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In this paper we solve two problems of optimal recovery based on information given with
an error. The first one is the problem of optimal recovery of the class

WT
q = {(t1h1, t2h2, . . .) : ‖h‖`q ≤ 1},

where 1 ≤ q <∞ and t1 ≥ t2 ≥ . . . ≥ 0 are given, in the space `q. Information available about
a sequence x ∈ WT

q is provided either (i) by an element y ∈ Rn, n ∈ N, whose distance to the
first n coordinates (x1, . . . , xn) of x in the space `nr , 0 < r ≤ ∞, does not exceed given ε ≥ 0,
or (ii) by a sequence y ∈ `∞ whose distance to x in the space `r does not exceed ε. We show
that the optimal method of recovery in this problem is either operator Φ∗m with some m ∈ Z+

(m ≤ n in case y ∈ `nr ), where

Φ∗m(y) =
{
y1

(
1−

tqm+1

tq1

)
, . . . , ym

(
1−

tqm+1

tqm

)
, 0, . . .

}
, y ∈ Rn or y ∈ `∞,

or convex combination (1− λ)Φ∗m+1 + λΦ∗m.
The second one is the problem of optimal recovery of the scalar product operator acting

on the Cartesian product WT,S
p,q of classes WT

p and WS
q , where 1 < p, q < ∞, 1

p + 1
q = 1 and

s1 ≥ s2 ≥ . . . ≥ 0 are given. Information available about elements x ∈ WT
p and y ∈ WS

q is
provided by elements z, w ∈ Rn such that the distance between vectors (x1y1, x2y2, . . . , xnyn)
and (z1w1, . . . , znwn) in the space `nr does not exceed ε. We show that the optimal method of
recovery is delivered either by operator Ψ∗m with some m ∈ {0, 1, . . . , n}, where

Ψ∗m =

m∑
k=1

zkwk

(
1− tm+1sm+1

tksk

)
, z, w ∈ Rn,

or by convex combination (1− λ)Ψ∗m+1 + λΨ∗m.
As an application of our results we consider the problem of optimal recovery of classes in

Hilbert spaces by the Fourier coefficients of its elements known with an error measured in the
space `p with p > 2.

1. Introduction. LetX,Z be complex linear spaces, Y be a complex normed space, A : X →
Y be an operator, in general non-linear, with domain D(A), W ⊂ D(A) be some class of
elements. Denote by B(Z) the set of non-empty subsets of Z, and let I : spanW → B(Z) be
a given mapping called information. When saying that information about element x ∈ W is
available we mean that some element z ∈ I(x) is known. An arbitrary mapping Φ: Z → Y
is called a method of recovery of the operator A. Define the error of method of recovery Φ of
the operator A on the set W given information I:

E(A,W, I,Φ) = sup
x∈W

sup
z∈I(x)

‖Ax− Φ(z)‖Y . (1)
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The quantity
E(A,W, I) = inf

Φ: Z→Y
E(A,W, I,Φ) (2)

is called the error of optimal recovery of the operator A on elements of class W given
information I. The method Φ∗ delivering inf in (2) (if any exists) is called optimal.

The problem of recovery of linear operators in Hilbert spaces based on exact information
was studied in [14]. In the case when information mapping I has the form Ix = i(x) + B,
where i is a linear operator and B is a ball of some radius defining information error, recovery
problem (2) was considered in [12] (see also [15]–[16]). Alternative approach to the study of
optimal recovery problems based on standard principles of convex optimization was proposed
in [10]. In [12] it was shown that among optimal methods of recovery there exists a linear
one, and in [10] explicit representations for optimal methods of recovery were found in cases
when the error of information is measured with respect to the uniform metric. For a thorough
overview of optimal recovery and related problems we refer the reader to books [17, 16] and
survey [1].

Remark that results of the present work supplement and generalize results of paper [10]
on optimal recovery of functions and its derivatives and paper [7].

2. Elementary lower estimate. Let us present a trivial yet effective lower estimate for
the error of optimal recovery (2). Denote by θZ the null element of the space Z and let I be
some information mapping.

Lemma 1. Let θZ ∈ I(W ). Then

E(A,W, I) ≥ 1

2
sup

x,y∈W :
θZ∈Ix∩Iy

‖Ax− Ay‖Y .

Proof. Indeed, for every method of recovery Φ: Z → Y ,

E(A,W, I,Φ) ≥ sup
x∈W :
θZ∈Ix

‖Ax− Φ (θZ)‖Y ≥
1

2

(
sup
x∈W :
θZ∈Ix

‖Ax− Φ (θZ)‖Y +

+ sup
y∈W :
θZ∈Iy

‖Ay − Φ (θZ)‖Y
)
≥ 1

2
sup

x,y∈W :
θZ∈Ix∩Iy

‖Ax− Ay‖Y .

Taking inf over methods Φ we finish the proof.

From Lemma 1 we easily derive the following consequences.

Corollary 1. Let A be an odd operator, x̃ ∈ W be such that −x̃ ∈ W and θZ ∈ I(x̃)∩I(−x̃).
Then

E(A,W, I) ≥ ‖Ax̃‖X .

