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In this paper, we introduce universally prestarlike generalized functions of order ¥ with
¥ < 1 associated with shell like domain, and we get coefficient bounds and the second Hankel
determinant |agay — a3| for such functions.

1. Introduction. Let A(A) denote the class of all analytic functions in a domain A. Suppose
A contains the origin and A(A) stands for the set of all functions f € A(A) with f(0) =
and also let

fA U = {z € C: |z| < 1} is the unit disc, we write A = A(U), Ay = Ay(U) and
1 = A;(U). Let the Hadamard Product (or convolution) of two functions

a;zt  and g(z b2t zeU
Z Z

in Ay(A) is defined as

o0

(f*9)(z) =) abz".

t=0

A function f € A; is called a starlike function of order ¥ (0 <9 < 1) if

Re (Z}C(i?) >, (z€l)

and the class of such functions is denoted by Sy.
Due to S. Ruscheweyh [15], for f € A;, let us denote by Ry the class of all prestarlike
functions of order ¥ (¢ < 1) in U satisfying the criteria

h2 219*f68197 19<17
Re(f(z)) >1, 9=1, z€T,
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where
2

m :z—i-ZC(ﬁ,t)z

t=2

h27219(2) =

is a well-known extremal function in Sy and
¢
k— 29
e, = BB ey = 12,3),
Notice that C(9,t) is a decreasing function of 9 with
oo if ¥ < %,

lim C(0,t)=¢ 1 ifd=1

t—o00

0 ifd>3.

While studying with prestarlike functions and convolutions, the following notation is turned

out to be useful .

(1—=2)"

where t € Ny = {0,1,2,3,...} and therefore we have D' f = ﬁ(zt_lf)(t), for ¢t € Ny. Using
this operator we find that a function f € A; is prestarlike of order ¥ <1 if and only if

(D'f)(2) = (hex f)(2),  hu(2) =

D37219f
D2—219f cP

where P = {g € Ay : Re(g(z)) > 3,z € U} or, equivalently, by the Herglotz formula

27
dp(7)
ceP& = —
g 9(z) /0 il
where p is a probability measure on [0, 27].

The notion of prestarlike functions of order ¥ has recently been extended from the unit
disc U to other discs and half-planes containing the origin (see [12, 13, 14]). Define one such
a disc A, , by

Ayp={myp(2) : 2 € U},

where v € C\{0} and p € [0,1] are two unique parameters and @, ,(z) = 2. Note that

1¢ A, ,if and only if |y + p| < 1. For ¥ < 1, and for some admissible pair (v, p), we define

Ro(A,) ={f € Ai(A,,): %f(w%p(z)) € Ry},

where A, (A,,) = {2f : f € Ao(A,,) with f(0) = 1}. A function f in Ry(A,,) is called a
prestarlike function of order ¥ in A, , (see [13]).

Definition 1 ([14]). Let ¥ < 1and A = C\[1, 00). A function f € A;(A) is named universally
prestarlike of order ¥ in A if and only if f is prestarlike of order « in all sets w, , with
|7 + p| < 1. Denote the set of all universally prestarlike functions in A by RY.



SECOND HANKEL DETERMINANT 55

Definition 2 ([11]). Let S*(y) denote the class of analytic functions f in the unit disc U
normalized by f(0) = f'(0) — 1 = 0 and satisfying the condition that

2f'(2)
f(2)

where the branch of the square root is chosen to be ¢(0) = 1.

<z4+V1i+22=1p(2), z€, (1)

It may be noted from (1) in Definition 2 that the set ¢(U) lies in the right half-plane and
it is not a starlike domain with respect to the origin, see Fig. 1 (below).

c 1 e Re

e:\/§+1

Fig. 1. The boundary of the set p(U).

Recently, Raina and Soké[11] have studied and obtained some coefficient inequalities for
the class S*(¢) and these results are further improved by Sokétand Thomas [20], for the class
C(¢) in view of the Alexander result between the class f € C(¢) < 2f'(z) € S*(yp), further
the Fekete-Szegs inequality for functions in §*(yp) were also obtained.

For ¥ <1 and a function f € A;(A), we let R%(¢) be the generalized class of universally
prestarlike functions satisfying the condition

D3—219f
DTW<Z+V1+22:¢(Z)’

where < denotes the subordination and ¢ is an analytic function given by (1).
Recall that the Hankel determinants H,(t) (t = 1,2,3,...;q = 1,2,..) of the functions
f(z) =>27, az’, a; =1 are defined by

Qt Qgy1 -- . Qigg—1
ai+1 Qg2 - Qt+q
Hq(t) - . . .
At+q—1  Qitq -+ Q422
. a; as o as
In particular, Hy(1) = = ajaz — a3 and Hy(2) = = agay — ai. For more
o A3 a3 ag

details on the Hankel determinants, one may refer to the papers [5, 6, 7, 8, 10, 19].
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Though there has been an increasing interest to study the functional Hy(1) (that is
ajaz — a3) for certain classes of universally prestarlike functions (see [16, 17, 18]) and in
particular,the Fekete and Szegs estimates of |az — pa3| (see [3]), the study of the functional
Hy(2) (that is, agas —a3) for universally prestarlike functions is in few papers [1] and not yet
known for the functions related to certain conic domains. The main purpose of this paper is
to obtain the upper bounds of the Hankel determinant |asas —a3| for the functions f € RY (i)
related with shell-shaped regions.

