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ON ASYMORPHISMS OF FINITARY COARSE SPACES

I. V. Protasov. On asymorphisms of finitary coarse spaces, Mat. Stud. 56 (2021), 212–214.
We characterize finitary coarse spaces X such that every permutation of X is an asymor-

phism.

1. Introduction and results. Given a set X, a family E of subsets of X × X is called a
coarse structure on X if

• each E ∈ E contains the diagonal 4X , 4X = {(x, x) ∈ X : x ∈ X};
• if E, E ′ ∈ E then E ◦ E ′ ∈ E and E−1 ∈ E , where E ◦ E ′ = {(x, y) : ∃z ((x, z) ∈
E, (z, y) ∈ E ′)}, E−1 = {(y, x) : (x, y) ∈ E};

• if E ∈ E and 4X ⊆ E ′ ⊆ E then E ′ ∈ E ;
• ∪E = X ×X.

A subfamily E ′ ⊆ E is called a base for E if, for every E ∈ E , there exists E ′ ∈ E ′ such
that E ⊆ E ′. For x ∈ X, A ⊆ X and E ∈ E , we denote

E[x] = {y ∈ X : (x, y) ∈ E}, E[A] =
⋃
a∈A

E[a]

and say that E[x] and E[A] are balls of radius E around x and A.
The pair (X, E) is called a coarse space [6] or a ballean [4], [5].
For a coarse space (X, E), a subset B ⊆ X is called bounded if B ⊆ E[x] for some E ∈ E

and x ∈ X. The family B(X,E) of all bounded subsets of (X, E) is called the bornology of
(X, E). We recall that a family B of subsets of a set X is a bornology if B is closed under
taking subsets and finite unions, and B contains all finite subsets of X.

Let (X, E), (X ′, E ′) be coarse spaces. A mapping f : X −→ X ′ is called

• bornologous if f(B) ∈ B(X′,E ′) for each B ∈ B(X,E);
• macro-uniform if, for each E ∈ E , there exists E ′ ∈ E ′ such that, for all x, y ∈ X,
(x, y) ∈ E implies (f(x), f(y)) ∈ E ′;

• asymorphism if f s a bijection and f, f−1 are macro-uniform.

We recall that a coarse space (X, E) is discrete (or thin) if, for each E ∈ E , there exists
B ∈ B(X,E) such that E[x] = {x} for each x ∈ X \B. Every bornology B on a set X defines
the discrete coarse space (X, EB) with the base {EB : B ∈ B}, were EB[x] = B if x ∈ B,
and EB[x] = {x} if x ∈ X \B. Every discrete coarse space (X, E) coincides with (X, EB) for
B = B(X,E).

For different characterizations of discrete coarse spaces, see Theorem 2.2 in [1].
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Theorem 1. Every bornologous mapping f : X −→ X of a coarse space (X, E) is macro-
uniform if and only if (X, E) is discrete.

A coarse space (X, E) is called

• locally finite if each ball E[x] is finite, equivalently, B(X,E) = [X]<ω;

• finitary if, for each E ∈ E there exists a natural number n such that |E[x]| < n for
each x ∈ X.

Let G be a transitive group of permutations of a set X. We denote by XG the set X
endowed with the coarse structure with the base

{{(x, gx) : g ∈ F} : F ∈ [G]<ω, id ∈ F}.
By [2, Theorem 1], for every finitary coarse structure (X, E), there exists a transitive group
G of permutations of X such that (X, E) = XG. For more general results, see [3].

Let X be a set, κ be a cardinal, SX denotes the group of all permutations of X, S<κX =
{g ∈ SX : |supp g| < κ}, supp g = {x ∈ X : g(x) 6= x}.

Theorem 2. Let (X, E) be an infinite finitary coarse space. Then the following statements
are equivalent:
(i) every permutation of X is an asymorphism of (X, E);
(ii) there exists an infinite cardinal κ, κ ≤ |X|+ such that (X, E) = XG for G = S<κX .

Open problem. Characterize locally finite coarse spaces (X, E) such that every permutation
of X is an asymorphism.

2. Proofs.

Proof of Theorem 1. Let (X, E) be a discrete coarse space defined by a bornology B and
let f : X −→ X is bornologous. We take an arbitrary B ∈ B and note that f(EB[x]) ⊆
Ef(B)[f(x)] for each x ∈ X, so f is macro-uniform.

