I. V. PROTASOV

ON ASYMORPHISMS OF FINITARY COARSE SPACES

I. V. Protasov. On asymorphisms of finitary coarse spaces, Mat. Stud. 56 (2021), 212–214.

We characterize finitary coarse spaces X such that every permutation of X is an asymorphism.

1. Introduction and results. Given a set X, a family \mathcal{E} of subsets of $X \times X$ is called a *coarse structure* on X if

- each $E \in \mathcal{E}$ contains the diagonal Δ_X , $\Delta_X = \{(x, x) \in X : x \in X\};$
- if $E, E' \in \mathcal{E}$ then $E \circ E' \in \mathcal{E}$ and $E^{-1} \in \mathcal{E}$, where $E \circ E' = \{(x, y) : \exists z \ ((x, z) \in E, (z, y) \in E')\}, E^{-1} = \{(y, x) : (x, y) \in E\};$
- if $E \in \mathcal{E}$ and $\triangle_X \subseteq E' \subseteq E$ then $E' \in \mathcal{E}$;
- $\cup \mathcal{E} = X \times X.$

A subfamily $\mathcal{E}' \subseteq \mathcal{E}$ is called a *base* for \mathcal{E} if, for every $E \in \mathcal{E}$, there exists $E' \in \mathcal{E}'$ such that $E \subseteq E'$. For $x \in X$, $A \subseteq X$ and $E \in \mathcal{E}$, we denote

$$E[x] = \{y \in X : (x, y) \in E\}, \ E[A] = \bigcup_{a \in A} E[a]$$

and say that E[x] and E[A] are balls of radius E around x and A.

The pair (X, \mathcal{E}) is called a *coarse space* [6] or a *ballean* [4], [5].

For a coarse space (X, \mathcal{E}) , a subset $B \subseteq X$ is called *bounded* if $B \subseteq E[x]$ for some $E \in \mathcal{E}$ and $x \in X$. The family $\mathcal{B}_{(X,\mathcal{E})}$ of all bounded subsets of (X,\mathcal{E}) is called the *bornology* of (X,\mathcal{E}) . We recall that a family \mathcal{B} of subsets of a set X is a bornology if \mathcal{B} is closed under taking subsets and finite unions, and \mathcal{B} contains all finite subsets of X.

Let $(X, \mathcal{E}), (X', \mathcal{E}')$ be coarse spaces. A mapping $f: X \longrightarrow X'$ is called

- bornologous if $f(B) \in \mathcal{B}_{(X',\mathcal{E}')}$ for each $B \in \mathcal{B}_{(X,\mathcal{E})}$;
- macro-uniform if, for each $E \in \mathcal{E}$, there exists $E' \in \mathcal{E}'$ such that, for all $x, y \in X$, $(x, y) \in E$ implies $(f(x), f(y)) \in E'$;
- asymorphism if f s a bijection and f, f^{-1} are macro-uniform.

We recall that a coarse space (X, \mathcal{E}) is *discrete* (or *thin*) if, for each $E \in \mathcal{E}$, there exists $B \in \mathcal{B}_{(X,\mathcal{E})}$ such that $E[x] = \{x\}$ for each $x \in X \setminus B$. Every bornology \mathcal{B} on a set X defines the discrete coarse space $(X, \mathcal{E}_{\mathcal{B}})$ with the base $\{E_B : B \in \mathcal{B}\}$, were $E_B[x] = B$ if $x \in B$, and $E_B[x] = \{x\}$ if $x \in X \setminus B$. Every discrete coarse space $(X, \mathcal{E}_{\mathcal{B}})$ for $\mathcal{B} = \mathcal{B}_{(X,\mathcal{E})}$.

For different characterizations of discrete coarse spaces, see Theorem 2.2 in [1].

²⁰¹⁰ Mathematics Subject Classification: 54E05, 54E35. Keywords: bornology; coarse space; asymorphism. doi:10.30970/ms.56.2.212-214

Theorem 1. Every bornologous mapping $f: X \longrightarrow X$ of a coarse space (X, \mathcal{E}) is macrouniform if and only if (X, \mathcal{E}) is discrete.

A coarse space (X, \mathcal{E}) is called

- locally finite if each ball E[x] is finite, equivalently, $\mathcal{B}_{(X,\mathcal{E})} = [X]^{<\omega}$;
- finitary if, for each $E \in \mathcal{E}$ there exists a natural number n such that |E[x]| < n for each $x \in X$.

Let G be a transitive group of permutations of a set X. We denote by X_G the set X endowed with the coarse structure with the base

$$[\{(x,gx)\colon g\in F\}\colon F\in [G]^{<\omega}, \ id\in F\}.$$

By [2, Theorem 1], for every finitary coarse structure (X, \mathcal{E}) , there exists a transitive group G of permutations of X such that $(X, \mathcal{E}) = X_G$. For more general results, see [3].