Corollary 2. Let Y = C, R be a (complex) normed space, X = R × R∗, W1 ⊂ R and
W2 ⊂ R∗ be given classes. Also, let A be the scalar product of elements in R × R∗, i.e.
A(x, y) = 〈y, x〉, x ∈ R and y ∈ R∗. Assume that there exist x̃1 ∈ W1 and x̃2 ∈ W2 such that
either

−x̃1 ∈ W1 and θZ ∈ I (x̃1, x̃2) ∩ I (−x̃1, x̃2)

or
−x̃2 ∈ W2 and θZ ∈ I (x̃1, x̃2) ∩ I (x̃1,−x̃2) .

Then
E (A,W1 ×W2, I) ≥ |〈x̃2, x̃1〉| .
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Remark that similar and related lower estimates were established in many papers (see,
e.g., [10, 5]).

3. Optimal recovery of sequences. Let us present notations used in the rest of the paper.
Let 1 ≤ p, q ≤ ∞, `q be the standard space of sequences x = {xk}∞k=1, complex-valued in
general, with corresponding norm ‖x‖q, and `nq , n ∈ N, be the spaces of finite sequences.
Denote by θ the null element of `q and by θn the null element of `nq .

For a given non-increasing sequence t = {tk}∞k=1 of non-negative numbers, consider a
bounded operator T : `q → `q defined as follows

Th := {tkhk}∞k=1, h ∈ `q,

and the class
W T
q := {x = Th : h ∈ `q, ‖h‖q ≤ 1}.

In this section we will study the problem of optimal recovery of identity operator A =
idX on the class W T

q , also called the problem of optimal recovery of class W T
q , when the

information mapping I is given in one of the following forms:

1. Ix = Inε x = (x1, . . . , xn) + B [ε1] × B [εn], where n ∈ N, ε1, . . . , εn ≥ 0 and B[εj] =
[−εj, εj];

2. Ix = Inε,px = (x1, . . . , xn) + B
[
ε, `np

]
, where n ∈ N, ε ≥ 0 and B

[
ε, `np

]
is the ball of

radius ε in the space `np centered at θn;

3. Ix = Iε,px = x + B [ε, `p], where ε ≥ 0 and B [ε, `p] is the ball of radius ε in the space
`p centered at θ.

To simplify further notations, we set

E(W, I) := E(idX ,W, I), E(W, I,Φ) := E(idX ,W, I,Φ),

and, for m ∈ N and q <∞, introduce the method of recovery Φ∗m : `p → `q:

Φ∗m(a) =
{
a1

(
1−

tqm+1

tq1

)
, . . . , am

(
1−

tqm+1

tqm

)
, 0, . . .

}
, a ∈ `p,

that would be optimal in many situations. Also, we set Φ∗0(a) := θ, a ∈ `p.
In what follows we define

∑0
k=1 ak := 0 for numeric ak’s. In addition, for simplicity we

assume that tk > 0 for every k ∈ N. Results in this paper remain true in the case when tk
can attain zero value with the substitution of 1/tk with +∞ and ts/tk, s ≥ k with 1.

3.1. Information mapping Inε̄ (x) = (x1, . . . , xn) +B[ε1]× . . .×B[εn].

Theorem 1. Let n ∈ N, 1 ≤ q <∞ and ε1, . . . , εn ≥ 0. If 1−
∑n

k=1

εqk
tqk
≥ 0, we set m = n.

Otherwise we choose m ∈ Z+, m ≤ n, to be such that 1−
∑m

k=1

εqk
tqk
≥ 0 and 1−

∑m+1
k=1

εqk
tqk
< 0.

Then

E
(
W T
q , I

n
ε̄

)
= E

(
W T
q , I

n
ε̄ ,Φ

∗
m

)
=
(
tqm+1 +

m∑
k=1

(
1−

tqm+1

tqk

)
εqk

)1/q

.
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Proof. Using convexity inequality, relations |xk − ak| ≤ εk, k = 1, . . . , n, and monotony of
the sequence t, we obtain that, for x = Th ∈ W T

q and a ∈ Inε̄ (x),

‖x− Φ∗m(a)‖qq =
m∑
k=1

∣∣∣∣xk − ak (1−
tqm+1

tqk

)∣∣∣∣q +
∞∑

k=m+1

|xk|q =

=
m∑
k=1

∣∣∣∣(1−
tqm+1

tqk

)
(xk − ak) +

tqm+1

tqk
xk

∣∣∣∣q +
∞∑

k=m+1

tqk|hk|
q ≤

≤
m∑
k=1

((
1−

tqm+1

tqk

)
|xk − ak|q +

tqm+1

tqk
|xk|q

)
+ tqm+1

∞∑
k=m+1

|hk|q =

=
m∑
k=1

(
1−

tqm+1

tqk

)
|xk − ak|q +

m∑
k=1

tqm+1|hk|q + tqm+1

∞∑
k=m+1

|hk|q ≤

≤
m∑
k=1

(
1−

tqm+1

tqk

)
εqk + tqm+1.

To obtain the lower estimate, we choose

uk :=
εk
tk
, k = 1, . . . ,m, and um+1 :=

(
1−

m∑
k=1

εqk
tqk

)1/q

,

and consider h∗ = (u1, . . . , um+1, . . .) ∈ lq. It is clear that Th∗ ∈ W T
q , as ‖h∗‖q ≤ 1.

