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For an integer k ≥ 2, let (P (k)
n )n≥2−k be the k-generalized Pell sequence, which starts with

0, . . . , 0, 1 (k terms) and each term afterwards is defined by the recurrence P
(k)
n = 2P

(k)
n−1 +

P
(k)
n−2 + · · · + P

(k)
n−k, for all n ≥ 2. For any positive integer n, a number of the form 2n + 1 is

referred to as a Fermat number, while a number of the form 2n−1 is referred to as a Mersenne
number. The goal of this paper is to determine Fermat and Mersenne numbers which are
members of the k-generalized Pell sequence. More precisely, we solve the Diophantine equation
P

(k)
n = 2a ± 1 in positive integers n, k, a with k ≥ 2, a ≥ 1. We prove a theorem which asserts

that, if the Diophantine equation P
(k)
n = 2a ± 1 has a solution (n, a, k) in positive integers

n, k, a with k ≥ 2, a ≥ 1, then we must have that (n, a, k) ∈ {(1, 1, k), (3, 2, k), (5, 5, 3)}. As
a result of our theorem, we deduce that the number 1 is the only Mersenne number and the
number 5 is the only Fermat number in the k-Pell sequence.

1. Introduction. Let k ≥ 2 be an integer. We consider a generalization of Pell sequence
called the k-generalized Pell sequence P (k)

n , or, for simplicity, the k-Pell sequence, defined as

P (k)
n = 2P

(k)
n−1 + P

(k)
n−2 + · · ·+ P

(k)
n−k, n ≥ 2,

with initial conditions P (k)
−(k−2) = P

(k)
−(k−3) = · · · = P

(k)
−1 = P

(k)
0 = 0, and P

(k)
1 = 1. This

generalization is a family of sequences in the sense that each value of k engenders a distinct
sequence. For instance, when we set k = 2, we arrive at the usual Pell sequence. There is an
analogous definition for k-generalized Fibonacci sequence F (k)

n .
In recent times, a number of papers have been written aimed at determining members of

certain sequences which are powers of 2. Bravo and Luca solved the Diophantine equations
Ln + Lm = 2a and Fn + Fm = 2a in [5] and [4], respectively. The idea was extended to
generalizations of the Lucas sequences. This can be seen, for example, in [6] and [7].

A Fermat number is a number of the form 2n + 1. Its first few terms are 3, 5, 9, 17,
33,.... A Mersenne number is a number of the form 2n− 1, where n is a positive integer. The
Mersenne numbers consist of all 1s in base 2, and are therefore binary repunits. The first
few Mersenne numbers are 1, 3, 7, 15, 31, 63, 127, 255, .... Some properties of these numbers
have been studied. One can cite [11], [12].

In this paper, we seek to find Fermat and Mersenne numbers which are members of the
k-Pell sequence. More precisely, we study the Diophantine equation

P (k)
n = 2a ± 1,
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where n, k and a are positive integers with k ≥ 2 and a ≥ 1. We will establish the following
results.

Theorem 1. All the solutions of the Diophantine equation

P (k)
n = 2a ± 1 (1)

in positive integers n, k, a with k ≥ 2 and a ≥ 1 are

(n, a, k) ∈ {(1, 1, k), (3, 2, k), (5, 5, 3)}.

The next results are straightforward consequences of Theorem 1.

Corollary 1. The number 1 is the only Mersenne number in the k-Pell sequence.

Corollary 2. The number 5 is the only Fermat number in the k-Pell sequence.

This paper is organized as follows. In the next section, we develop the tools that will be
used to prove Theorem 1. This proof will be done in last section in four steps. In the first
step, we will setup the problem, find the parametric solutions, and bound n in terms of a.
The second step consists in finding an upper bound of n in term of k. For the third step, we
consider lower values of k, i.e. 2 ≤ k ≤ 320, and solve equation (1) in this range by finding
the non-parametric solution. In the final step, we take k ≥ 321 and prove that we have no
other solution.

2. The tools. This section is devoted to collecting definitions, notations, properties and
results which will be used throughout this paper.

