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In the present study we investigate all repdigits which are expressed as a difference of two
Fibonacci or Lucas numbers. We show that if Fn−Fm is a repdigit, where Fn denotes the n-th
Fibonacci number, then (n,m) ∈ {(7, 3), (9, 1), (9, 2), (11, 1), (11, 2), (11, 9), (12, 11), (15, 10)}.
Further, if Ln denotes the n-th Lucas number, then Ln − Lm is a repdigit for (n,m) ∈
{(6, 4), (7, 4), (7, 6), (8, 2)}, where n > m. Namely, the only repdigits that can be expressed
as difference of two Fibonacci numbers are 11, 33, 55, 88 and 555; their representations are
11 = F7 − F3, 33 = F9 − F1 = F9 − F2, 55 = F11 − F9 = F12 − F11, 88 = F11 − F1 =
F11 − F2, 555 = F15 − F10 (Theorem 2). Similar result for difference of two Lucas numbers:
The only repdigits that can be expressed as difference of two Lucas numbers are 11, 22 and 44;
their representations are 11 = L6 − L4 = L7 − L6, 22 = L7 − L4, 4 = L8 − L2 (Theorem 3).

1. Introduction. The Fibonacci sequence {Fn}n≥0 and the Lucas sequence {Ln}n≥0 are
recursively defined by the binary recurrences Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1 and Ln+2 =
Ln+1 + Ln, L0 = 2, L1 = 1, respectively. The Binet’s formulas for both the sequences are
given by Fn = αn−βn

α−β and Ln = αn + βn, where α = 1+
√

5
2

and β = 1−
√

5
2

are the roots of the
characteristic equation x2 = x+ 1. One can observe that for n ≥ 1,

αn−2 ≤ Fn ≤ αn−1, αn−1 ≤ Ln ≤ 2αn.

A natural number N is known as a repdigit if all of its digits are equal. Mathematically, it is
in the form d(10k− 1)/9, where d ∈ {1, 2, . . . , 9}. For k = 1, it is a trivial repdigit. Recently,
searching of repdigits in linear recurrence sequences have been seen in several papers. For
example, Luca [9] proved that 55 and 11 are the largest repdigits in the Fibonacci and Lucas
sequences respectively. Marques and Togbé [10] showed that if Fn · · ·Fn+(k−1) is a repdigit,
with at least two digits, then (k, n) = (1, 10). In [1], Adegbindin et. al determined all Lucas
numbers that are sums of two repdigits. Alahmadi et. al [2] found all the Fibonacci numbers
which are concatenation of two repdigits. In [7], Erduvan et. al found all Fibonacci and
Lucas numbers which can be written as a difference of two repdigits. Here, they studied the
Diophantine equations

Fk = d1

(10n − 1

9

)
− d2

(10n − 1

9

)
, Lk = d1

(10n − 1

9

)
− d2

(10n − 1

9

)
,

where (k,m, n) are positive integers with n ≥ 2 and showed that F11 = 89 = 111 − 22 and
L18 = 5778 = 6666− 888 are the largest Fibonacci and Lucas numbers which can be written
as a difference of two repdigits.
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In this study we search repdigits which can be expressed as a difference of two Fibonacci
or Lucas numbers. For this purpose, we consider the following two equations

Fn − Fm = d

(
10k − 1

9

)
, (1)

Ln − Lm = d

(
10k − 1

9

)
, (2)

with n > m and 1 ≤ d ≤ 9.
Assume k ≥ 2 to avoid trivial solutions.

2. Preliminaries. Baker’s theory of linear forms in logarithms of algebraic numbers plays
an important role while solving various Diophantine equations. We start by recalling some
basic notations and results from algebraic number theory.

Let η be an algebraic number with minimal primitive polynomial
f (X) = a0(X − η(1)) . . . (X − η(k)) ∈ Z [X],

where a0 > 0, and η(i)’s are conjugates of η. Then

h(η) =
1

k

(
log a0 +

k∑
j=1

max{0, log |η(j)|}
)

is called the logarithmic height of η. If η = a/b is a rational number with gcd(a, b) = 1 and
b > 1, then h(η) = log(max{|a|, b}). Some properties of the logarithmic height, needed in our
proofs, are the following:

h(η ± γ) ≤ h(η) + h(γ) + log 2, h(ηγ±1) ≤ h(η) + h(γ), h(ηk) = |k|h(η).