Furthermore, by the choice of number m we have that θ ∈ Inε̄ (Th∗). Hence, by Corollary 1,

(
E
(
W T
q , I

n
ε̄

))q ≥ ‖Th∗‖qq =
m∑
k=1

tqku
q
k + tqm+1u

q
m+1 =

=
m∑
k=1

εqk + tqm+1

(
1−

m∑
k=1

εqk
tqk

)
= tqm+1 +

m∑
k=1

εqk

(
1−

tqm+1

tqk

)
,

which finishes the proof.

3.2. Information mapping Inε,p(x) = (x1, . . . , xn) +B
[
ε, `np

]
.

We consider three cases separately: p =∞, p ≤ q and p > q.

3.2.1. Case p =∞.
Setting ε1 = . . . = εn = ε, we obtain from Theorem 1 the following corollary.

Theorem 2. Let n ∈ N, 1 ≤ q < ∞ and ε ≥ 0. If 1 − εq
n∑
k=1

1

tqk
≥ 0 then we set m = n.

Otherwise we choose m ∈ Z+, m ≤ n, to be such that 1−εq
m∑
k=1

1

tqk
≥ 0 and 1−εq

m+1∑
k=1

1

tqk
< 0.

Then

E
(
W T
q , I

n
ε,∞
)

= E
(
W T
q , I

n
ε,∞,Φ

∗
m

)
=
(
tqm+1 + εq

m∑
k=1

(
1−

tqm+1

tqk

))1/q

.
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3.2.2. Case 0 < p ≤ q.

Theorem 3. Let n ∈ N, 1 ≤ q <∞ and 0 < p ≤ q. If ε ∈ [0, t1] then

E
(
W T
q , I

n
ε,p

)
= E

(
W T
q , I

n
ε,p,Φ

∗
n

)
=
(
tqn+1 + εq

(
1−

tqn+1

tq1

))1/q

,

and if ε > t1 then E
(
W T
q , I

n
ε,p

)
= E

(
W T
q , I

n
ε,p,Φ

∗
0

)
= t1.

Proof. First, consider the case ε ∈ [0, t1]. For x = Th ∈ W T
q , ‖h‖q ≤ 1, and a ∈ Inε,p(x), we

have

‖x− Φ∗n(a)‖qq =
n∑
k=1

∣∣∣xk − ak(1−
tqn+1

tqk

)∣∣∣q +
∞∑

k=n+1

|xk|q =

=
n∑
k=1

∣∣∣(1−
tqn+1

tqk

)
(xk − ak) +

tqn+1

tqk
xk

∣∣∣q +
∞∑

k=n+1

tqk|hk|
q ≤

≤
n∑
k=1

((
1−

tqn+1

tqk

)
|xk − ak|q +

tqn+1

tqk
|xk|q

)
+ tqn+1

∞∑
k=n+1

|hk|q =

=
n∑
k=1

(
1−

tqn+1

tqk

)(
|xk − ak|p

)q/p
+ tqn+1

∞∑
k=1

|hk|q ≤

≤
(

1−
tqn+1

tq1

)( n∑
k=1

|xk − ak|p
)q/p

+ tqn+1 ≤
(

1−
tqn+1

tq1

)
εq + tqn+1.

Now, we establish the lower estimate for E
(
W T
q , I

n
ε,p

)
. Let u1 and un+1 be such that t1u1 =

ε and uq1 + uqn+1 = 1, i.e. u1 = ε/t1 and uqn+1 = 1− εq/tq1. Set h∗ := (u1, 0, . . . , 0, un+1, 0, . . .).
Obviously, ‖h‖q ≤ 1 and θ ∈ Inε,p(Th∗). Then by Corollary 1,(

E
(
W T
q , I

n
ε,p

))q ≥ ‖Th∗‖qq = tq1u
q
1 + tqn+1u

q
n+1 =

= εq + tqn+1

(
1− εq

tq1

)
= tqn+1 + εq

(
1−

tqn+1

tq1

)
.

Finally, consider the case ε > t1. For x = Th ∈ W T
q and a ∈ Inε,p(x), we have

‖x− Φ∗0(a)‖qq = ‖Th‖qq =
∞∑
n=1

tqn|hn|q ≤ tq1

∞∑
n=1

|hn|q ≤ tq1.

Taking h∗ := (1, 0, . . .), it is clear that θ ∈ Inε,p (Th∗) and by Corollary 1,

E
(
W T
q , I

n
ε,p

)
≥ ‖Th∗‖q = t1.

Theorem 3 is proved.

3.2.3. Case 1 ≤ q < p < ∞. This case is the most technical one. We introduce some
preliminary notations. For m = 1, . . . , n, define

δj,m :=
(

1−
tqm+1

tqj

) p
p−q
, j = 1, . . . ,m− 1,

and set c1 := t1 and, for m ≥ 2,

cm :=
( m∑
j=1

δj,m

)1/p( m∑
j=1

δ
q/p
j,m

tqj

)−1/q

. (3)
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The sequence {cm}nm=1 is non-increasing. Indeed, let δj,m(ξ) :=
(

1 − ξtqm+(1−ξ)tqm+1

tqj

) p
p−q and

consider the function

g(ξ) :=
( m∑
j=1

δj,m(ξ)
)1/p( m∑

j=1

δ
q/p
j,m(ξ)

tqj

)−1/q

, ξ ∈ [0, 1].