2.1. Linear forms in logarithms. For any nonzero algebraic number η of degree d over
Q, whose minimal polynomial over Z is a

∏d
j=1

(
X − η(j)

)
, we denote by

h(η) =
1

d

(
log |a|+

d∑
j=1

log max
{

1, |η(j)|
})

the usual absolute logarithmic height of η. In particular, if η = p/q is a rational number
with gcd(p, q) = 1 and q > 0, then h(η) = log max{|p|, q}. The following properties of the
logarithmic height function h(·), which will be used in the next sections without special
reference, are well-known:

h(η ± γ) ≤ h(η) + h(γ) + log 2, (2)
h(ηγ±1) ≤ h(η) + h(γ), (3)
h(ηs) = |s|h(η) (s ∈ Z). (4)

The first tool we need is the following result due to Matveev [17]. Here, we use the version
due to Bugeaud, Mignotte, and Siksek [9, Theorem 9.4].

Theorem 2. Let η1, . . . , ηs be real algebraic numbers and let b1, . . . , bs be nonzero integers.
Let dK be the degree of the number field K := Q(η1, . . . , ηs) over Q and let Aj be a positive
real number satisfying

Aj = max{dKh(η), | log η|, 0.16} for j = 1, . . . , s.

Assume that B ≥ max{|b1|, . . . , |bs|}. If ηb11 · · · ηbss − 1 6= 0, then

|ηb11 · · · ηbss − 1| ≥ exp(−1.4 · 30s+3 · s4.5 · d2K(1 + log dK)(1 + logB)A1 · · ·As).
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2.2. The reduction algorithm. Our second tool is a version of the reduction method of
Baker and Davenport. We use a slight variant of the version given by Dujella and Pethö [10].

Lemma 1. Let M be a positive integer, p/q a convergent of the continued fraction of the
irrational γ such that q > 6M , and A,C, µ some real numbers with A > 0 and B > 1. Let

ε = ||µq|| −M · ||γq||,

where || · || denotes the distance from the nearest integer. If ε > 0, then there is no solution
of the inequality

0 < uγ − v + µ < AB−w

in positive integers u, v and w with

u ≤M and w ≥ log(Aq/ε)

logC
.

We see that Lemma 1 cannot be applied when µ = 0 (since then ε < 0). For this case,
we use the following well-known technical result from Diophantine approximation, known
as Legendre’s criterion which is our third tool. This comes from the theory of continued
fractions (see [13], pages 30 and 37).

Lemma 2. Let pi/qi be the convergents of the continued fraction [a0, a1, . . .] of the irrational
number γ. Let M be a positive integer and put aM := max{a0, a1, . . . , aN+1}, where N ∈ N
is such that qN ≤M < qN+1. If x, y ∈ Z with x > 0, then

|xγ − y| > 1

(aM + 2)x
, for all x < M.

2.3. Useful Lemmas. We conclude this section by recalling two lemmas that we need in
this work:

Lemma 3 ([18], Lemma 7). If m ≥ 1, T > (4m2)m and T > y/(log y)m, then

y < 2mT (log T )m.

Lemma 4 ([19], Lemma 2.2). Let d, x ∈ R and 0 < d < 1. If |x| < d, then

| log(1 + x)| < − log(1− d)

d
|x|.

2.4. On k-Pell sequence. In this subsection, we recall some facts and properties of the
k-Pell sequences which will be used later. The characteristic polynomial of these sequences
is

Ψk(x) = xk − 2xk−1 − xk−2 − · · · − x− 1.

In [3], Bravo et al. show that Ψk(x) is irreducible over Q[x] and has just one zero α(k) outside
the unit circle. It is real and positive so it satisfies α(k) > 1. The other zeros are strictly
inside the unit circle. Furthermore, in the same paper, they show that

ϕ2(1− ϕ−k) < α(k) < ϕ2, for all k ≥ 2, (5)
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where ϕ = (1 +
√

5)/2. To simplify the notation, we omit the dependence on k of α. For
k ≥ 2, let

gk(x) :=
x− 1

(k + 1)x2 − 3kx+ k − 1
=

x− 1

k(x2 − 3x+ 1) + x2 − 1
. (6)

In [2], Bravo and Hererra proved that

0.276 < gk(α) < 0.5 and
∣∣gk(α(i))