With the above notations, Matveev (see [11] or [3, Theorem 9.4]) proved the following
result.

Theorem 1. Let L be an algebraic number field of degree dL. Let η1, η2, . . . , ηl ∈ L be
positive real numbers and b1, b2, . . . , bl be non zero integers. If Γ =

∏l
i=1 η

bi
i − 1 is not zero,

then
log |Γ| > −1.4 · 30l+3 · l4.5 · d2

L(1 + log dL)(1 + logD)A1A2 . . . Al,

where D ≥ max{|b1|, |b2|, . . . , |bl|} and A1, A2, . . . , Al are positive integers such that
Aj ≥ h′ (ηj) = max{dLh (ηj) , | log ηj|, 0.16} for j = 1, . . . , l.

The following result of Baker-Davenport due to Dujella and Pethő [6] is another tool in
our proofs. It will be used to reduce the upper bounds of the variables on (1) and (2).

Lemma 1 ( [6]). Let M be a positive integer and p/q be a convergent of the continued
fraction of the irrational number τ such that τ > 6M . Let A, B, µ be some real numbers
with A > 0 and B > 1. Let ε := ‖µq‖ −M‖τq‖, where ‖.‖ denotes the distance from the
nearest integer. If ε > 0, then there exists no solution to the inequality

0 < |uτ − v + µ| < AB−w,

in positive integers u, v, w with u ≤M and w ≥ log(Aq/ε)

logB
.

When µ = 0, we get ε < 0. In this case, we cannot apply Lemma 1. We use the following
result due to Legendre.
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Lemma 2 (Legendre, [4, 5]). Let λ be a real number and x, y integers such that∣∣∣λ− x

y

∣∣∣ < 1

2y2
.

Then x/y = pt/qt is a convergent of λ. Further, let M and N be nonnegative integers such
that qN > M . Then putting a(M) = max{ai : i = 0, 1, 2, . . . , N}, the inequality∣∣∣λ− x

y

∣∣∣ ≥ 1

(a(M) + 2)y2
,

holds for all pairs (x, y) of positive integers with 0 < y < M.

The following lemma will also be used in order to prove our subsequent results.

Lemma 3 ([8]). Let r ≥ 1 and H > 0 be such that H > (4r2)r and H > L/(logL)r. Then
L < 2rH(logH)r.

3. Repdigits as difference of two Fibonacci numbers. Our first result is the following.

Theorem 2. The only repdigits that can be expressed as difference of two Fibonacci numbers
are 11, 33, 55, 88 and 555. Their representations are

11 = F7 − F3, 33 = F9 − F1 = F9 − F2, 55 = F11 − F9 = F12 − F11,

88 = F11 − F1 = F11 − F2, 555 = F15 − F10.

Proof. Using Mathematica, we obtain all the solutions of (1) for n ∈ [1, 200] as listed above.
From now, assume that n > 200. The inequality 10k−1 < Fn ≤ αn−1 implies k log 10 − 3 <
n logα. Using Binet’s formula for the Fibonacci sequence, (1) can be written as

αn − βn√
5
− αm − βm√

5
= d
(10k − 1

9

)
, (3)

which further implies αn
√

5
− d10k

9
= αm
√

5
+ βn
√

5
− βm
√

5
− d

9
. Taking absolute values on both sides,

we obtain ∣∣∣∣ αn√5
− d10k

9

∣∣∣∣ ≤ ∣∣∣αm√5

∣∣∣+ 3 ≤ 7αm√
5
.

Dividing both sides by αn
√

5
gives∣∣∣1− α−n10k

(d√5

9

)∣∣∣ < 7

αn−m
. (4)

We set Γ = 1− α−n10k
(
d
√

5
9

)
. We need to show Γ 6= 0. On the contrary, suppose Γ = 0,

then α2n = 5d2102k

81
. Since 5d2102k

81
∈ Q, α2n ∈ Q, which is a contradiction to the fact that αn

is irrational for any n > 0. Therefore, Γ 6= 0. Now, take

η1 = α, η2 = 10, η3 =
d
√

5

9
, b1 = −n, b2 = k, b3 = 1, l = 3,

where η1, η2, η3 ∈ Q(α) and b1, b2, b3 ∈ Z. Observe that Q(η1, η2, η3) = Q(α), so dL = 2.
Since k < n, we take D = max{n, k, 1} = n. The logarithmic heights of η1, η2 and η3 are
calculated as

h(η1) =
logα

2
, h(η2) = log 10 and h(η3) ≤ h(d

√
5) + h(9) < 5.2.
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Thus,

max{2h(η1), | log η1|, 0.16} = logα = A1,

max{2h(η2), | log η2|, 0.16} = 2 log 10 = A2,

max{2h(η3), | log η3|, 0.16} < 10.5 = A3.

