q}}\right)\right)^{1 / q},
$$

and if $\varepsilon>t_{1}$ then $\mathcal{E}\left(W_{q}^{T}, I_{\varepsilon, p}^{n}\right)=\mathcal{E}\left(W_{q}^{T}, I_{\varepsilon, p}^{n}, \Phi_{0}^{*}\right)=t_{1}$.
Proof. First, consider the case $\varepsilon \in\left[0, t_{1}\right]$. For $x=T h \in W_{q}^{T},\|h\|_{q} \leq 1$, and $a \in I_{\varepsilon, p}^{n}(x)$, we have

$$
\begin{gathered}
\left\|x-\Phi_{n}^{*}(a)\right\|_{q}^{q}=\sum_{k=1}^{n}\left|x_{k}-a_{k}\left(1-\frac{t_{n+1}^{q}}{t_{k}^{q}}\right)\right|^{q}+\sum_{k=n+1}^{\infty}\left|x_{k}\right|^{q}= \\
=\sum_{k=1}^{n}\left|\left(1-\frac{t_{n+1}^{q}}{t_{k}^{q}}\right)\left(x_{k}-a_{k}\right)+\frac{t_{n+1}^{q}}{t_{k}^{q}} x_{k}\right|^{q}+\sum_{k=n+1}^{\infty} t_{k}^{q}\left|h_{k}\right|^{q} \leq \\
\leq \sum_{k=1}^{n}\left(\left(1-\frac{t_{n+1}^{q}}{t_{k}^{q}}\right)\left|x_{k}-a_{k}\right|^{q}+\frac{t_{n+1}^{q}}{t_{k}^{q}}\left|x_{k}\right|^{q}\right)+t_{n+1}^{q} \sum_{k=n+1}^{\infty}\left|h_{k}\right|^{q}= \\
\quad=\sum_{k=1}^{n}\left(1-\frac{t_{n+1}^{q}}{t_{k}^{q}}\right)\left(\left|x_{k}-a_{k}\right|^{p}\right)^{q / p}+t_{n+1}^{q} \sum_{k=1}^{\infty}\left|h_{k}\right|^{q} \leq \\
\leq\left(1-\frac{t_{n+1}^{q}}{t_{1}^{q}}\right)\left(\sum_{k=1}^{n}\left|x_{k}-a_{k}\right|^{p}\right)^{q / p}+t_{n+1}^{q} \leq\left(1-\frac{t_{n+1}^{q}}{t_{1}^{q}}\right) \varepsilon^{q}+t_{n+1}^{q} .
\end{gathered}
$$

Now, we establish the lower estimate for $\mathcal{E}\left(W_{q}^{T}, I_{\varepsilon, p}^{n}\right)$. Let u_{1} and u_{n+1} be such that $t_{1} u_{1}=$ ε and $u_{1}^{q}+u_{n+1}^{q}=1$, i.e. $u_{1}=\varepsilon / t_{1}$ and $u_{n+1}^{q}=1-\varepsilon^{q} / t_{1}^{q}$. Set $h^{*}:=\left(u_{1}, 0, \ldots, 0, u_{n+1}, 0, \ldots\right)$. Obviously, $\|h\|_{q} \leq 1$ and $\theta \in I_{\varepsilon, p}^{n}\left(T h^{*}\right)$. Then by Corollary 1,

$$
\begin{aligned}
& \left(\mathcal{E}\left(W_{q}^{T}, I_{\varepsilon, p}^{n}\right)\right)^{q} \geq\left\|T h^{*}\right\|_{q}^{q}=t_{1}^{q} u_{1}^{q}+t_{n+1}^{q} u_{n+1}^{q}= \\
& =\varepsilon^{q}+t_{n+1}^{q}\left(1-\frac{\varepsilon^{q}}{t_{1}^{q}}\right)=t_{n+1}^{q}+\varepsilon^{q}\left(1-\frac{t_{n+1}^{q}}{t_{1}^{q}}\right) .
\end{aligned}
$$

Finally, consider the case $\varepsilon>t_{1}$. For $x=T h \in W_{q}^{T}$ and $a \in I_{\varepsilon, p}^{n}(x)$, we have

$$
\left\|x-\Phi_{0}^{*}(a)\right\|_{q}^{q}=\|T h\|_{q}^{q}=\sum_{n=1}^{\infty} t_{n}^{q}\left|h_{n}\right|^{q} \leq t_{1}^{q} \sum_{n=1}^{\infty}\left|h_{n}\right|^{q} \leq t_{1}^{q} .
$$

Taking $h^{*}:=(1,0, \ldots)$, it is clear that $\theta \in I_{\varepsilon, p}^{n}\left(T h^{*}\right)$ and by Corollary 1 ,

$$
\mathcal{E}\left(W_{q}^{T}, I_{\varepsilon, p}^{n}\right) \geq\left\|T h^{*}\right\|_{q}=t_{1} .
$$

Theorem 3 is proved.
3.2.3. Case $1 \leq q<p<\infty$. This case is the most technical one. We introduce some preliminary notations. For $m=1, \ldots, n$, define

$$
\delta_{j, m}:=\left(1-\frac{t_{m+1}^{q}}{t_{j}^{q}}\right)^{\frac{p}{p-q}}, \quad j=1, \ldots, m-1
$$

and set $c_{1}:=t_{1}$ and, for $m \geq 2$,

$$
\begin{equation*}
c_{m}:=\left(\sum_{j=1}^{m} \delta_{j, m}\right)^{1 / p}\left(\sum_{j=1}^{m} \frac{\delta_{j, m}^{q / p}}{t_{j}^{q}}\right)^{-1 / q} . \tag{3}
\end{equation*}
$$

The sequence $\left\{c_{m}\right\}_{m=1}^{n}$ is non-increasing. Indeed, let $\delta_{j, m}(\xi):=\left(1-\frac{\xi t_{m}^{q}+(1-\xi) t_{m+1}^{q}}{t_{j}^{q}}\right)^{\frac{p}{p-q}}$ and consider the function

$$
g(\xi):=\left(\sum_{j=1}^{m} \delta_{j, m}(\xi)\right)^{1 / p}\left(\sum_{j=1}^{m} \frac{\delta_{j, m}^{q / p}(\xi)}{t_{j}^{q}}\right)^{-1 / q}, \quad \xi \in[0,1] .
$$

Differentiating g and applying the Cauchy-Swartz inequality we have

$$
\begin{aligned}
& g^{\prime}(\xi)=\frac{t_{m+1}^{q}-t_{m}^{q}}{p-q}\left(\sum_{j=1}^{m} \delta_{j, m}(\xi)\right)^{\frac{1}{p}-1}\left(\sum_{j=1}^{m} \frac{\delta_{j, m}^{q / p}(\xi)}{t_{j}^{q}}\right)^{-1 / q-1} \times \\
& \times\left(\left(\sum_{j=1}^{m} \frac{\delta_{j, m}^{q / p}(\xi)}{t_{j}^{q}}\right)^{2}-\left(\sum_{j=1}^{m} \delta_{j, m}(\xi)\right)\left(\sum_{j=1}^{m} \frac{\delta_{j, m}^{2 q / p-1}(\xi)}{t_{j}^{2 q}}\right)\right) \geq 0 .
\end{aligned}
$$

Hence, $c_{m+1}=g(0) \leq g(1)=c_{m}$.
For convenience, for $\lambda \in[0,1]$ denote $t_{m, \lambda}^{q}:=(1-\lambda) t_{m+1}^{q}+\lambda t_{m}^{q}$.
Theorem 4. Let $n \in \mathbb{N}$ and $1 \leq q<p<\infty$.