Differentiating g and applying the Cauchy-Swartz inequality we have

g′(ξ) =
tqm+1 − tqm
p− q

( m∑
j=1

δj,m(ξ)
) 1
p
−1( m∑

j=1

δ
q/p
j,m(ξ)

tqj

)−1/q−1

×

×
(( m∑

j=1

δ
q/p
j,m(ξ)

tqj

)2

−
( m∑
j=1

δj,m(ξ)
)( m∑

j=1

δ
2q/p−1
j,m (ξ)

t2qj

))
≥ 0.

Hence, cm+1 = g(0) ≤ g(1) = cm.
For convenience, for λ ∈ [0, 1] denote tqm,λ := (1− λ)tqm+1 + λtqm.

Theorem 4. Let n ∈ N and 1 ≤ q < p <∞.
1. If ε ≤ cn then

E(W T
q , I

n
ε,p) = E(W T

q , I
n
ε,p,Φ

∗
n) =

(
tqn+1 + εq

( n∑
j=1

(
1−

tqn+1

tqj

) p
p−q
) p−q

p
)1/q

.

2. If ε ∈ (cn, c1] then there exist m ∈ {1, . . . , n− 1} such that ε ∈ (cm+1, cm] and λ = λ(ε) ∈
[0, 1) such that

ε =
( m∑
j=1

(
1−

tqm,λ
tqj

) p
p−q
) 1
p

( m∑
j=1

(
1− tqm,λ

tqj

) q
p−q

tqj

)−1/q

. (4)

Then

E(W T
q , I

n
ε,p) = E(W T

q , I
n
ε,p,Φ

∗
m,λ) =

(
tqm,λ + εq ·

( m∑
j=1

(
1−

tqm,λ
tqj

) p
p−q
) p−q

p

)1/q

,

where

Φ∗m,λ(a) =
(
a1

(
1−

tqm,λ
tq1

)
, . . . , am

(
1−

tqm,λ
tqm

)
, 0, . . .

)
, a ∈ `p.

3. If ε > c1 then E(W T
q , I

n
ε,p) = E(W T

q , I
n
ε,p,Φ

∗
0) = t1.

Proof. Let m ∈ {0, . . . , n}, λ ∈ [0, 1] and Φ be either Φ∗n, or Φ∗0, or Φ∗m,λ. For x ∈ W T
q and

a ∈ Inε,p(x),

‖x− Φ(a)‖qq ≤
m∑
k=1

∣∣∣∣(1−
tqm,λ
tqk

)
(xk − ak) +

tqm,λ
tqk

xk

∣∣∣∣q +
∞∑

k=m+1

|xk|q ≤

≤
m∑
k=1

(
1−

tqm,λ
tqk

)
|xk − ak|q +

m∑
k=1

tqm,λ|hk|
q +

∞∑
k=m+1

tqk|hk|
q.
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Using the Hölder inequality with parameters p/(p− q) and p/q to estimate the first term
and the inequality tqk ≤ tqm,λ, k = m+ 1,m+ 2, . . ., we obtain

‖x− Φ(a)‖qq ≤

{
m∑
k=1

(
1−

tqm,λ
tqk

) p
p−q
}1−q/p{ m∑

k=1

|xk − ak|p
}q/p

+ tqm,λ

∞∑
k=1

hqk ≤

≤

{
m∑
k=1

(
1−

tqm,λ
tqk

) p
p−q
}1−q/p

εq + tqm,λ,

which proves the estimate from above.
Now, we turn to the proof of the lower estimate. First, let ε ≤ cn, and define

uj :=
ε δ

1/p
j,n

tj

(
n∑
j=1

δj,n

)−1/p

, j = 1, . . . , n, and un+1 :=

(
1−

n∑
j=1

uqj

)1/q

.

Consider h∗ := (u1, . . . , un+1, 0, . . .). Evidently, un+1 is well-defined as

n∑
j=1

uqj = εq

(
n∑
j=1

δj,n

)−q/p n∑
j=1

δ
q/p
j,n

tqj
=
εq

cqn
≤ 1,

‖h∗‖q = 1 and θ ∈ Inε,p(Th∗) as
∑n

j=1 t
p
jh

p
j = εp. Hence, by Corollary 1,

(
E
(
W T
q , I

n
ε,p

))q ≥ ‖Th∗‖qq = εq
n∑
j=1

δ
q/p
j,n

(
n∑
j=1

δj,n

)−q/p
+ tqn+1 − t

q
n+1

n∑
j=1

εq
δ
q/p
j,n

tqj

(
n∑
j=1

δj,n

)−q/p
=

= εq

(
n∑
j=1

δj,n

)−q/p n∑
j=1

δ
q/p
j,n

(
1−

tqn+1

tqj

)
+ tqn+1 = tqn+1 + εq ·

(
n∑
j=1

(
1−

tqn+1

tqj

) p
p−q
) p−q

p

.