Now, applying Theorem 1, yields

log |Γ| > −1.4 · 306 · 34.5 · 22(1 + log 2)(1 + log n)(logα)(2 log 10)(10.5).

Comparing the above inequality with (4) gives

(n−m) logα < log 7 + 2.3 · 1013(1 + log n) < 2.4 · 1013(1 + log n). (5)

We rewrite (3) to obtain

αn√
5
− αm√

5
− d10k

9
=
βn√

5
− βm√

5
− d

9
.

Taking absolute values on both sides, we have∣∣∣ αn√
5
− αm√

5
− d10k

9

∣∣∣ ≤ 3.

Dividing both sides by αn
√

5
(1− αm−n) implies

∣∣∣1− α−n10k
( d

√
5

9(1− αm−n)

)∣∣∣ < 7

αn
. (6)

Now, set

Γ′ = 1− α−n10k
( d

√
5

9(1− αm−n)

)
.

In a similar manner, one can check that Γ′ 6= 0. As before, we have h(η1) = h(α) = logα
2

and h(η2) = h(10) = log 10. Let η3 =
(

d
√

5
9(1−αm−n)

)
. Then,

h(η3) ≤ h(d
√

5) + h
(

9
(

1− αm−n
))
≤

≤ 2 log 9 + log(
√

5) + (n−m)
logα

2
+ log 2 < 5.9 + (n−m)

logα

2
.

Hence, from (5) we obtain

h(η3) < 1.3 · 1013(1 + log n).

Thus, we take A3 = 2.6 · 1013(1 + log n). By virtue of Theorem 1

log |Γ| > −1.4 · 306 · 34.5 · 22(1 + log 2)(1 + log n)(logα)(2 log 10)(2.6 · 1013(1 + log n)).



128 K. BHOI, P. K. RAY

Comparing the above inequality with (6) gives

n logα < log 7 + 5.6 · 1025(1 + log n)2 < 5.7 · 1025(1 + log n)2.

With the notations of Lemma 3, we take r = 2, L = n and H = 5.7·1025

logα
to get

n < 22
(5.7 · 1025

logα

)(
log
(5.7 · 1025

logα

))2

< 1.8 · 1030.

Now, we reduce the bound by using the Baker-Davenport reduction method due to Dujella
and Pethő. Let

Λ = −n logα + k log 10 + log
(d√5

9

)
.

The inequality (4) can be written as

|eΛ − 1| < 7

αn−m
.

Observe that Λ 6= 0 as eΛ − 1 = Γ 6= 0. Assuming n−m ≥ 6, the right-hand side in the
above inequality is at most 448

(1+
√

5)6
< 1

2
. The inequality |ez − 1| < y for real values of z and

y implies z < 2y. Thus, we get |Λ| < 14
αn−m , which implies that∣∣∣− n logα + k log 10 + log

(d√5

9

)∣∣∣ < 14

αn−m
.

Dividing both sides by logα gives∣∣∣k( log 10

logα

)
− n+

( log(d
√

5/9)

logα

)∣∣∣ < 30

αn−m
. (7)

To apply Lemma 1, let

u = k, τ =
( log 10

logα

)
, v = n, µ =

( log(d
√

5/9)

logα

)
, A = 30, B = α, w = n−m.

We can take M = 1.8 · 1030. We find q61 = 25723116487424714265759180025093, the
denominator of 61-th convergent of τ exceeds 6M with 0 < ε := ‖µq61‖ − M‖τq61‖ =
0.221688. Applying Lemma 1 to the inequality (7) for 1 ≤ d ≤ 9, we get n−m ≤ 160. Now,
for n−m ≤ 160, put

Λ′ = −n logα + k log 10 + log
( d

√
5

9(1− αm−n)

)
.