∣∣ < 1, 2 ≤ i ≤ k

hold, where α := α(1), α(2), . . . , α(k) are all the zeros of Ψk(x). So, the number gk(α) is not
an algebraic integer. In addition, they proved that the logarithmic height of gk satisfies

h(gk(α)) < 4k logϕ+ k log(k + 1) for all k ≥ 2. (7)

With the above notation, Bravo and Hererra showed in [3] that

P (k)
n =

k∑
i=1

gk(α(i))α(i)n−1
and

∣∣P (k)
n − gk(α)αn−1

∣∣ < 1

2
(8)

hold, for all n ≥ 1 and k ≥ 2. Furthermore, for n ≥ 1 and k ≥ 2, it was showed in [3] that

αn−2 ≤ P (k)
n ≤ αn−1. (9)

3. The proof of Theorem 1. In this section, we will prove Theorem 1 in four steps. Let
us start with the first step.

3.1. Setup. If a = 1, then (1) imply that P (k)
n = 1 or P (k)

n = 3. Hence (n, a, k) = (1, 1, k)
with k ≥ 2 is the only solutions of the Diophantine equation (1) in this case.

Note that for 2 ≤ n ≤ k + 1, we have P (k)
n = F2n−1, where Fm is the m-th Fibonacci

number (see [14]), so the equation (1) becomes

F2n−1 ∓ 1 = 2a. (10)

In [8], Bugeaud et al. showed that the only nonnegative integer solutions (n, y,m) of equations
Fn ± 1 = ym with m ≥ 2 are

F4 + 1 = 3 + 1 = 22,
F6 + 1 = 8 + 1 = 32,
F5 − 1 = 5− 1 = 22.

As a consequence of the above, (n, a) = (3, 2) is the only nonnegative integer solution of
equation (10). So, (n, a, k) = (3, 2, k) with k ≥ 2 is a solution of the Diophantine equation (1).

In the remainder of this paper, we suppose that n ≥ k + 2, n ≥ 4 and a ≥ 2. Using
equation (1), we obtain the inequality

2a−1 ≤ 2a − 1 ≤ 2a ± 1 = P (k)
n < αn−1 < ϕ2(n−1),

from which we infer 0.7a+ 0.2 < n. Furthermore, we get

ϕn−2 < αn−2 < P (k)
n = 2a ± 1 ≤ 2a + 1 < 2a+1,

from which we infer n < 1.5a+ 2.8. Consequently, we find that

0.7a+ 0.2 < n < 1.5a+ 2.8. (11)



FERMAT AND MERSENNE NUMBERS IN THE k-PELL SEQUENCE 119

3.2. An inequality for n versus k. In this subsection, we shall be preoccupied with
determining an upper bound for n in terms of k. To begin with, observe that equation (1),
when expressed in the form

2a = P (k)
n ∓ 1, (12)

produces ∣∣2a − gk(α)αn−1
∣∣ ≤ 3

2
, (13)

which, upon dividing through by gk(α)αn−1, yields∣∣2a · α−(n−1) · (gk(α))−1 − 1
∣∣ < 3

2 · 0.276 · αn−1
<

14.3

αn
, (14)

where we have used the fact that α < ϕ2 and gk(α) > 0.276. Let

Γ1 = 2a · α−(n−1) · (gk(α))−1 − 1. (15)

We claim that Γ1 6= 0. To prove our claim, we suppose that Γ1 = 0. This means that

gk(α) = 2a · α−(n−1),

which implies that gk(α) is an algebraic integer, which is a contradiction. Hence, Γ1 6= 0. We
apply Theorem 2 to Γ1 given by (15). To do this, we take

η1 := 2, η2 := α, η3 := gk(α),

b1 := a, b2 := −(n− 1), and b3 := −1.

The algebraic numbers η1, η2, η3 are elements of the field K := Q(α) with dK = k. We find
that

h(η1) = log 2, h(η2) =
logα

k
,

and
h(η3) ≤ 4k logϕ+ k log(k + 1) < 4.5k log k,

for all k ≥ 2. Thus, we take

A1 := k log 2, A2 := 2 logϕ, and A3 := 4.5k2 log k.