Next, let m ∈ {1, 2, . . . , n−1} be such that cm+1 < ε ≤ cm and λ = λε ∈ [0, 1) be defined
by (4). Set

uj :=
εδ

1/p
j,m(λ)

tj

(
m∑
j=1

δj,m(λ)

)−1/p

, j = 1, . . . ,m,

and consider h∗ = (u1, . . . , um, 0, . . .). Clearly, ‖h‖q = 1 and θ ∈ Inε,p(Th∗). Using Corollary 1,
we obtain the desired lower estimate for E

(
W T
q , I

n
ε,p

)
.

Finally, let ε > c1. Consider h∗ := (1, 0, 0, . . .). Since c1 = t1, we have θ ∈ Inε,p(Th
∗).

Hence, by Corollary 1, E
(
W T
q , I

n
ε,p

)
≥ ‖Th∗‖q = tq1.

3.3. Information mapping I(x) = Iε,p(x) := x + B [ε, `p]. As a limiting case from
Theorem 2, 3 and 4 we can obtain the following corollaries.

Theorem 5. Let 1 ≤ q <∞ and ε ≥ 0. Choose m ∈ Z+ to be such that

1− εq
m∑
k=1

1

tqk
≥ 0 and 1− εq

m+1∑
k=1

1

tqk
< 0.

Then

E
(
W T
q , Iε,∞

)
= E

(
W T
q , Iε,∞,Φ

∗
m

)
=

(
tqm+1 + εq

m∑
k=1

(
1−

tqm+1

tqk

))1/q

.
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Theorem 6. Let 1 ≤ q < ∞ and 0 < p ≤ q. If 0 ≤ ε ≤ t1 then E
(
W T
q , Iε,p

)
=

E
(
W T
q , Iε,p, id

)
= ε, and if ε > t1 then E

(
W T
q , Iε,p

)
= E

(
W T
q , Iε,p,Φ

∗
0

)
= t1.

Define the sequence {cn}∞n=1 using formulas (3). It is not difficult to verify that {cn}∞n=1

is non-increasing and tend to 0 as n→∞.

Theorem 7. Let 1 ≤ q < p < ∞. If ε ∈ (0, c1] then there exists m ∈ N such that
ε ∈ (cm+1, cm] and λ = λ(ε) ∈ [0, 1) such that

ε =

(
m∑
j=1

(
1−

tqm,λ
tqj

) p
p−q
)1/p

 m∑
j=1

(
1− tqm,λ

tqj

) q
p−q

tqj


−1/q

. (5)

Then

E
(
W T
q , Iε,p

)
= E

(
W T
q , Iε,p,Φ

∗
m,λ

)
=

tqm,λ + εq ·

(
m∑
j=1

(
1−

tqm,λ
tqj

) p
p−q
) p−q

p

1/q

.

where the method Φ∗m,λ is defined in Theorem 3. Otherwise, if ε > c1 then E
(
W T
q , Iε,p

)
=

E
(
W T
q , Iε,p,Φ

∗
0

)
= t1.

4. Recovery of scalar products. Following [3] (see also [4, 6, 7]), let us consider the
problem of optimal recovery of scalar product. Let 1 ≤ p, q ≤ ∞ and given operators
T : `p → `p and S : `q → `q be defined as follows: for fixed non-increasing sequences t =
{tk}∞k=1 and s = {sk}∞k=1,

Th := {tkhk}∞k=1, h ∈ `p, and Sg := {skgk}∞k=1, g ∈ `q.

Consider classes of sequences

W T
p := {x = Th : h ∈ `p, ‖h‖p ≤ 1} , W S

q := {y = Tg : g ∈ `q, ‖g‖q ≤ 1} .

and define the scalar product A = 〈·, ·〉 : `p × `q → C as usually:

〈x, y〉 =
∞∑
k=1

xkyk, x ∈ `p, y ∈ `q.

For brevity, we denote 〈x, y〉n :=
∑n

k=1 xkyk.
In this section we will consider the problem of optimal recovery of the scalar product

operator A on the class W T,S
p,q := W T

p ×W S
q , when information mapping I is given in one of

the following forms:

1. I(x, y) = Jnε̄ (x, y) = {(a, b) ∈ Cn × Cn : ∀k = 1, ..., n⇒ |xkyk − akbk| ≤ εk}, where n ∈
N and ε1, . . . , εn ≥ 0;

2. I(x, y) = Jnε,r(x, y) = {(a, b) ∈ Cn × Cn : ‖〈x, y〉n − 〈a, b〉n‖`nr ≤ ε}, where n ∈ N and
1 ≤ r ≤ ∞.
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Finally, for m ∈ N, we define methods of recovery Ψ∗m : Cn × Cn → C:

Ψ∗m(a, b) =
m∑
k=1

akbk

(
1− tm+1sm+1

tksk

)
, a, b ∈ Cn,

that will be optimal in many situations and set Ψ∗0(a, b) := 0.

4.1. Information mapping Jnε̄ .

Theorem 8. Let n ∈ N, 1 < p <∞, q = p/(p− 1), ε1, . . . , εn ≥ 0 and ε̄ = (ε1, . . . , εn). If

1−
n∑
k=1

εk
tksk

≥ 0

we set m = n. Otherwise we choose m ∈ Z+, m ≤ n, to be such that

1−
m∑
k=1

εk
tksk

≥ 0 and 1−
m∑
k=1

εk
tksk
− εm+1

tm+1sm+1

< 0.