The inequality (6) can be written as |eΛ′−1| < 7
αn . Observe that Λ′ 6= 0 as eΛ′−1 = Γ 6= 0.

Assuming n ≥ 6, the right-hand side in the above inequality is at most 448
(1+
√

5)6
< 1

2
. The

inequality |ez − 1| < y for real values of z and y implies z < 2y. Thus, we get |Λ′| < 14
αn ,

which implies that ∣∣∣− n logα + k log 10 + log
( d

√
5

9(1− αm−n)

)∣∣∣ < 14

αn
.
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Dividing both sides by logα gives∣∣∣k( log 10

logα

)
− n+

( log(d
√

5/(9(1− αm−n)))

logα

)∣∣∣ < 30

αn
. (8)

Let

u = k, τ =
( log 10

logα

)
, v = n, µ =

log(d
√

5/(9(1− αm−n)))

logα
, A = 30, B = α, w = n.

Choose M = 1.8 · 1030. We find q70 = 20589775267077186120582738407535948, the
denominator of 70-th convergent of τ exceeds 6M with 0 < ε := ‖µq70‖ − M‖τq70‖ =
0.000138226. Applying Lemma 1 to the inequality (8) for 1 ≤ d ≤ 9 and n −m ≤ 160, we
get n ≤ 189. This contradicts the assumption that n > 200.

4. Repdigits as difference of two Lucas numbers. Our second result is the following.

Theorem 3. The only repdigits that can be expressed as difference of two Lucas numbers
are 11, 22 and 44. Their representations are

11 = L6 − L4 = L7 − L6, 22 = L7 − L4, 4 = L8 − L2.

Proof. Using Mathematica, we obtain all the solutions of (2) for n ∈ [1, 200] as listed above.
From now, assume that n > 200. The inequality 10k−1 < Ln ≤ 2αn implies k log 10 − 2 <
n logα. Using Binet’s formula for the Lucas sequence, (2) can be written as

αn + βn − αm − βm = d
(10k − 1

9

)
. (9)

We write (9) to obtain

αn − d10k

9
= αm + βm − βn − d

9
. (10)

Taking absolute values and dividing by αn on both sides, we get∣∣∣1− α−n10k
(d

9

)∣∣∣ < 4

αn−m
. (11)

We set Γ = 1 − α−n10k
(
d
9

)
. If Γ = 0, then α2n = d2102k

81
. It is easily checked that αn

is irrational for every positive integer n. The irrationality of αn immediately implies the
non-vanishing of Γ.

Take η1 = α, η2 = 10, η3 = d
9
, b1 = −n, b2 = k, b3 = 1, l = 3, where η1, η2, η3 ∈ Q(α)

and b1, b2, b3 ∈ Z. Observe that Q(η1, η2, η3) = Q(α), so dL = 2. Since k < n, we take
D = max{n, k, 1} = n. The logarithmic heights of η1, η2 and η3 are calculated as

h(η1) =
logα

2
, h(η2) = log 10 and h(η3) ≤ h(d) + h(9) < 4.4.

Thus, we take A1 = logα, A2 = 2 log 10 and A3 = 8.8. Applying Theorem 1, we have

log |Γ| > −1.4 · 306 · 34.5 · 22(1 + log 2)(1 + log n)(logα)(2 log 10)(8.8).
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Comparing the above inequality with (4) gives

(n−m) logα < log 4 + 1.9 · 1013(1 + log n) < 2 · 1013(1 + log n). (12)

We rewrite (9) to obtain

αn − αm − d10k

9
= βm − βn − d

9
.

Taking absolute values and dividing by αn(1− αm−n) on both sides, we get∣∣∣1− α−n10k
( d

9(1− αm−n)

)∣∣∣ < 3

αn
. (13)

Put

Γ′ = 1− α−n10k
( d

9(1− αm−n)

)
.

It is easily checked that Γ′ 6= 0. As before, we have h(η1) = logα
2

and h(η2) = log 10. Let

η3 =
(

d
9(1−αm−n)

)
. Then,

h(η3) ≤ h(d) + h
(

9
(

1− αm−n
))
≤ 2 log 9 + (n−m)

logα

2
+ log 2 < 5.1 + (n−m)

logα

2
.