1. If $\varepsilon \leq c_{n}$ then

$$
\mathcal{E}\left(W_{q}^{T}, I_{\varepsilon, p}^{n}\right)=\mathcal{E}\left(W_{q}^{T}, I_{\varepsilon, p}^{n}, \Phi_{n}^{*}\right)=\left(t_{n+1}^{q}+\varepsilon^{q}\left(\sum_{j=1}^{n}\left(1-\frac{t_{n+1}^{q}}{t_{j}^{q}}\right)^{\frac{p}{p-q}}\right)^{\frac{p-q}{p}}\right)^{1 / q}
$$

2. If $\varepsilon \in\left(c_{n}, c_{1}\right]$ then there exist $m \in\{1, \ldots, n-1\}$ such that $\varepsilon \in\left(c_{m+1}, c_{m}\right]$ and $\lambda=\lambda(\varepsilon) \in$ $[0,1)$ such that

$$
\begin{equation*}
\varepsilon=\left(\sum_{j=1}^{m}\left(1-\frac{t_{m, \lambda}^{q}}{t_{j}^{q}}\right)^{\frac{p}{p-q}}\right)^{\frac{1}{p}}\left(\sum_{j=1}^{m} \frac{\left(1-\frac{t_{m, \lambda}^{q}}{t_{j}^{j}}\right)^{\frac{q}{p-q}}}{t_{j}^{q}}\right)^{-1 / q} . \tag{4}
\end{equation*}
$$

Then

$$
\mathcal{E}\left(W_{q}^{T}, I_{\varepsilon, p}^{n}\right)=\mathcal{E}\left(W_{q}^{T}, I_{\varepsilon, p}^{n}, \Phi_{m, \lambda}^{*}\right)=\left(t_{m, \lambda}^{q}+\varepsilon^{q} \cdot\left(\sum_{j=1}^{m}\left(1-\frac{t_{m, \lambda}^{q}}{t_{j}^{q}}\right)^{\frac{p}{p-q}}\right)^{\frac{p-q}{p}}\right)^{1 / q},
$$

where

$$
\Phi_{m, \lambda}^{*}(a)=\left(a_{1}\left(1-\frac{t_{m, \lambda}^{q}}{t_{1}^{q}}\right), \ldots, a_{m}\left(1-\frac{t_{m, \lambda}^{q}}{t_{m}^{q}}\right), 0, \ldots\right), a \in \ell_{p} .
$$

3. If $\varepsilon>c_{1}$ then $\mathcal{E}\left(W_{q}^{T}, I_{\varepsilon, p}^{n}\right)=\mathcal{E}\left(W_{q}^{T}, I_{\varepsilon, p}^{n}, \Phi_{0}^{*}\right)=t_{1}$.

Proof. Let $m \in\{0, \ldots, n\}, \lambda \in[0,1]$ and Φ be either Φ_{n}^{*}, or Φ_{0}^{*}, or $\Phi_{m, \lambda}^{*}$. For $x \in W_{q}^{T}$ and $a \in I_{\varepsilon, p}^{n}(x)$,

$$
\begin{aligned}
\| x & -\Phi(a) \|_{q}^{q} \leq \sum_{k=1}^{m}\left|\left(1-\frac{t_{m, \lambda}^{q}}{t_{k}^{q}}\right)\left(x_{k}-a_{k}\right)+\frac{t_{m, \lambda}^{q}}{t_{k}^{q}} x_{k}\right|^{q}+\sum_{k=m+1}^{\infty}\left|x_{k}\right|^{q} \leq \\
& \leq \sum_{k=1}^{m}\left(1-\frac{t_{m, \lambda}^{q}}{t_{k}^{q}}\right)\left|x_{k}-a_{k}\right|^{q}+\sum_{k=1}^{m} t_{m, \lambda}^{q}\left|h_{k}\right|^{q}+\sum_{k=m+1}^{\infty} t_{k}^{q}\left|h_{k}\right|^{q} .
\end{aligned}
$$

Using the Hölder inequality with parameters $p /(p-q)$ and p / q to estimate the first term and the inequality $t_{k}^{q} \leq t_{m, \lambda}^{q}, k=m+1, m+2, \ldots$, we obtain

$$
\begin{gathered}
\|x-\Phi(a)\|_{q}^{q} \leq\left\{\sum_{k=1}^{m}\left(1-\frac{t_{m, \lambda}^{q}}{t_{k}^{q}}\right)^{\frac{p}{p-q}}\right\}^{1-q / p}\left\{\sum_{k=1}^{m}\left|x_{k}-a_{k}\right|^{p}\right\}^{q / p}+t_{m, \lambda}^{q} \sum_{k=1}^{\infty} h_{k}^{q} \leq \\
\leq\left\{\sum_{k=1}^{m}\left(1-\frac{t_{m, \lambda}^{q}}{t_{k}^{q}}\right)^{\frac{p}{p-q}}\right\}^{1-q / p} \varepsilon^{q}+t_{m, \lambda}^{q},
\end{gathered}
$$

which proves the estimate from above.
Now, we turn to the proof of the lower estimate. First, let $\varepsilon \leq c_{n}$, and define

$$
u_{j}:=\frac{\varepsilon \delta_{j, n}^{1 / p}}{t_{j}}\left(\sum_{j=1}^{n} \delta_{j, n}\right)^{-1 / p}, \quad j=1, \ldots, n, \quad \text { and } \quad u_{n+1}:=\left(1-\sum_{j=1}^{n} u_{j}^{q}\right)^{1 / q}
$$

Consider $h^{*}:=\left(u_{1}, \ldots, u_{n+1}, 0, \ldots\right)$. Evidently, u_{n+1} is well-defined as

$$
\sum_{j=1}^{n} u_{j}^{q}=\varepsilon^{q}\left(\sum_{j=1}^{n} \delta_{j, n}\right)^{-q / p} \sum_{j=1}^{n} \frac{\delta_{j, n}^{q / p}}{t_{j}^{q}}=\frac{\varepsilon^{q}}{c_{n}^{q}} \leq 1,
$$