2. Preliminary results. To prove our main results, we state the following lemmas.

Lemma 1 ([2], p. 41). Let P be the class of all analytic functions p of the form
2)=1+> p (2)
t=1

satisfying Re (p(z)) > 0 (z € U) and p(0) = 1. Then |p;| <2 (t =1,2,3,...). This inequality
is sharp for each t. In particular, the equality holds for all t and for the function

1+ 2
p(z) = 1_Z—1+222

Lemma 2 ([9]). If p1(2) = 1+ ¢12 + c22* + - -+ is a function with positive real part in U,
then

C? |Cl\2
e | <2 forall t>1 and ‘62_5‘§2_T.

The class of all such functions with positive real part is denoted by P.

Lemma 3 (|9]). If p1(z) = 1 + 12 + a2 + -+ - is a function with positive real part in U,
and v is a complex number, then

lcg — vet] < 2max(1, |20 — 1|).
The result is sharp for the functions

1+ 22 ) 1+z
D Z) = .
1— 227 p 1—2

Lemma 4 (|7]). If the function p € P is given by (2), then

p(z) =

2py = pi + (4 — p),
Aps = pi + 2(4 — ppre — pr(4 — p})a® + 2(4 — p]) (1 — |2[*)z,
for some x, z with |z| < 1,|z| <1 and p; € [0, 2].

Lemma 5 ([4]). The power series for a function p given in (2) converges in U to a function
in P if and only if the Toeplitz determinants

2 p1 P2 N &
_ 2 _
Dt:p.l . p.l . pt.la t:172737"'

Dt DP—t41 P—ty2 - 2
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and p_j = pg, are all non-negative. They are strictly positive except for
m
p(z) = Zpkpo(ew’“z), pr > 0, 75, real
k=1

and 7, # 7; for k # j; in this case D; > 0 fort <m —1 and D; =0 for t > m.

This necessary and sufficient condition is due to Carathéodory and Toeplitz and can be
found in [4].

3. The coefficient bounds for f € R%(y). In this section, we obtain the coefficient bounds
for f € RY(¢). Let

where aj, = fol *du(7), and pu(7) is a probability measure on [0, 1].

Theorem 1. Let f € RYy(p) be given by f(z) = Y oamz', (ap = 0 and a; = 1) and
suppose ¢ is defined by (1). Then,
5
20— —| ¢.
'3

219—2—1—(3—219)@‘}.

1 1
‘GQI S 5, ]a;;] S mmax{l,

Further,

1
|az — ga3| < mmax {1,

Proof. Since f € RY(p), there exists a Schwarz function w, analytic in U with w(0) = 0
and |w(z)| < 1 in U such that

D3—219f(2> B s
D) = ) (3)

Define the function ) by

1+ w(z)

= —— <~ =1+pz+p2+ps2’ 4
1 —w(2)

U(2)

Since w is the Schwarz function, we see that Re(y(z)) > 0 and ¢(0) = 1, and therefore
1 € P. It follows that

w(z)z%zﬂplw (pz—p;) 2+ <p3—p1p2+%?> Z3+-~}- (4)

In view of the equations (4), we have

_ (¥ -1y U(z) —1\2  Y(2) -1
pl(2) = ¢ (¢(z)+1) - \/1+ (w(z) +1) CES S

2
b1 b2 D1\ o pP3 DPiP2)\ 3
_ 4 (___) (__—) .....
+2z—|— 5 3 Z°+ 5 4 20+ (5)
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Now by (5),

97 T 9 T g BT 9T T

> 3-29 0 .
14y bt = 2T 22 GO D
D220 f(2) 24300, Ci(0, t)azt

where

[They(k + 1 — 20)

Ci(0,t) = k=222 =7 1

Co(V,t) =

Equating the coefficients of z, 22 and 2% in (7), we obtain

b1 == [Cg(ﬁ, 2) — 61(19, 2)]@2,
by = [Co(V,3) — C1(¥,3)]az + [C1 (¥, 2)az]? — [C1 (0, 2)Ca (1), 2)]as?,

and

b3 = [62(19, 4) — Cl (79, 4)]a4—|—
F[2C1(9,2)C1 (9, 3) — Ca (9, 3)C1 (9, 2) — Cao(¥, 2)C1 (¥, 3)] asas+
+CQ (19, 2) [61(197 2)&2]26L2 — [Cl (’19, 2)@2]3.