Hence, from (12) we obtain h(η3) < 1.1 ·1013(1+ log n). Thus, we take A3 = 2.2 ·1013(1+
log n). By virtue of Theorem 1

log |Γ| > −1.4 · 306 · 34.5 · 22(1 + log 2)(1 + log n)(logα)(2 log 10)(2.2 · 1013(1 + log n)).

Comparing the above inequality with (13) gives

n logα < log 3 + 4.8 · 1025(1 + log n)2 < 4.9 · 1025(1 + log n)2.

With the notations of Lemma 3, we take r = 2, L = n and H = 4.9·1025

logα
. Applying the

lemma, we have

n < 22
(4.9 · 1025

logα

)(
log
(4.9 · 1025

logα

))2

< 1.5 · 1030.

Now, we reduce the bound by using the Baker-Davenport reduction method due to Dujella
and Pethő. Let Λ = −n logα + k log 10 + log

(
d
9

)
. The inequality (11) can be written as

|eΛ−1| < 4
αn−m . Observe that Λ 6= 0 as eΛ−1 = Γ 6= 0. Assuming n−m ≥ 5, the right-hand

side in the above inequality is at most 128
(1+
√

5)5
< 1

2
. The inequality |ez−1| < y for real values

of z and y implies z < 2y. Thus, we get |Λ| < 8
αn−m , which implies that∣∣∣− n logα + k log 10 + log

(d
9

)∣∣∣ < 8

αn−m
.

Dividing both sides by logα gives∣∣∣k( log 10

logα

)
− n+

( log(d/9)

logα

)∣∣∣ < 17

αn−m
. (14)



REPDIGITS AS DIFFERENCE OF TWO FIBONACCI OR LUCAS NUMBERS 131

Let

u = k, τ =
( log 10

logα

)
, v = n, µ =

( log(d/9)

logα

)
, A = 17, B = α, w = n−m.

We can take M = 1.5 · 1030. We find q62 = 28291878740422696593104794201645 satisfies
q > 6M with ε := 0.0247517. Applying Lemma 1 to the inequality (14) for 1 ≤ d ≤ 8, we
get n−m ≤ 164.

For the case d = 9, we have that µ(d) = 0. In this case, we apply Lemma 2. The inequality
(14) can be rewritten as ∣∣∣ log 10

logα
− n

k

∣∣∣ < 17

kαn−m
<

1

2k2
,

because k < 1.5 · 1030 = M. It follows from Lemma 2 that n
k
is a convergent of log 10

logα
. So n

k
is

of the form pt/qt for some t = 0, 1, 2, . . . , 62. Thus,

1

(a(M) + 2)k2
≤
∣∣∣ log 10

logα
− n

k

∣∣∣ < 17

kαn−m
.

Since a(M) = max{ai : i = 0, 1, 2, . . . , 62} = 106, we get

n−m ≤ log(17 · (1.5 · 1030) · 108)

logα
≤ 160.

Thus n−m ≤ 164 in both cases.
Now, for n−m ≤ 164, put

Λ′ = −n logα + k log 10 + log
( d

9(1− αm−n)

)
.

The inequality (13) can be written as |eΛ′−1| < 3
αn . Observe that Λ′ 6= 0 as eΛ′−1 = Γ 6= 0.

Assuming n − m ≥ 4, the right-hand side in the above inequality is at most 48
(1+
√

5)4
< 1

2
.

The inequality |ez − 1| < y for real values of z and y implies z < 2y. Thus, we get |Λ′| < 6
αn ,

which implies that ∣∣∣− n logα + k log 10 + log
( d

9(1− αm−n)

)∣∣∣ < 6

αn
.

Dividing both sides by logα gives∣∣∣k( log 10

logα

)
− n+

( log(d/(9(1− αm−n)))

logα

)∣∣∣ < 13

αn
. (15)

To apply Lemma 1, let

u = k, τ =
( log 10

logα

)
, v = n, µ =

log(d/(9(1− αm−n)))

logα
, A = 13, B = α, w = n.

Choose M = 1.5 · 1030. We find q70 = 20589775267077186120582738407535948 satisfies
q > 6M with ε := 0.000607235. Applying Lemma 1 to the inequality (15) for 1 ≤ d ≤ 9 and
n−m ≤ 164 , we get n ≤ 184. This contradicts the assumption that n > 200.
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