$\left\|h^{*}\right\|_{q}=1$ and $\theta \in I_{\varepsilon, p}^{n}\left(T h^{*}\right)$ as $\sum_{j=1}^{n} t_{j}^{p} h_{j}^{p}=\varepsilon^{p}$. Hence, by Corollary 1,

$$
\begin{aligned}
& \left(\mathcal{E}\left(W_{q}^{T}, I_{\varepsilon, p}^{n}\right)\right)^{q} \geq\left\|T h^{*}\right\|_{q}^{q}=\varepsilon^{q} \sum_{j=1}^{n} \delta_{j, n}^{q / p}\left(\sum_{j=1}^{n} \delta_{j, n}\right)^{-q / p}+t_{n+1}^{q}-t_{n+1}^{q} \sum_{j=1}^{n} \varepsilon^{q} \frac{\delta_{j, n}^{q / p}}{t_{j}^{q}}\left(\sum_{j=1}^{n} \delta_{j, n}\right)^{-q / p}= \\
& \quad=\varepsilon^{q}\left(\sum_{j=1}^{n} \delta_{j, n}\right)^{-q / p} \sum_{j=1}^{n} \delta_{j, n}^{q / p}\left(1-\frac{t_{n+1}^{q}}{t_{j}^{q}}\right)+t_{n+1}^{q}=t_{n+1}^{q}+\varepsilon^{q} \cdot\left(\sum_{j=1}^{n}\left(1-\frac{t_{n+1}^{q}}{t_{j}^{q}}\right)^{\frac{p}{p-q}}\right)^{\frac{p-q}{p}} .
\end{aligned}
$$

Next, let $m \in\{1,2, \ldots, n-1\}$ be such that $c_{m+1}<\varepsilon \leq c_{m}$ and $\lambda=\lambda_{\varepsilon} \in[0,1)$ be defined by (4). Set

$$
u_{j}:=\frac{\varepsilon \delta_{j, m}^{1 / p}(\lambda)}{t_{j}}\left(\sum_{j=1}^{m} \delta_{j, m}(\lambda)\right)^{-1 / p}, \quad j=1, \ldots, m
$$

and consider $h^{*}=\left(u_{1}, \ldots, u_{m}, 0, \ldots\right)$. Clearly, $\|h\|_{q}=1$ and $\theta \in I_{\varepsilon, p}^{n}\left(T h^{*}\right)$. Using Corollary 1, we obtain the desired lower estimate for $\mathcal{E}\left(W_{q}^{T}, I_{\varepsilon, p}^{n}\right)$.

Finally, let $\varepsilon>c_{1}$. Consider $h^{*}:=(1,0,0, \ldots)$. Since $c_{1}=t_{1}$, we have $\theta \in I_{\varepsilon, p}^{n}\left(T h^{*}\right)$. Hence, by Corollary $1, \mathcal{E}\left(W_{q}^{T}, I_{\varepsilon, p}^{n}\right) \geq\left\|T h^{*}\right\|_{q}=t_{1}^{q}$.
3.3. Information mapping $I(x)=I_{\varepsilon, p}(x):=x+B\left[\varepsilon, \ell_{p}\right]$. As a limiting case from Theorem 2, 3 and 4 we can obtain the following corollaries.

Theorem 5. Let $1 \leq q<\infty$ and $\varepsilon \geq 0$. Choose $m \in \mathbb{Z}_{+}$to be such that

$$
1-\varepsilon^{q} \sum_{k=1}^{m} \frac{1}{t_{k}^{q}} \geq 0 \quad \text { and } \quad 1-\varepsilon^{q} \sum_{k=1}^{m+1} \frac{1}{t_{k}^{q}}<0 .
$$

Then

$$
\mathcal{E}\left(W_{q}^{T}, I_{\varepsilon, \infty}\right)=\mathcal{E}\left(W_{q}^{T}, I_{\varepsilon, \infty}, \Phi_{m}^{*}\right)=\left(t_{m+1}^{q}+\varepsilon^{q} \sum_{k=1}^{m}\left(1-\frac{t_{m+1}^{q}}{t_{k}^{q}}\right)\right)^{1 / q}
$$

Theorem 6. Let $1 \leq q<\infty$ and $0<p \leq q$. If $0 \leq \varepsilon \leq t_{1}$ then $\mathcal{E}\left(W_{q}^{T}, I_{\varepsilon, p}\right)=$ $\mathcal{E}\left(W_{q}^{T}, I_{\varepsilon, p}\right.$, id $)=\varepsilon$, and if $\varepsilon>t_{1}$ then $\mathcal{E}\left(W_{q}^{T}, I_{\varepsilon, p}\right)=\mathcal{E}\left(W_{q}^{T}, I_{\varepsilon, p}, \Phi_{0}^{*}\right)=t_{1}$.

Define the sequence $\left\{c_{n}\right\}_{n=1}^{\infty}$ using formulas (3). It is not difficult to verify that $\left\{c_{n}\right\}_{n=1}^{\infty}$ is non-increasing and tend to 0 as $n \rightarrow \infty$.

Theorem 7. Let $1 \leq q<p<\infty$. If $\varepsilon \in\left(0, c_{1}\right]$ then there exists $m \in \mathbb{N}$ such that $\varepsilon \in\left(c_{m+1}, c_{m}\right]$ and $\lambda=\lambda(\varepsilon) \in[0,1)$ such that

$$
\begin{equation*}
\varepsilon=\left(\sum_{j=1}^{m}\left(1-\frac{t_{m, \lambda}^{q}}{t_{j}^{q}}\right)^{\frac{p}{p-q}}\right)^{1 / p}\left(\sum_{j=1}^{m} \frac{\left(1-\frac{t_{m_{m, \lambda}}^{q}}{t_{j}^{q}}\right)^{\frac{q}{p-q}}}{t_{j}^{q}}\right)^{-1 / q} \tag{5}
\end{equation*}
$$

Then

$$
\mathcal{E}\left(W_{q}^{T}, I_{\varepsilon, p}\right)=\mathcal{E}\left(W_{q}^{T}, I_{\varepsilon, p}, \Phi_{m, \lambda}^{*}\right)=\left(t_{m, \lambda}^{q}+\varepsilon^{q} \cdot\left(\sum_{j=1}^{m}\left(1-\frac{t_{m, \lambda}^{q}}{t_{j}^{q}}\right)^{\frac{p}{p-q}}\right)^{\frac{p-q}{p}}\right)^{1 / q}
$$

where the method $\Phi_{m, \lambda}^{*}$ is defined in Theorem 3. Otherwise, if $\varepsilon>c_{1}$ then $\mathcal{E}\left(W_{q}^{T}, I_{\varepsilon, p}\right)=$ $\mathcal{E}\left(W_{q}^{T}, I_{\varepsilon, p}, \Phi_{0}^{*}\right)=t_{1}$.
4. Recovery of scalar products. Following [3] (see also [4, 6, 7]), let us consider the problem of optimal recovery of scalar product. Let $1 \leq p, q \leq \infty$ and given operators $T: \ell_{p} \rightarrow \ell_{p}$ and $S: \ell_{q} \rightarrow \ell_{q}$ be defined as follows: for fixed non-increasing sequences $t=$ $\left\{t_{k}\right\}_{k=1}^{\infty}$ and $s=\left\{s_{k}\right\}_{k=1}^{\infty}$,

$$
T h:=\left\{t_{k} h_{k}\right\}_{k=1}^{\infty}, \quad h \in \ell_{p}, \quad \text { and } \quad S g:=\left\{s_{k} g_{k}\right\}_{k=1}^{\infty}, \quad g \in \ell_{q} .
$$