Let X be a set, κ be a cardinal, \mathcal{S}_X denotes the group of all permutations of X, $\mathcal{S}_X^{<\kappa} = \{g \in \mathcal{S}_X : |\text{supp } g| < \kappa\}$, supp $g = \{x \in X : g(x) \neq x\}$.

Theorem 2. Let (X, \mathcal{E}) be an infinite finitary coarse space. Then the following statements are equivalent:

(i) every permutation of X is an asymorphism of (X, \mathcal{E}) ;

(ii) there exists an infinite cardinal $\kappa, \kappa \leq |X|^+$ such that $(X, \mathcal{E}) = X_G$ for $G = \mathcal{S}_X^{<\kappa}$.

Open problem. Characterize locally finite coarse spaces (X, \mathcal{E}) such that every permutation of X is an asymorphism.

2. Proofs.

Proof of Theorem 1. Let (X, \mathcal{E}) be a discrete coarse space defined by a bornology \mathcal{B} and let $f: X \longrightarrow X$ is bornologous. We take an arbitrary $B \in \mathcal{B}$ and note that $f(E_B[x]) \subseteq E_{f(B)}[f(x)]$ for each $x \in X$, so f is macro-uniform.

On the other hand, let (X, \mathcal{E}) be not discrete. Then there exists $E \in \mathcal{E}$ such that, for each bounded subset B of (X, \mathcal{E}) , one can find $x \in X \setminus B$ such that |E[x]| > 1. Therefore, for some ordinal λ , we can choose inductively two injective λ -sequences $(x_{\alpha})_{\alpha < \lambda}$, $(y_{\alpha})_{\alpha < \lambda}$ such that the set $\{x_{\alpha} : \alpha < \lambda\}$ is unbounded, $y_{\alpha} \rangle \in E[x_{\alpha}]$, $\alpha < \lambda$ and $y_{\alpha} \neq x_{\beta}$ for all $\alpha, \beta < \lambda$.

We define a mapping $f: X \longrightarrow X$ by $f(y_{\alpha}) = y_0$ for each $\alpha < \lambda$, and f(x) = x for each $x \in X \setminus \{y_{\alpha} : \alpha < \lambda\}$. Clearly, f is bornologous. Since $\{x_{\alpha} : \alpha < \lambda\}$ is unbounded, $f(x_{\alpha}) = x_{\alpha}$, $y_{\alpha} \in E[x_{\alpha}]$ and $f(y_{\alpha}) = y_0$ for each $\alpha < \lambda$, we conclude that f is not macro-uniform. \Box

Proof of Theorem 2. (i) \implies (ii). We say that a permutation g of X is compatible with \mathcal{E} if there exists $E \in \mathcal{E}$ such that $(x, gx) \in E$ for each $x \in X$. We note that the set G of all permutations compatible with \mathcal{E} is a subgroup of \mathcal{S}_X and, by Theorem 1 from [2], $(X, \mathcal{E}) = X_G$.

We say that a subset Y of X is crowded if there exists $E \in \mathcal{E}$ such that |E[y]| > 1 for each $y \in Y$. We take the minimal cardinal $\kappa, \kappa \leq |X|^+$ such that, for each $\lambda < \kappa, (X, \mathcal{E})$ has a crowded subset of cardinality λ .

We show that $G = \mathcal{S}_X^{<\kappa}$. If $g \in G$ then $|\text{supp } g| < \kappa$ because the set supp g is crowded, so $g \in \mathcal{S}_X^{<\kappa}$ and $G \subseteq \mathcal{S}_X^{<\kappa}$.

To prove $\mathcal{S}_X^{<\kappa} \subseteq G$, we need the following auxiliary statement.

(*) Let Y be a subset of X such that |Y| = |X|, λ be a cardinal, $\lambda < \kappa$. Then there exists two injective λ -sequences $(x_{\alpha})_{\alpha < \lambda}$, $(y_{\alpha})_{\alpha < \lambda}$ in Y and $H \in \mathcal{E}$ such that $\{x_{\alpha} : \alpha < \lambda\} \cap \{y_{\alpha} : \alpha < \lambda\} = \emptyset$ and $(x_{\alpha}, y_{\alpha}) \in H$ for each $\alpha < \lambda$.