In addition, we take B := 1.5n, using inequality (11). Furthermore, we observe that the
inequalities 1 + log k < 2.5 log k and 1 + log(1.5n) < 2.1 log n hold, for all k ≥ 2 and n ≥ 4,
respectively. Applying Theorem 2 to Γ1 given by (15) and using inequality (14), we obtain

n < 2.36 · 1012 · k5 log2 k · log n. (16)

In the notation of Lemma 3, inequality (16) implies that m = 1, T = 2.36 ·1012 ·k5 log2 k,
and y = n. Thus, we get

n < 2 · 2.36 · 1012 · k5 log2 k log
(
2.36 · 1012 · k5 log2 k

)
<

<
(
4.72 · 1012 · k5 log2 k

)
(46 log k) < 2.2 · 1014k5 log3 k.

The result established in this subsection is summarized in the following lemma.



120 B. V. NORMENYO, S. E. RIHANE, A. TOGBE

Lemma 5. If (n, a, k) is a solution in integers of equation (1) with k ≥ 2, n ≥ k + 2 and
a ≥ 2, then the inequality

n < 2.2 · 1014k5 log3 k (17)

holds.

3.3. The case 2 ≤ k ≤ 320. In this subsection, we study the problem when k ∈ [2, 320].
Our main tool is Lemma 1. We begin by putting

Λ1 := log(Γ1 + 1) = a log 2− (n− 1) logα− log(gk(α)). (18)

It is easy to see that |Γ1| < 0.12 for n ≥ 10. As a result, using inequality (14), we obtain

|Λ1| = | log(Γ1 + 1)| < − log(1− 0.12)

0.12
|Γ1| < 15.3 · α−n. (19)

Therefore, using α > ϕ, we get

0 <

∣∣∣∣a · log 2

logα
− n+

(
1− log gk(α)

logα

)∣∣∣∣ < 31.8 · α−n.

In order to apply Lemma 1 to the above inequality, we take

u := a, γ :=
log 2

logα
, v := n, µ := 1− log gk(α)

logα
, A := 31.8, B := α, ω := n.

We have γ 6∈ Q since if we assume the contrary, then there exist coprime integers a1 and a2
such that γ = a1/a2, which means that αa1 = 2a2 . Let σ ∈ Gal(K/Q), the Galois group of
the extension K/Q, such that σ(α) = αi, for some i ∈ {2, . . . , k}. Applying this to the above
relation and taking absolute values we get 1 < 2a2 = |αi| < 1, which is a contradiction.
Moreover, we note that a ≤ 1.5n ≤

⌊
3.3 · 1014k5 log3 k

⌋
. Thus, for each k ∈ [2, 320], we take

Mk =
⌊
3.3 · 1014k5 log3 k

⌋
and we find a good approximation of γ and a convergent p`/q`

of the continued fraction of γ such that q` > 6Mk and ε = ε(k) = ||µq|| −Mk||γq|| > 0.
Appealing to a computer program in Mathematica, Lemma 1 applied to Λ1 gives us n ≤
88.5346.

Hence, we deduce that the possible solutions (n, a, k) of equation (1) for which k ∈ [2, 320]
satisfy k+2 ≤ n ≤ 88 and 1 ≤ a ≤ 132. Finally, using a brute force search with Mathematica
in this ranges we get the only solution P (3)

5 = 25 − 1.

3.4. Large values of k. In this subsection, we will consider k ≥ 321. The work will be done
in two steps.

3.4.1. An absolute upper bound on k. Here, we will show the following lemma that
consists in bounding k and n.

Lemma 6. If (n, a, k) is a solution of the Diophantine equation (1) with k > 320 and
n ≥ k + 2, then k and n are bounded as

k < 4.8 · 1015 and n < 2.7 · 1097. (20)
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Proof. For k > 320, it is easy to check that

n < 2.2 · 1014k5 log3 k < ϕk/2.