On the other hand, let (X, E) be not discrete. Then there exists E ∈ E such that, for
each bounded subset B of (X, E), one can find x ∈ X \B such that |E[x]| > 1. Therefore, for
some ordinal λ, we can choose inductively two injective λ-sequences (xα)α<λ, (yα)α<λ such
that the set {xα : α < λ} is unbounded, yα) ∈ E[xα], α < λ and yα 6= xβ for all α, β < λ.

We define a mapping f : X −→ X by f(yα) = y0 for each α < λ, and f(x) = x for each
x ∈ X\{yα : α < λ}. Clearly, f is bornologous. Since {xα : α < λ} is unbounded, f(xα) = xα,
yα ∈ E[xα] and f(yα) = y0 for each α < λ, we conclude that f is not macro-uniform.

Proof of Theorem 2. (i) =⇒ (ii). We say that a permutation g of X is compatible with
E if there exists E ∈ E such that (x, gx) ∈ E for each x ∈ X. We note that the set G
of all permutations compatible with E is a subgroup of SX and, by Theorem 1 from [2],
(X, E) = XG.

We say that a subset Y of X is crowded if there exists E ∈ E such that |E[y]| > 1 for
each y ∈ Y . We take the minimal cardinal κ, κ ≤ |X|+ such that, for each λ < κ, (X, E) has
a crowded subset of cardinality λ.

We show that G = S<κX . If g ∈ G then |supp g| < κ because the set supp g is crowded,
so g ∈ S<κX and G ⊆ S<κX .

To prove S<κX ⊆ G, we need the following auxiliary statement.
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(∗) Let Y be a subset of X such that |Y | = |X|, λ be a cardinal, λ < κ. Then there exists
two injective λ-sequences (xα)α<λ, (yα)α<λ in Y and H ∈ E such that {xα : α < λ}∩{yα : α <
λ} = ∅ and (xα, yα) ∈ H for each α < λ.

By the choice of κ, we can choose E ∈ E and injective λ-sequences (aα)α<λ, (bα)α<λ
such that {aα : α < λ} ∩ {bα : α < λ} = ∅ and (aα, bα) ∈ E for each α < λ. Passing to
subsequences, we may suppose that |Y \ {aα, bα : α < λ}| = |X|. We choose two injective
λ-sequences (xα)α<λ, (yα)α<λ in Y \ {aα, bα : α < λ} such that {xα : α < λ} ∩ {yα : α <
λ} = ∅. Then we define an involution f of X by faα = xα, fbα = yα and fx = x for each
x ∈ X \ {aα, bα, xα, yα : α < λ}. Since f is macro-uniform, there exists H ∈ E such that
(x, y) ∈ E implies (fx, fy) ∈ H. Hence, (xα, yα) ∈ H for each α < λ.

Now let g ∈ S<κX , A = supp g. We prove that g is compatible with E , so g ∈ G. By the
3-Sets Lemma, there exists a partition A1, A2, A3 of A such that Ai ∩ gAi = ∅, i ∈ {1, 2, 3}.

If |X| = |X \ (A1 ∪ gA1)| then we denote Y = X \ (A1 ∪ gA1), λ = |A1| and apply (∗)
to choose corresponding (xα)α<λ, (yα)α<λ and H ∈ E . We enumerate A1 = {aα : α < λ}
and define an involution h of X by hxα = aα, hyα = gaα and hx = x for each x ∈ X \
{xα, yα, aα, gaα : α < λ}. Since h is macro-uniform, there exists K ∈ E such that (x, y) ∈ H
implies (hx, hy) ∈ K. Hence, (aα, gaα) ∈ K for each α < λ.

If |X \ (A1 ∪ gA1)| < |X| then we partition A1 = B ∪C, |B| = |C| = |X| and, to choose
K, apply above arguments for the pair B, gB and C, gC.

Repeating above construction for A2 and A3, we see that g is compatible with E .

(ii) =⇒ (i). Let G = S<κX , (X, E) = XG. We take an arbitrary h ∈ SX and show that
h : XG → XG is macro-uniform.

Let F be a finite subset of S<κX , x ∈ X, y = hx. Then hFh−1 ⊂ S<κX and, for f ∈ F , we
have (hx, hfx) = (y, hfh−1y), so h is macro-uniform.
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