By the choice of κ , we can choose $E \in \mathcal{E}$ and injective λ -sequences $(a_{\alpha})_{\alpha < \lambda}$, $(b_{\alpha})_{\alpha < \lambda}$ such that $\{a_{\alpha} : \alpha < \lambda\} \cap \{b_{\alpha} : \alpha < \lambda\} = \emptyset$ and $(a_{\alpha}, b_{\alpha}) \in E$ for each $\alpha < \lambda$. Passing to subsequences, we may suppose that $|Y \setminus \{a_{\alpha}, b_{\alpha} : \alpha < \lambda\}| = |X|$. We choose two injective λ -sequences $(x_{\alpha})_{\alpha < \lambda}$, $(y_{\alpha})_{\alpha < \lambda}$ in $Y \setminus \{a_{\alpha}, b_{\alpha} : \alpha < \lambda\}$ such that $\{x_{\alpha} : \alpha < \lambda\} \cap \{y_{\alpha} : \alpha < \lambda\} = \emptyset$. Then we define an involution f of X by $fa_{\alpha} = x_{\alpha}$, $fb_{\alpha} = y_{\alpha}$ and fx = x for each $x \in X \setminus \{a_{\alpha}, b_{\alpha}, x_{\alpha}, y_{\alpha} : \alpha < \lambda\}$. Since f is macro-uniform, there exists $H \in \mathcal{E}$ such that $(x, y) \in E$ implies $(fx, fy) \in H$. Hence, $(x_{\alpha}, y_{\alpha}) \in H$ for each $\alpha < \lambda$.

Now let $g \in \mathcal{S}_X^{<\kappa}$, A = supp g. We prove that g is compatible with \mathcal{E} , so $g \in G$. By the 3-Sets Lemma, there exists a partition A_1, A_2, A_3 of A such that $A_i \cap gA_i = \emptyset$, $i \in \{1, 2, 3\}$.

If $|X| = |X \setminus (A_1 \cup gA_1)|$ then we denote $Y = X \setminus (A_1 \cup gA_1)$, $\lambda = |A_1|$ and apply (*) to choose corresponding $(x_{\alpha})_{\alpha < \lambda}$, $(y_{\alpha})_{\alpha < \lambda}$ and $H \in \mathcal{E}$. We enumerate $A_1 = \{a_{\alpha} : \alpha < \lambda\}$ and define an involution h of X by $hx_{\alpha} = a_{\alpha}$, $hy_{\alpha} = ga_{\alpha}$ and hx = x for each $x \in X \setminus \{x_{\alpha}, y_{\alpha}, a_{\alpha}, ga_{\alpha} : \alpha < \lambda\}$. Since h is macro-uniform, there exists $K \in \mathcal{E}$ such that $(x, y) \in H$ implies $(hx, hy) \in K$. Hence, $(a_{\alpha}, ga_{\alpha}) \in K$ for each $\alpha < \lambda$.

If $|X \setminus (A_1 \cup gA_1)| < |X|$ then we partition $A_1 = B \cup C$, |B| = |C| = |X| and, to choose K, apply above arguments for the pair B, gB and C, gC.

Repeating above construction for A_2 and A_3 , we see that g is compatible with \mathcal{E} .

 $(ii) \Longrightarrow (i)$. Let $G = \mathcal{S}_X^{<\kappa}$, $(X, \mathcal{E}) = X_G$. We take an arbitrary $h \in \mathcal{S}_X$ and show that $h: X_G \to X_G$ is macro-uniform.

Let F be a finite subset of $\mathcal{S}_X^{<\kappa}$, $x \in X$, y = hx. Then $hFh^{-1} \subset \mathcal{S}_X^{<\kappa}$ and, for $f \in F$, we have $(hx, hfx) = (y, hfh^{-1}y)$, so h is macro-uniform.

REFERENCES

- D. Dikranjan, I. Protasov, K. Protasova, N. Zava, Balleans, hyperballeans and ideals, Appl. Gen. Topology, 20 (2019), 431–447.
- I.V. Protasov, Balleans of bounded geometry and G-spaces, Algebra Discrete Math., 7 (2008), №2, 101– 108.
- 3. I. Protasov, Decompositions of set-valued mappings, Algebra Discrete Math., **30** (2020), No. 2, 235–238.
- I. Protasov, T. Banakh, Ball structures and colorings of groups and graphs, Math. Stud. Monogr. Ser., V.11, VNTL, Lviv, 2003.
- 5. I. Protasov, M. Zarichnyi, General Asymptology, Math. Stud. Monogr. Ser., Vol. 12, VNTL, Lviv, 2007.
- J. Roe, Lectures on Coarse Geometry, Univ. Lecture Ser., V. 31, American Mathematical Society, Providence RI, 2003.

Faculty of Computer Science and Cybernetics, Taras Shevchenko National University of Kyiv Kyiv, Ukraine i.v.protasov@gmail.com