Consider classes of sequences

$$
W_{p}^{T}:=\left\{x=T h: h \in \ell_{p},\|h\|_{p} \leq 1\right\}, \quad W_{q}^{S}:=\left\{y=T g: g \in \ell_{q},\|g\|_{q} \leq 1\right\}
$$

and define the scalar product $A=\langle\cdot, \cdot\rangle: \ell_{p} \times \ell_{q} \rightarrow \mathbb{C}$ as usually:

$$
\langle x, y\rangle=\sum_{k=1}^{\infty} x_{k} y_{k}, \quad x \in \ell_{p}, y \in \ell_{q}
$$

For brevity, we denote $\langle x, y\rangle_{n}:=\sum_{k=1}^{n} x_{k} y_{k}$.
In this section we will consider the problem of optimal recovery of the scalar product operator A on the class $W_{p, q}^{T, S}:=W_{p}^{T} \times W_{q}^{S}$, when information mapping I is given in one of the following forms:

1. $I(x, y)=J_{\bar{\varepsilon}}^{n}(x, y)=\left\{(a, b) \in \mathbb{C}^{n} \times \mathbb{C}^{n}: \forall k=1, \ldots, n \Rightarrow\left|x_{k} y_{k}-a_{k} b_{k}\right| \leq \varepsilon_{k}\right\}$, where $n \in$ \mathbb{N} and $\varepsilon_{1}, \ldots, \varepsilon_{n} \geq 0 ;$
2. $I(x, y)=J_{\varepsilon, r}^{n}(x, y)=\left\{(a, b) \in \mathbb{C}^{n} \times \mathbb{C}^{n}:\left\|\langle x, y\rangle_{n}-\langle a, b\rangle_{n}\right\|_{\ell_{r}^{n}} \leq \varepsilon\right\}$, where $n \in \mathbb{N}$ and $1 \leq r \leq \infty$.

Finally, for $m \in \mathbb{N}$, we define methods of recovery $\Psi_{m}^{*}: \mathbb{C}^{n} \times \mathbb{C}^{n} \rightarrow \mathbb{C}$:

$$
\Psi_{m}^{*}(a, b)=\sum_{k=1}^{m} a_{k} b_{k}\left(1-\frac{t_{m+1} s_{m+1}}{t_{k} s_{k}}\right), \quad a, b \in \mathbb{C}^{n}
$$

that will be optimal in many situations and set $\Psi_{0}^{*}(a, b):=0$.

4.1. Information mapping $J_{\bar{\varepsilon}}^{n}$.

Theorem 8. Let $n \in \mathbb{N}, 1<p<\infty, q=p /(p-1), \varepsilon_{1}, \ldots, \varepsilon_{n} \geq 0$ and $\bar{\varepsilon}=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$. If

$$
1-\sum_{k=1}^{n} \frac{\varepsilon_{k}}{t_{k} s_{k}} \geq 0
$$

we set $m=n$. Otherwise we choose $m \in \mathbb{Z}_{+}, m \leq n$, to be such that

$$
1-\sum_{k=1}^{m} \frac{\varepsilon_{k}}{t_{k} s_{k}} \geq 0 \quad \text { and } \quad 1-\sum_{k=1}^{m} \frac{\varepsilon_{k}}{t_{k} s_{k}}-\frac{\varepsilon_{m+1}}{t_{m+1} s_{m+1}}<0 .
$$

Then

$$
\mathcal{E}\left(A, W_{p, q}^{T, S}, J_{\bar{\varepsilon}}^{n}\right)=\mathcal{E}\left(A, W_{p, q}^{T, S}, J_{\bar{\varepsilon}}^{n}, \Psi_{m}^{*}\right)=t_{m+1} s_{m+1}+\sum_{k=1}^{m} \varepsilon_{k}\left(1-\frac{t_{m+1} s_{m+1}}{t_{k} s_{k}}\right)
$$

Proof. Using the triangle inequality, relations $\left|x_{k} y_{k}-a_{k} b_{k}\right| \leq \varepsilon_{k}, k=1, \ldots, n$, and monotony of sequences t and s, we obtain that, for $(x, y)=(T h, S g) \in W_{p, q}^{T, S}$ and $(a, b) \in J_{\bar{\varepsilon}}^{n}(x, y)$,

$$
\begin{gathered}
\left|\langle x, y\rangle-\Psi_{m}^{*}(a, b)\right|=\left|\sum_{k=1}^{\infty} x_{k} y_{k}-\sum_{k=1}^{m} a_{k} b_{k}\left(1-\frac{t_{m+1} s_{m+1}}{t_{k} s_{k}}\right)\right| \leq \\
\leq \sum_{k=1}^{m}\left(1-\frac{t_{m+1} s_{m+1}}{t_{k} s_{k}}\right)\left|x_{k} y_{k}-a_{k} b_{k}\right|+\sum_{k=1}^{m} \frac{t_{m+1} s_{m+1}}{t_{k} s_{k}}\left|x_{k} y_{k}\right|+\sum_{k=m+1}^{\infty}\left|x_{k} y_{k}\right| \leq \\
\leq \sum_{k=1}^{m}\left(1-\frac{t_{m+1} s_{m+1}}{t_{k} s_{k}}\right) \varepsilon_{k}+t_{m+1} s_{m+1} \sum_{k=1}^{m}\left|h_{k} g_{k}\right|+\sum_{k=m+1}^{\infty} t_{k} s_{k}\left|h_{k} g_{k}\right| \leq \\
\leq \sum_{k=1}^{m}\left(1-\frac{t_{m+1} s_{m+1}}{t_{k} s_{k}}\right) \varepsilon_{k}+t_{m+1} s_{m+1} \sum_{k=1}^{\infty}\left|h_{k} g_{k}\right| \leq \\
\leq t_{m+1} s_{m+1}+\sum_{k=1}^{m}\left(1-\frac{t_{m+1} s_{m+1}}{t_{k} s_{k}}\right) \varepsilon_{k},
\end{gathered}
$$

which proves the upper estimate.
To establish the lower estimate, we set

$$
\begin{align*}
u_{k} & =\left(\frac{\varepsilon_{k}}{t_{k} s_{k}}\right)^{1 / p}, \quad v_{k}:=\left(\frac{\varepsilon_{k}}{t_{k} s_{k}}\right)^{1 / q}, \quad k=1, \ldots, m \tag{6}\\
u_{m+1} & =\left(1-\sum_{k=1}^{m} \frac{\varepsilon_{k}}{t_{k} s_{k}}\right)^{1 / p}, \quad v_{m+1}=\left(1-\sum_{k=1}^{m} \frac{\varepsilon_{k}}{t_{k} s_{k}}\right)^{1 / q}, \tag{7}
\end{align*}
$$