Simplifying (8), (9) and (10) we have

by + (2 — 20)b,*
(3-20)

as = by, az =

and

2b3 N 3(2—20)biby, (2 20)%°
(B-20)4—20)  (3—20)(4—20) (3—20)(d—29)
Using the equalities (6) in (11), it follows that

ay =

pi 1 1 pi*\ | P 2
== — 4+ (2—-20
275 BT (3—219){ <p2 2)+8+( )4 !
by taking absolute values and applying Lemma 1, we get
1 1 1 p’ P12 P’
<= = =)+ r 22| =
’a2’—27 as 3—20) [2<p2 2)+ 3 +( )4

w2y ()]

1 p12 3
——(20—-=|]|.
nty (0=3)
By applying Lemma 2 we get

2(3 — 20)
1
< - _Z
las| < 3= 20) max{l, ‘219 2‘}

|a3’ =

(10)

(11)

(12)

(14)
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Now for ¢ € C' and using (13) and (14), we have

1 p1? 3 Vi
S S O YR |
2(3 — 20) [pQ 2 ( 2)} 4
1 P1

:m[pr;(w—;+(3—w)g)] :ﬁ}pz—um? :

1 3
where v = 3 <219 ~3 + (83— 219)@). Thus, by applying Lemma 3 we get

2
as — QCL2 -

1 5
_ 2  — /19_ — i
‘ag QGQ’ (3 9 ) maX{l,‘Q 5 +<3 2'19)@‘}

1
In particular, we put ¢ = 1 and get a3 — a3| < (3—29) -

4. The Hankel inequality for f € R}(¢). In this section, we obtain the upper bounds of
the Hankel determinant |agay — a3| for f € RY(p).

Theorem 2. Let f € RY(p) be given by f(z) = >y atz", (ap = 0 and a; = 1) and suppose
¢ is defined by (1). Then |asa, — a3| < G(0) = (3—+W"

Proof. Since f € Ry(p), there exists a Schwarz function w, analytic in U with w(0) = 0
and |@(z)| < 1 in U such that

D3—219f(z) B
DQTM = p(w(2)).

Using the equalities (6) in (11) and (12), it follows that

2

D1 1 1 p12 p12 D1
= - - |z _ 2 L 2 _ 29)
a2 5 as 3—20) [2(192 2>+8+( >4 ;

|
M 8B 20)4—20)

[8p3 +4(2 = 39)pips + (1 — 9)(1 — 419)]913] .

Thus, we establish that the estimate of the second Hankel determinant is given by

1 -1
asay — a3 = W [7 {12192 — 239 + 12} p1* — 89(1 — I)p,*pa—
—8(2 — V)p® +8(3 — 219)]91193] , (15)

where H(9) = 16(3 — 29)(4 — 209). Using Lemma 4 in (15), we have

1 -1
|a2a4 — CL?;" = W ’7 [4192 — 1119 + 8] p14 + (2 - 219)2(4 - plz)p12$_

—{(@2-20)p; +4(4 - 20)} (4 — p1*)2® +4(3 = 20)(4 — p:*)pr (1 — |z]*)z | . (16)
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Letting |p;| = £ and in view of Lemma 1, we may assume without restriction that £ € [0, 2].
Thus, applying the triangle inequality in (16) with § = |z| < 1 and |z| < 1, we obtain

1 [1
lasay — a3| < o) {5 497 — 110 + 8] €' + (2 — 29)*(4 — €)%+

F{(2— 20)€% + 4(4 — 20)} (4 — €2)8% + 4(3 — 20)E(4 — €2)(1 — 8?) } -
— ﬁ B 497 — 119 + 8| ¢ + (2 — 20)*(4 — £)&%6+
F{(2 = 20)€2 — 4(3 — 20)€ + 4(4 — 20)}(4 — €2)5% + 4(3 — 20)E(4 — £2) } — F(£,9).

Note that for (£,9) € [0,2) x [0, 1], differentiating F (¢, ), partially with respect to § yields

oF 1 9 2\ 2 2 2
= - 207 - @) + 22— 2006 — 43 - 20)¢ + 82— 9)}4 - €8], (1)

It is obvious that the coefficient term of § in (17) is always a positive real number for all
(&,6) € [0,2) x [0,1]. Hence it follows that the expression (17) is always positive for § > 0
and ¥ < 1, which implies that F(§,0) is an increasing function of ¢. Therefore, there exists
no point of maximum in the interior of the closed region [0,2) x [0, 1]. Moreover, for fixed
¢ €[0,2), we have max F(&,0) = F(&, 1) = G(£). On simplification, we find that

1 1

FE1) =6 = 7 |2 407 — 110 4 8] £ + (2 — 29)*(4 — )&+
+{(2 - 20)€ — 43 - 20)¢ + 4(4 - 20)}(4 - €) + 43 - W)E(4 - &) |,
g€ = ﬁ [{2 407 — 110 4 8| — 4(2 — 20)(1 — 20)}&° + 16{29” — 49 + 1}5} . (18)

If G'(€§) = 0 then the root is £ = 0. Also, we have

1

[{6 492 — 110 + 8| — 4(2 — 20)(1 — 20) }€? + 16{20% — 40 + 1}]

is negative for £ = 0, which means that the function G(§) can take the maximum value at

1
¢ =0, also which is |ayay — a3| < G(0) = m -

Remark 1. We note that by taking ¥ = 1/2 in Theorem 2 we obtain the corresponding
result |agay — a3| < i.
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