Then

E
(
A,W T,S

p,q , J
n
ε̄

)
= E

(
A,W T,S

p,q , J
n
ε̄ ,Ψ

∗
m

)
= tm+1sm+1 +

m∑
k=1

εk

(
1− tm+1sm+1

tksk

)
.

Proof. Using the triangle inequality, relations |xkyk − akbk| ≤ εk, k = 1, . . . , n, and monotony
of sequences t and s, we obtain that, for (x, y) = (Th, Sg) ∈ W T,S

p,q and (a, b) ∈ Jnε̄ (x, y),

|〈x, y〉 −Ψ∗m(a, b)| =

∣∣∣∣∣
∞∑
k=1

xkyk −
m∑
k=1

akbk

(
1− tm+1sm+1

tksk

)∣∣∣∣∣ ≤
≤

m∑
k=1

(
1− tm+1sm+1

tksk

)
|xkyk − akbk|+

m∑
k=1

tm+1sm+1

tksk
|xkyk|+

∞∑
k=m+1

|xkyk| ≤

≤
m∑
k=1

(
1− tm+1sm+1

tksk

)
εk + tm+1sm+1

m∑
k=1

|hkgk|+
∞∑

k=m+1

tksk|hkgk| ≤

≤
m∑
k=1

(
1− tm+1sm+1

tksk

)
εk + tm+1sm+1

∞∑
k=1

|hkgk| ≤

≤ tm+1sm+1 +
m∑
k=1

(
1− tm+1sm+1

tksk

)
εk,

which proves the upper estimate.
To establish the lower estimate, we set

uk :=

(
εk
tksk

)1/p

, vk :=

(
εk
tksk

)1/q

, k = 1, . . . ,m, (6)

um+1 =

(
1−

m∑
k=1

εk
tksk

)1/p

, vm+1 =

(
1−

m∑
k=1

εk
tksk

)1/q

, (7)
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and consider u∗ = (u1, . . . , um+1, 0, . . .) and v∗ = (v1, . . . , vm+1, 0, . . .). It is clear that
(Tu∗, Sv∗) ∈ W T,S

p,q and θ ∈ Jnε̄ (Tu∗, Sv∗) ∩ Jnε̄ (−Tu∗, Sv∗) due to the choice of number m.
Hence, by Corollary 2,

E
(
A,W T,S

p,q , J
n
ε̄

)
≥ |〈Tu∗, Sv∗〉| =

m∑
k=1

tkskukvk + tm+1sm+1

(
1−

m∑
k=1

εk
tksk

)
=

= tm+1sm+1 +
m∑
k=1

(
1− tm+1sm+1

tksk

)
εk.

This proves the sharpness of the upper estimate.

4.2. Information mapping Jnε,r. We consider three cases separately: r = ∞, 0 < r ≤ 1
and 1 < r <∞.

4.2.1. Case r = ∞. Setting ε1 = . . . = εn = ε, we obtain the following corollary from
Theorem 8.

Theorem 9. Let n ∈ N, 1 < p <∞, q = p/(p− 1) and ε ≥ 0. If

1− ε
n∑
k=1

1

tksk
≥ 0,

we set n = m. Otherwise we choose m ∈ Z+, m ≤ n, to be such that

1− ε
m∑
k=1

1

tksk
≥ 0 and 1− ε

m+1∑
k=1

1

tksk
< 0.

Then

E
(
A,W T,S

p,q , J
n
ε,∞
)

= E
(
A,W T,S

p,q , J
n
ε,∞,Ψ

∗
m

)
= tm+1sm+1 + ε

m∑
k=1

(
1− tm+1sm+1

tksk

)
.

4.2.2. Case 0 < r ≤ 1.

Theorem 10. Let n ∈ N, 1 < p <∞, q = p/(p− 1) and r ∈ (0, 1]. If ε ≤ t1s1 then

E
(
A,W T,S

p,q , J
n
ε,r

)
= E

(
A,W T,S

p,q , J
n
ε,r,Ψ

∗
n

)
= tn+1sn+1 + ε

(
1− tn+1sn+1

t1s1

)
,

and if ε > t1s1 then E
(
A,W T,S

p,q , J
n
ε,r

)
= E

(
A,W T,S

p,q , J
n
ε,r,Ψ

∗
0

)
= t1s1.

Proof. First, we consider the case ε ≤ t1s1. Let (x, y) = (Th, Sg) ∈ W T,S
p,q and (a, b) ∈

Jnε,r(x, y). Similarly to the proof of Theorem 8 in the case m = n we obtain

|〈x, y〉 −Ψ∗n(a, b)| ≤
n∑
k=1

(
1− tn+1sn+1

tksk

)
|xkyk − akbk|+ tn+1sn+1

∞∑
k=1

hkgk. (8)
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Using the Hölder inequality and inequality ε1/r
1 + . . .+ ε

1/r
n ≤ (ε1 + . . .+ εn)1/r, we have

|〈x, y〉 −Ψ∗n(a, b)| ≤ max
k=1,n

(
1− tn+1sn+1

tksk

) n∑
k=1

|xkyk − akbk|+ tn+1sn+1‖h‖p‖g‖q ≤

≤
(

1− tn+1sn+1

t1s1

)
ε+ tn+1sn+1.