and consider $u^{*}=\left(u_{1}, \ldots, u_{m+1}, 0, \ldots\right)$ and $v^{*}=\left(v_{1}, \ldots, v_{m+1}, 0, \ldots\right)$. It is clear that $\left(T u^{*}, S v^{*}\right) \in W_{p, q}^{T, S}$ and $\theta \in J_{\bar{\varepsilon}}^{n}\left(T u^{*}, S v^{*}\right) \cap J_{\bar{\varepsilon}}^{n}\left(-T u^{*}, S v^{*}\right)$ due to the choice of number m. Hence, by Corollary 2,

$$
\begin{gathered}
E\left(A, W_{p, q}^{T, S}, J_{\bar{\varepsilon}}^{n}\right) \geq\left|\left\langle T u^{*}, S v^{*}\right\rangle\right|=\sum_{k=1}^{m} t_{k} s_{k} u_{k} v_{k}+t_{m+1} s_{m+1}\left(1-\sum_{k=1}^{m} \frac{\varepsilon_{k}}{t_{k} s_{k}}\right)= \\
=t_{m+1} s_{m+1}+\sum_{k=1}^{m}\left(1-\frac{t_{m+1} s_{m+1}}{t_{k} s_{k}}\right) \varepsilon_{k}
\end{gathered}
$$

This proves the sharpness of the upper estimate.
4.2. Information mapping $J_{\varepsilon, r}^{n}$. We consider three cases separately: $r=\infty, 0<r \leq 1$ and $1<r<\infty$.
4.2.1. Case $r=\infty$. Setting $\varepsilon_{1}=\ldots=\varepsilon_{n}=\varepsilon$, we obtain the following corollary from Theorem 8.

Theorem 9. Let $n \in \mathbb{N}, 1<p<\infty, q=p /(p-1)$ and $\varepsilon \geq 0$. If

$$
1-\varepsilon \sum_{k=1}^{n} \frac{1}{t_{k} s_{k}} \geq 0
$$

we set $n=m$. Otherwise we choose $m \in \mathbb{Z}_{+}, m \leq n$, to be such that

$$
1-\varepsilon \sum_{k=1}^{m} \frac{1}{t_{k} s_{k}} \geq 0 \quad \text { and } \quad 1-\varepsilon \sum_{k=1}^{m+1} \frac{1}{t_{k} s_{k}}<0 .
$$

Then

$$
\mathcal{E}\left(A, W_{p, q}^{T, S}, J_{\varepsilon, \infty}^{n}\right)=\mathcal{E}\left(A, W_{p, q}^{T, S}, J_{\varepsilon, \infty}^{n}, \Psi_{m}^{*}\right)=t_{m+1} s_{m+1}+\varepsilon \sum_{k=1}^{m}\left(1-\frac{t_{m+1} s_{m+1}}{t_{k} s_{k}}\right) .
$$

4.2.2. Case $0<r \leq 1$.

Theorem 10. Let $n \in \mathbb{N}, 1<p<\infty, q=p /(p-1)$ and $r \in(0,1]$. If $\varepsilon \leq t_{1} s_{1}$ then

$$
\mathcal{E}\left(A, W_{p, q}^{T, S}, J_{\varepsilon, r}^{n}\right)=\mathcal{E}\left(A, W_{p, q}^{T, S}, J_{\varepsilon, r}^{n}, \Psi_{n}^{*}\right)=t_{n+1} s_{n+1}+\varepsilon\left(1-\frac{t_{n+1} s_{n+1}}{t_{1} s_{1}}\right),
$$

and if $\varepsilon>t_{1} s_{1}$ then $\mathcal{E}\left(A, W_{p, q}^{T, S}, J_{\varepsilon, r}^{n}\right)=\mathcal{E}\left(A, W_{p, q}^{T, S}, J_{\varepsilon, r}^{n}, \Psi_{0}^{*}\right)=t_{1} s_{1}$.
Proof. First, we consider the case $\varepsilon \leq t_{1} s_{1}$. Let $(x, y)=(T h, S g) \in W_{p, q}^{T, S}$ and $(a, b) \in$ $J_{\varepsilon, r}^{n}(x, y)$. Similarly to the proof of Theorem 8 in the case $m=n$ we obtain

$$
\begin{equation*}
\left|\langle x, y\rangle-\Psi_{n}^{*}(a, b)\right| \leq \sum_{k=1}^{n}\left(1-\frac{t_{n+1} s_{n+1}}{t_{k} s_{k}}\right)\left|x_{k} y_{k}-a_{k} b_{k}\right|+t_{n+1} s_{n+1} \sum_{k=1}^{\infty} h_{k} g_{k} \tag{8}
\end{equation*}
$$

Using the Hölder inequality and inequality $\varepsilon_{1}^{1 / r}+\ldots+\varepsilon_{n}^{1 / r} \leq\left(\varepsilon_{1}+\ldots+\varepsilon_{n}\right)^{1 / r}$, we have

$$
\begin{aligned}
\left|\langle x, y\rangle-\Psi_{n}^{*}(a, b)\right| \leq \max _{k=1, n} & \left(1-\frac{t_{n+1} s_{n+1}}{t_{k} s_{k}}\right) \sum_{k=1}^{n}\left|x_{k} y_{k}-a_{k} b_{k}\right|+t_{n+1} s_{n+1}\|h\|_{p}\|g\|_{q} \leq \\
& \leq\left(1-\frac{t_{n+1} s_{n+1}}{t_{1} s_{1}}\right) \varepsilon+t_{n+1} s_{n+1} .
\end{aligned}
$$

The upper estimate is proved.
Now, we establish the lower estimate. Let

$$
u_{1}=\left(\frac{\varepsilon}{s_{1} t_{1}}\right)^{1 / p}, \quad u_{n+1}=\left(1-\frac{\varepsilon}{t_{1} s_{1}}\right)^{1 / p}, \quad v_{1}=\left(\frac{\varepsilon}{s_{1} t_{1}}\right)^{1 / q}, \quad v_{n+1}=\left(1-\frac{\varepsilon}{t_{1} s_{1}}\right)^{1 / q}
$$

and consider elements $u^{*}=\left(u_{1}, 0, \ldots, 0, u_{n+1}, 0, \ldots\right), v^{*}=\left(u_{1}, 0, \ldots, 0, u_{n+1}, 0, \ldots\right)$. Obviously, $\left(T u^{*}, S v^{*}\right) \in W_{p, q}^{T, S}$ and $(\theta, \theta) \in J_{\varepsilon, r}^{n}\left(T u^{*}, S v^{*}\right) \cap J_{\varepsilon, r}^{n}\left(-T u^{*}, S v^{*}\right)$. Then by Corollary 2,