Thus, from [2], gn(α)αn can be rewritten as

gn(α)αn =
ϕ2n

ϕ+ 2
(1 + ζ), where |ζ| < 4

ϕk/2
. (21)

Combining (21) and (13), the inequality∣∣∣∣2a − ϕ2n

ϕ+ 2

∣∣∣∣ ≤ |2a − gk(α)αn|+ ϕ2n

ϕ+ 2
|ζ| ≤ ϕ2n

ϕ+ 2

(
3(ϕ+ 2)

2ϕ2n
+

4

ϕk/2

)
≤

≤ ϕ2n

ϕ+ 2

(
3ϕ+ 10

ϕk/2

)
≤ 15ϕ2n

(ϕ+ 2)ϕk/2

is obtained. Note that in the above inequalities, we have used the fact that n ≥ k+2 implies
2n > k/2, and so 2ϕ2n > ϕk/2. Hence, from the above inequality, we obtain∣∣(ϕ+ 2) · 2a · ϕ−2n − 1

∣∣ < 15

ϕk/2
. (22)

We will apply Theorem 2 to obtain a lower bound to the left-hand side of inequality (22).
We take

t := 3, (η1, b1) := (ϕ+ 2, 1), (η2, b2) := (2, a), (η3, b3) := (ϕ,−2n),

and
Γ2 := (ϕ+ 2) · 2a · ϕ−2n − 1.

Suppose that Γ2 = 0, then
2a(ϕ+ 2) = ϕ2n.

Conjugating the above relation in Q(
√

5), we find that

1 < 2a(ϕ+ 2) = ϕ2n < 1,

where ϕ = (1−
√

5)/2. Therefore Γ2 6= 0.
Since η1, η2, η3 ∈ K := Q(

√
5), we see that dK = 2. As a ≤ 1.5n, we take B := 2n =

max{a, 2n, 1}. On the other hand, the fact that

h(η1) ≤ h(ϕ) + h(2) + log 2 ≤ logϕ

2
+ 2 log 2 < 1.7,

and
h(η2) = log 2, h(η3) =

logϕ

2
,

imply that we can take

A1 := 3.4, A2 := 2 log 2 and A3 := logϕ.

So, Theorem 2 tells us that

|Γ2| > exp
(
−5.06 · 1012 log n

)
, (23)
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where we have used the fact that 1 + log 2n < 2.3 log n, for all n ≥ 4. Putting (22) and (23)
together, it follows that

k < 2.11 · 1013 log n < 2.11 · 1013 log(2.2 · 1014k5 log3 k), (24)

where we have used Lemma 5. The desired result comes from solving the above inequality
and using again Lemma 5.

3.4.2. Reducing the bound on k. Now, we try to reduce the obtained bounds. Put

Λ2 := a log 2− 2n logϕ− log(ϕ+ 2) = log(Γ2 + 1).

Since k > 320, then from (22) we get |Γ2| < 0.01. Hence, by Lemma 4, we conclude that

|Λ2| < −
log 0.99

0.01
· |Γ2| < 15.1 · ϕ−k/2 (25)

and so ∣∣∣∣a · log 2

logϕ
− 2n− log(ϕ+ 2)

logϕ

∣∣∣∣ < 31.4 · ϕ−k/2.

We apply Lemma 1 with the parameters

γ :=
log 2

logϕ
, µ :=

log(ϕ+ 2)

logϕ
, and (A,B) := (31.4, ϕ).

Furthermore, since a < 1.5n and n < 2.7 · 1097 by Lemma 6, we can take M := 4.05 · 1097.
Let

[a0, a1, a2, a3, . . .] = [1, 2, 3, 1, 2, 3, 2, 4, 2, 1, 2, 11, 2, 1, 11, 1, 1, 134, . . .]

be the continued fraction of γ. With the help of Mathematica, we find that q194 satisfies the
conditions of Lemma 1. Furthermore, according to Lemma 1 we get k < 984. With this new
upper bound on k, we get

n < 6.7 · 1031.

We now repeat the process above but with M = 1.1 · 1032, we obtain that q71 satisfies the
conditions of Lemma 1 and so k ≤ 344. Hence, we deduce that

n < 2.2 · 1029.

In the third application with M = 3.3 · 1029 , we get that q68 satisfies the conditions of
Lemma 1 and so k < 314, which contradicts our assumption that k > 320. This completes
the proof of Theorem 1.
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15. E. Kiliç, The Binet formula, sums and representations of generalized Fibonacci p-numbers, European J.

Combin., 29 (2008), 701–711.
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