The upper estimate is proved.
Now, we establish the lower estimate. Let

u1 =

(
ε

s1t1

)1/p

, un+1 =

(
1− ε

t1s1

)1/p

, v1 =

(
ε

s1t1

)1/q

, vn+1 =

(
1− ε

t1s1

)1/q

,

and consider elements u∗ = (u1, 0, . . . , 0, un+1, 0, . . .), v∗ = (u1, 0, . . . , 0, un+1, 0, . . .). Obvi-
ously, (Tu∗, Sv∗) ∈ W T,S

p,q and (θ, θ) ∈ Jnε,r(Tu∗, Sv∗)∩Jnε,r(−Tu∗, Sv∗). Then by Corollary 2,

E
(
A,W T,S

p,q , J
n
ε,r

)
≥ |〈Tu∗, Sv∗〉| = t1s1 ·

ε

t1s1

+ tn+1sn+1 ·
(

1− ε

t1s1

)
=

(
1− tn+1sn+1

t1s1

)
ε+ tn+1sn+1,

which finishes the proof of the desired estimate.
Next, we let ε > t1s1. For (x, y) = (Th, Sg) ∈ W T,S

p,q , and (a, b) ∈ Jnε,r(x, y), we have

|〈x, y〉 −Ψ∗0(a, b)| = | 〈x, y〉 | ≤
∞∑
k=1

tksk|hkgk| ≤ t1s1‖h‖p‖g‖q ≤ t1s1.

Taking u∗ = v∗ = (1, 0, ...), it is clear that (θ, θ) ∈ Jnε,r(Tu
∗, Sv∗) ∩ Jnε,r(−Tu∗, Sv∗). By

Corollary 2,
E
(
A,W T,S

p,q , J
n
ε,r

)
≥ |(Tu∗, Sv∗)| = t1s1.

4.2.3. Case 1 < r <∞. First, we introduce some preliminary notations. For m = 1, . . . , n,
we define

τj,m :=

(
1− tm+1sm+1

tjsj

) 1
r−1

, j = 1, . . . ,m− 1,

and set d1 := t1s1 and, for m ≥ 2,

dm :=

(
m∑
j=1

τ rj,m

)1/r( m∑
j=1

τj,m
tjsj

)−1

.

The sequence {dm}nm=1 is non-increasing, which can be verified using the arguments similar
to those applied to prove monotony of sequence {cm}nm=1 in subsection 3.2.3. In addition,
for convenience, for λ ∈ [0, 1], we denote

tm,λ := (1− λ)tm+1 + λtm and sm,λ := (1− λ)sm+1 + λsm.
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Theorem 11. Let n ∈ N, 1 < p <∞, q = p/(p− 1) and 1 < r <∞.

1. If ε ≤ dn+1 then

E
(
A,W T,S

p,q , J
n
ε,r

)
= E

(
A,W T,S

p,q , J
n
ε,r,Ψ

∗
n

)
= tn+1sn+1 +ε ·

(
n∑
j=1

(
1− tn+1sn+1

tjsj

) r
r−1

) r−1
r

.

2. If ε ∈ (dn, d1] then there exists m ∈ {1, . . . , n − 1} such that ε ∈ (dm+1, dm] and
λ = λ(ε) ∈ [0, 1) such that

ε =

(
m∑
j=1

(
1− tm,λsm,λ

tjsj

) r
r−1

)1/r
 m∑

j=1

(
1− tm,λsm,λ

tjsj

) 1
r−1

tjsj


−1

. (9)

Then

E
(
A,W T,S

p,q , J
n
ε,r

)
= E

(
A,W T,S

p,q , J
n
ε,r,Ψ

∗
m,λ

)
= tm,λsm,λ+ε

(
m∑
j=1

(
1− tm,λsm,λ

tjsj

) r
r−1

) r−1
r

,

where

Ψ∗m,λ (a, b) =
m∑
j=1

ajbj

(
1− tm,λsm,λ

tjsj

)
, a, b ∈ `r.

3. If ε > d1 then E
(
A,W T,S

p,q , J
n
ε,r

)
= E

(
A,W T,S

p,q , J
n
ε,r,Ψ

∗
0

)
= t1s1.

Proof. Let m ∈ {0, . . . , n}, λ ∈ [0, 1] and Ψ be either Ψ∗n or Ψ∗0, or Ψ∗m,λ. Using the Hölder
inequality with parameters r and r

r−1
, for (x, y) = (Th, Sg) ∈ W T,S

p,q and (a, b) ∈ Jnε,r(x, y),
we have

|〈x, y〉 −Ψ (a, b)| ≤
m∑
j=1

(
1− tm,λsm,λ

tjsj

)
|xjyj − ajbj|+ tm,λsm,λ

m∑
j=1

xjyj
tjsj

+
∞∑

j=m+1

xjyj ≤

≤ tm,λsm,λ + ε

(
m∑
j=1

(
1− tm,λsm,λ

tjsj

) r
r−1

) r−1
r

,

which proves the upper estimate.
Now, we turn to the proof of the lower estimate. We let ε ≤ dn, and, for j = 1, . . . , n, set