$$
\begin{aligned}
\mathcal{E}\left(A, W_{p, q}^{T, S}, J_{\varepsilon, r}^{n}\right) \geq & \left.\geq T u^{*}, S v^{*}\right\rangle \left\lvert\,=t_{1} s_{1} \cdot \frac{\varepsilon}{t_{1} s_{1}}+t_{n+1} s_{n+1} \cdot\left(1-\frac{\varepsilon}{t_{1} s_{1}}\right)\right. \\
& =\left(1-\frac{t_{n+1} s_{n+1}}{t_{1} s_{1}}\right) \varepsilon+t_{n+1} s_{n+1}
\end{aligned}
$$

which finishes the proof of the desired estimate.
Next, we let $\varepsilon>t_{1} s_{1}$. For $(x, y)=(T h, S g) \in W_{p, q}^{T, S}$, and $(a, b) \in J_{\varepsilon, r}^{n}(x, y)$, we have

$$
\left|\langle x, y\rangle-\Psi_{0}^{*}(a, b)\right|=|\langle x, y\rangle| \leq \sum_{k=1}^{\infty} t_{k} s_{k}\left|h_{k} g_{k}\right| \leq t_{1} s_{1}\|h\|_{p}\|g\|_{q} \leq t_{1} s_{1}
$$

Taking $u^{*}=v^{*}=(1,0, \ldots)$, it is clear that $(\theta, \theta) \in J_{\varepsilon, r}^{n}\left(T u^{*}, S v^{*}\right) \cap J_{\varepsilon, r}^{n}\left(-T u^{*}, S v^{*}\right)$. By Corollary 2,

$$
\mathcal{E}\left(A, W_{p, q}^{T, S}, J_{\varepsilon, r}^{n}\right) \geq\left|\left(T u^{*}, S v^{*}\right)\right|=t_{1} s_{1} .
$$

4.2.3. Case $1<r<\infty$. First, we introduce some preliminary notations. For $m=1, \ldots, n$, we define

$$
\tau_{j, m}:=\left(1-\frac{t_{m+1} s_{m+1}}{t_{j} s_{j}}\right)^{\frac{1}{r-1}}, \quad j=1, \ldots, m-1
$$

and set $d_{1}:=t_{1} s_{1}$ and, for $m \geq 2$,

$$
d_{m}:=\left(\sum_{j=1}^{m} \tau_{j, m}^{r}\right)^{1 / r}\left(\sum_{j=1}^{m} \frac{\tau_{j, m}}{t_{j} s_{j}}\right)^{-1} .
$$

The sequence $\left\{d_{m}\right\}_{m=1}^{n}$ is non-increasing, which can be verified using the arguments similar to those applied to prove monotony of sequence $\left\{c_{m}\right\}_{m=1}^{n}$ in subsection 3.2.3. In addition, for convenience, for $\lambda \in[0,1]$, we denote

$$
t_{m, \lambda}:=(1-\lambda) t_{m+1}+\lambda t_{m} \quad \text { and } \quad s_{m, \lambda}:=(1-\lambda) s_{m+1}+\lambda s_{m}
$$

Theorem 11. Let $n \in \mathbb{N}, 1<p<\infty, q=p /(p-1)$ and $1<r<\infty$.

1. If $\varepsilon \leq d_{n+1}$ then

$$
\mathcal{E}\left(A, W_{p, q}^{T, S}, J_{\varepsilon, r}^{n}\right)=\mathcal{E}\left(A, W_{p, q}^{T, S}, J_{\varepsilon, r}^{n}, \Psi_{n}^{*}\right)=t_{n+1} s_{n+1}+\varepsilon \cdot\left(\sum_{j=1}^{n}\left(1-\frac{t_{n+1} s_{n+1}}{t_{j} s_{j}}\right)^{\frac{r}{r-1}}\right)^{\frac{r-1}{r}} .
$$

2. If $\varepsilon \in\left(d_{n}, d_{1}\right]$ then there exists $m \in\{1, \ldots, n-1\}$ such that $\varepsilon \in\left(d_{m+1}, d_{m}\right]$ and $\lambda=\lambda(\varepsilon) \in[0,1)$ such that

$$
\begin{equation*}
\varepsilon=\left(\sum_{j=1}^{m}\left(1-\frac{t_{m, \lambda} s_{m, \lambda}}{t_{j} s_{j}}\right)^{\frac{r}{r-1}}\right)^{1 / r}\left(\sum_{j=1}^{m} \frac{\left(1-\frac{t_{m, \lambda} s_{m, \lambda}}{j_{j} s_{j}}\right)^{\frac{1}{r-1}}}{t_{j} s_{j}}\right)^{-1} . \tag{9}
\end{equation*}
$$

Then

$$
\mathcal{E}\left(A, W_{p, q}^{T, S}, J_{\varepsilon, r}^{n}\right)=\mathcal{E}\left(A, W_{p, q}^{T, S}, J_{\varepsilon, r}^{n}, \Psi_{m, \lambda}^{*}\right)=t_{m, \lambda} s_{m, \lambda}+\varepsilon\left(\sum_{j=1}^{m}\left(1-\frac{t_{m, \lambda} s_{m, \lambda}}{t_{j} s_{j}}\right)^{\frac{r}{r-1}}\right)^{\frac{r-1}{r}}
$$

where

$$
\Psi_{m, \lambda}^{*}(a, b)=\sum_{j=1}^{m} a_{j} b_{j}\left(1-\frac{t_{m, \lambda} s_{m, \lambda}}{t_{j} s_{j}}\right), \quad a, b \in \ell_{r}
$$

3. If $\varepsilon>d_{1}$ then $\mathcal{E}\left(A, W_{p, q}^{T, S}, J_{\varepsilon, r}^{n}\right)=\mathcal{E}\left(A, W_{p, q}^{T, S}, J_{\varepsilon, r}^{n}, \Psi_{0}^{*}\right)=t_{1} s_{1}$.

Proof. Let $m \in\{0, \ldots, n\}, \lambda \in[0,1]$ and Ψ be either Ψ_{n}^{*} or Ψ_{0}^{*}, or $\Psi_{m, \lambda}^{*}$. Using the Hölder inequality with parameters r and $\frac{r}{r-1}$, for $(x, y)=(T h, S g) \in W_{p, q}^{T, S}$ and $(a, b) \in J_{\varepsilon, r}^{n}(x, y)$, we have

$$
\begin{aligned}
|\langle x, y\rangle-\Psi(a, b)| \leq & \sum_{j=1}^{m}\left(1-\frac{t_{m, \lambda} s_{m, \lambda}}{t_{j} s_{j}}\right)\left|x_{j} y_{j}-a_{j} b_{j}\right|+t_{m, \lambda} s_{m, \lambda} \sum_{j=1}^{m} \frac{x_{j} y_{j}}{t_{j} s_{j}}+\sum_{j=m+1}^{\infty} x_{j} y_{j} \leq \\
& \leq t_{m, \lambda} s_{m, \lambda}+\varepsilon\left(\sum_{j=1}^{m}\left(1-\frac{t_{m, \lambda} s_{m, \lambda}}{t_{j} s_{j}}\right)^{\frac{r}{r-1}}\right)^{\frac{r-1}{r}}
\end{aligned}
$$

which proves the upper estimate.
Now, we turn to the proof of the lower estimate. We let $\varepsilon \leq d_{n}$, and, for $j=1, \ldots, n$, set

$$
u_{j}=\left(\frac{\varepsilon \tau_{j, n}}{t_{j} s_{j}}\right)^{1 / p}\left(\sum_{k=1}^{n} \tau_{k, n}^{r}\right)^{-\frac{1}{r p}}, \quad v_{j}=\left(\frac{\varepsilon \tau_{j, n}}{t_{j} s_{j}}\right)^{1 / q}\left(\sum_{k=1}^{n} \tau_{k, n}^{r}\right)^{-\frac{1}{r q}}
$$