uj =

(
ετj,n
tjsj

)1/p
(

n∑
k=1

τ rk,n

)− 1
rp

, vj =

(
ετj,n
tjsj

)1/q
(

n∑
k=1

τ rk,n

)− 1
rq

,

un+1 := (1− up1 − . . .− upn)1/p, and vn+1 := (1− vq1 − . . .− vqn)1/q. In addition, we define
u∗ = (u1, . . . , un, un+1, 0, . . .) and v∗ := (v1, . . . , vn, vn+1, 0, . . .). By the choice of ε, numbers
un+1 and vn+1 are well defined and, hence, (Tu∗, Sv∗) ∈ W T,S

p,q . Also,

n∑
j=1

∣∣Tu∗j · Sv∗j ∣∣r =
n∑
j=1

|tjsjujvj|r = εr,
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yielding that (θ, θ) ∈ Jnε,r (Tu∗, Sv∗) ∩ Jnε,r(−Tu∗, Sv∗). By Corollary 2,

E
(
A,W T,S

p,q , J
n
ε,r

)
≥ |(Tu∗, Sv∗)| =

= ε
n∑
j=1

τj,n

(
n∑
j=1

τ rj,n

)−1/r

+ tn+1sn+1 − ε
n∑
j=1

tn+1sn+1τj,n
tjsj

(
n∑
j=1

τ rj,n

)−1/r

=

= tn+1sn+1 + ε

(
n∑
j=1

(
1− tn+1sn+1

tjsj

) r
r−1

) r−1
r

,

which proves the desired lower estimate.
Next, let m ∈ {1, . . . , n− 1} be such that dm+1 < ε ≤ dm and λ = λε ∈ [0, 1) be defined

by (9). Set

uj :=

(
ετj
tjsj

)1/p
(

m∑
k=1

τ rk

)− 1
rp

and vj :=

(
ετj
tjsj

)1/q
(

m∑
k=1

τ rk

)− 1
rq

,

and define u∗ := (u1, . . . , um, 0, . . .) and v∗ := (v1, . . . , vm, 0, . . .). It is not difficult to veri-
fy that (θ, θ) ∈ Jnε,r (Tu∗, Sv∗) ∩ Jnε,r(−Tu∗, Sv∗). Using Corollary 2 we obtain the desired
estimate for E

(
A,W T,S

p,q , J
n
ε,r

)
.

Finally, let ε > t1s1. Consider u∗ = v∗ = (1, 0, . . .). Since d1 = t1s1, we have (θ, θ) ∈
Jnε,r(Tu

∗, Sv∗) ∩ Jnε,r(−Tu∗, Sv∗). Hence, by Corollary 2, E
(
A,W T,S

p,q , J
n
ε,r

)
≥ |〈Tu∗, Sv∗〉| =

t1s1.

4.3. Applications. Let H be a complex Hilbert space with orthonormal basis {ϕn}∞n=1,
{tk}∞k=1 be a non-increasing sequence; T : `2 → `2 be an operator mapping sequence x =
(x1, x2, . . .) into sequence Tx = (t1x1, t2x2, . . .). Consider the class

WT :=

{
x =

∞∑
n=1

tncnϕn :
∞∑
n=1

|cn|2 ≤ 1

}
,

and information operator Ip,ε : H → `p, with 2 < p ≤ ∞, mapping an element x =∑∞
n=1 xnϕn into the set Ip,εx = (x1, x2, . . .) + B[ε, `p] ∈ `p. Due to isomorphism between

`2 and H, under notations of Section 3 we have

E
(
WT , Iε,p

)
= E

(
W T

2 , I
∞
ε,p

)
. (10)

Moreover, methods of recovery F ∗m,λ := A ◦ Φ∗m,λ are optimal, where A : `2 → H is the
natural isomorphism between `2 and H : A (x1, x2, . . .) =

∑∞
n=1 xnϕn. Remark that Fm,λ are

triangular methods of recovery that play an important role in the theory of ill-posed problems
(see, e.g. [11, Theorem 2.1] and references therein).

Consider an important case when tn = n−µ, n ∈ N, with some fixed µ > 0. It corresponds
e.g., to the space H = L2(T) of square integrable functions defined on a period and the class
WT = W µ

2 (T) of functions having L2-bounded Weyl derivative of order µ. Using equality (10)
and Theorems 7 and 5, we obtain

lim
ε→0+

ε−λE
(
WT , Iε,p

)
=

(
α + β

β

)1/2(
β1/2

α1/p

)λ
, λ =

µ

µ+ 1/2− 1/p
,
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where
α =

1

2µ
B

(
2p− 2

p
,

1

2µ

)
, β =

1

2µ
B

(
2p− 2

p
, 2 +

1

2µ

)
,

and B(α, β) is the Euler beta function. Indeed, in case 2 < p <∞, by selecting n = nε ∈ N
and λ ∈ [0, 1) such that equation (5) is satisfied, we can easily verify that

lim
ε→0+

nµ/λε cnε = lim
ε→0+

nµ/λε cnε+1 = α1/pβ−1/2 and lim
ε→0+

ε−µ/λn−µε =

(
β1/2

α1/p

)µ/λ
.

Similar arguments are applicable for p =∞, in which case 1/p should be replaced with 0.
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