$u_{n+1}:=\left(1-u_{1}^{p}-\ldots-u_{n}^{p}\right)^{1 / p}$, and $v_{n+1}:=\left(1-v_{1}^{q}-\ldots-v_{n}^{q}\right)^{1 / q}$. In addition, we define $u^{*}=\left(u_{1}, \ldots, u_{n}, u_{n+1}, 0, \ldots\right)$ and $v^{*}:=\left(v_{1}, \ldots, v_{n}, v_{n+1}, 0, \ldots\right)$. By the choice of ε, numbers u_{n+1} and v_{n+1} are well defined and, hence, $\left(T u^{*}, S v^{*}\right) \in W_{p, q}^{T, S}$. Also,

$$
\sum_{j=1}^{n}\left|T u_{j}^{*} \cdot S v_{j}^{*}\right|^{r}=\sum_{j=1}^{n}\left|t_{j} s_{j} u_{j} v_{j}\right|^{r}=\varepsilon^{r},
$$

yielding that $(\theta, \theta) \in J_{\varepsilon, r}^{n}\left(T u^{*}, S v^{*}\right) \cap J_{\varepsilon, r}^{n}\left(-T u^{*}, S v^{*}\right)$. By Corollary 2,

$$
\begin{gathered}
\mathcal{E}\left(A, W_{p, q}^{T, S}, J_{\varepsilon, r}^{n}\right) \geq\left|\left(T u^{*}, S v^{*}\right)\right|= \\
=\varepsilon \sum_{j=1}^{n} \tau_{j, n}\left(\sum_{j=1}^{n} \tau_{j, n}^{r}\right)^{-1 / r}+t_{n+1} s_{n+1}-\varepsilon \sum_{j=1}^{n} \frac{t_{n+1} s_{n+1} \tau_{j, n}}{t_{j} s_{j}}\left(\sum_{j=1}^{n} \tau_{j, n}^{r}\right)^{-1 / r}= \\
=t_{n+1} s_{n+1}+\varepsilon\left(\sum_{j=1}^{n}\left(1-\frac{t_{n+1} s_{n+1}}{t_{j} s_{j}}\right)^{\frac{r}{r-1}}\right)^{\frac{r-1}{r}}
\end{gathered}
$$

which proves the desired lower estimate.
Next, let $m \in\{1, \ldots, n-1\}$ be such that $d_{m+1}<\varepsilon \leq d_{m}$ and $\lambda=\lambda_{\varepsilon} \in[0,1)$ be defined by (9). Set

$$
u_{j}:=\left(\frac{\varepsilon \tau_{j}}{t_{j} s_{j}}\right)^{1 / p}\left(\sum_{k=1}^{m} \tau_{k}^{r}\right)^{-\frac{1}{r p}} \quad \text { and } \quad v_{j}:=\left(\frac{\varepsilon \tau_{j}}{t_{j} s_{j}}\right)^{1 / q}\left(\sum_{k=1}^{m} \tau_{k}^{r}\right)^{-\frac{1}{r q}}
$$

and define $u^{*}:=\left(u_{1}, \ldots, u_{m}, 0, \ldots\right)$ and $v^{*}:=\left(v_{1}, \ldots, v_{m}, 0, \ldots\right)$. It is not difficult to verify that $(\theta, \theta) \in J_{\varepsilon, r}^{n}\left(T u^{*}, S v^{*}\right) \cap J_{\varepsilon, r}^{n}\left(-T u^{*}, S v^{*}\right)$. Using Corollary 2 we obtain the desired estimate for $\mathcal{E}\left(A, W_{p, q}^{T, S}, J_{\varepsilon, r}^{n}\right)$.

Finally, let $\varepsilon>t_{1} s_{1}$. Consider $u^{*}=v^{*}=(1,0, \ldots)$. Since $d_{1}=t_{1} s_{1}$, we have $(\theta, \theta) \in$ $J_{\varepsilon, r}^{n}\left(T u^{*}, S v^{*}\right) \cap J_{\varepsilon, r}^{n}\left(-T u^{*}, S v^{*}\right)$. Hence, by Corollary 2, $\mathcal{E}\left(A, W_{p, q}^{T, S}, J_{\varepsilon, r}^{n}\right) \geq\left|\left\langle T u^{*}, S v^{*}\right\rangle\right|=$ $t_{1} s_{1}$.
4.3. Applications. Let H be a complex Hilbert space with orthonormal basis $\left\{\varphi_{n}\right\}_{n=1}^{\infty}$, $\left\{t_{k}\right\}_{k=1}^{\infty}$ be a non-increasing sequence; $T: \ell_{2} \rightarrow \ell_{2}$ be an operator mapping sequence $x=$ $\left(x_{1}, x_{2}, \ldots\right)$ into sequence $T x=\left(t_{1} x_{1}, t_{2} x_{2}, \ldots\right)$. Consider the class

$$
\mathcal{W}^{T}:=\left\{x=\sum_{n=1}^{\infty} t_{n} c_{n} \varphi_{n}: \sum_{n=1}^{\infty}\left|c_{n}\right|^{2} \leq 1\right\}
$$

and information operator $\mathcal{I}_{p, \varepsilon}: H \rightarrow \ell_{p}$, with $2<p \leq \infty$, mapping an element $x=$ $\sum_{n=1}^{\infty} x_{n} \varphi_{n}$ into the set $\mathcal{I}_{p, \varepsilon} x=\left(x_{1}, x_{2}, \ldots\right)+B\left[\varepsilon, \ell_{p}\right] \in \ell_{p}$. Due to isomorphism between ℓ_{2} and H, under notations of Section 3 we have

$$
\begin{equation*}
\mathcal{E}\left(\mathcal{W}^{T}, \mathcal{I}_{\varepsilon, p}\right)=\mathcal{E}\left(W_{2}^{T}, I_{\varepsilon, p}^{\infty}\right) \tag{10}
\end{equation*}
$$

Moreover, methods of recovery $F_{m, \lambda}^{*}:=\mathfrak{A} \circ \Phi_{m, \lambda}^{*}$ are optimal, where $\mathfrak{A}: \ell_{2} \rightarrow H$ is the natural isomorphism between ℓ_{2} and $H: \mathfrak{A}\left(x_{1}, x_{2}, \ldots\right)=\sum_{n=1}^{\infty} x_{n} \varphi_{n}$. Remark that $F_{m, \lambda}$ are triangular methods of recovery that play an important role in the theory of ill-posed problems (see, e.g. [11, Theorem 2.1] and references therein).

Consider an important case when $t_{n}=n^{-\mu}, n \in \mathbb{N}$, with some fixed $\mu>0$. It corresponds e.g., to the space $H=L_{2}(\mathbb{T})$ of square integrable functions defined on a period and the class $\mathcal{W}^{T}=W_{2}^{\mu}(\mathbb{T})$ of functions having L_{2}-bounded Weyl derivative of order μ. Using equality (10) and Theorems 7 and 5, we obtain

$$
\lim _{\varepsilon \rightarrow 0^{+}} \varepsilon^{-\lambda} \mathcal{E}\left(\mathcal{W}^{T}, \mathcal{I}_{\varepsilon, p}\right)=\left(\frac{\alpha+\beta}{\beta}\right)^{1 / 2}\left(\frac{\beta^{1 / 2}}{\alpha^{1 / p}}\right)^{\lambda}, \quad \lambda=\frac{\mu}{\mu+1 / 2-1 / p}
$$

where

$$
\alpha=\frac{1}{2 \mu} B\left(\frac{2 p-2}{p}, \frac{1}{2 \mu}\right), \quad \beta=\frac{1}{2 \mu} B\left(\frac{2 p-2}{p}, 2+\frac{1}{2 \mu}\right)
$$

and $B(\alpha, \beta)$ is the Euler beta function. Indeed, in case $2<p<\infty$, by selecting $n=n_{\varepsilon} \in \mathbb{N}$ and $\lambda \in[0,1)$ such that equation (5) is satisfied, we can easily verify that

$$
\lim _{\varepsilon \rightarrow 0^{+}} n_{\varepsilon}^{\mu / \lambda} c_{n_{\varepsilon}}=\lim _{\varepsilon \rightarrow 0^{+}} n_{\varepsilon}^{\mu / \lambda} c_{n_{\varepsilon}+1}=\alpha^{1 / p} \beta^{-1 / 2} \quad \text { and } \quad \lim _{\varepsilon \rightarrow 0^{+}} \varepsilon^{-\mu / \lambda} n_{\varepsilon}^{-\mu}=\left(\frac{\beta^{1 / 2}}{\alpha^{1 / p}}\right)^{\mu / \lambda}
$$

Similar arguments are applicable for $p=\infty$, in which case $1 / p$ should be replaced with 0 .

REFERENCES

1. Arestov V.V. Approximation of unbounded operators by bounded ones, and related extremal problems// Russian Math. Surveys. - 1996. - V.51, №6. - P. 1093-1126. https://doi.org/10.1070/ RM1996v051n06ABEH003001.
2. Babenko V.F. On the best use of linear functional for approximation of bilinear ones// Researches in Mathematics. - Dnepropetrovsk. - 1979. - P. 3-5.
3. Babenko V.F. Extremal problems of Approximation Theory and asymmetric norms// Diss. Doct. Thesis in Physical and Mathematical Sciences, DSU, - Dnepropetrovsk. - 1987.
4. Babenko V.F. Approximate computation of scalar products// Ukr. Math. J. - 1988. - V.40. - P. 11-16. - https://doi.org/10.1007/BF01056438.
5. Babenko V.F., Babenko Yu.V., Parfinovych N.V., Skorokhodov D.S. Optimal recovery of integral operators and its applications// J. Complexity. - 2016. - V.35. - P. 102-123. https://doi.org/10.1016/ j.jco.2016.02.004
6. Babenko V.F., Gunko M.S., Rudenko A.A. On optimal recovery of bilinear functional by linear information// Researches in Mathematics. - Dnipropetrovsk. - 2012. - V.17. - P. 11-17. https://doi.org/ 10.15421/24122001
7. Babenko V.F., Gunko M.S., Parfinovych N.V., Optimal recovery of elements of a Hilbert space and their scalar products according to the Fourier coefficients known with errors // Ukr. Math. J. - 2020. - V.72. - P. 853-870. https://doi.org/10.1007/s11253-020-01828-4.
8. Babenko V.F., Rudenko A.A. Optimal recovery of convolutions and scalar products of functions from various classes// Ukr. Math. J. - 1991. - V.43. - P. 1214-1219. https://doi.org/10.1007/BF01061804.
9. Babenko V.F., Rudenko A.A. On the optimal renewal of bilinear functionals in linear Normed spaces// Ukr. Math. J. - 1997. - V.49. - P. 925-929. https://doi.org/10.1007/BF02513432.
10. Magaril-Il'yaev G.G., Osipenko K.Yu. Optimal recovery of functions and their derivatives from Fourier coefficients prescribed with an error// Sbornik: Mathematics. - 2002. - V.193, №3. - P. 387-407. https://doi.org/10.1070/SM2002v193n03ABEH000637.
11. Mathé P., Pereverzev S.V. Stable summation of orthogonal series with noisy coefficients// J. Approx. Theory. - 2002. - V.118, №1. - P. 66-80. https://doi.org/10.1006/jath.2002.3710
12. Melkman A.A., Micchelli C.A. Optimal estimation of linear operators in Hilbert spaces from inaccurate data// SIAM Journal on Numerical Analysis. - 1979. - V.16, №1. - P. 87-105. https://doi.org/ 10.1137/0716007
13. Micchelli C.A. Optimal estimation of linear operators from inaccurate data: A second look// Numer Algor. - 1993. - V.5. - P. 375-390. https://doi.org/10.1007/BF02109419
14. Micchelli C.A., Rivlin T.J. A Survey of optimal recovery// In: Micchelli C.A., Rivlin T.J. (eds) Optimal Estimation in Approximation Theory. The IBM Research Symposia Series. Springer, Boston, MA. 1977. - P. 1-54. https://doi.org/10.1007/978-1-4684-2388-4_1
15. Micchelli C.A., Rivlin T.J. Lectures on optimal recovery, In: Turner P.R. (eds) Numerical Analysis Lancaster 1984. Lecture Notes in Mathematics, Springer, Berlin, Heidelberg, V.1129, 1985. https://doi.org/10.1007/BFb0075157
16. Plaskota L. Noisy information and computational complexity, Cambridge Univ. Press, Cambridge, 1996, xii+308 p. https://doi.org/10.1017/CBO9780511600814
17. Traub J.F., Wasilkowski G.W., Wozniakowski H. Information-based complexity, Academic Press, Boston, San Diego and New York, 1988, xiii +523 p.

Mechanics and Mathematics Department
Oles Honchar Dnipro National University
Dnipro, Ukraine
${ }^{1}$ babenko.vladislav@gmail.com
${ }^{2}$ parfinovich@mmf.dnu.edu.ua
${ }^{3}$ dmitriy.skorokhodov@gmail.com

