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The paper deals with the following question: when is the classical ring of quotients of a duo
ring exist and idempotents in the classical ring of quotients QCl(R) there are idempotents in R?
We introduce the concepts of a ring of (von Neumann) regular range 1, a ring of semihereditary
range 1, a ring of regular range 1. We find relationships between the introduced classes of rings
and known ones for abelian and duo rings. We proved that semihereditary local duo ring is a
ring of semihereditary range 1. Also it was proved that a regular local Bezout duo ring is a
ring of stable range 2. In particular , the following Theorem 1 is proved: For an abelian ring
R the following conditions are equivalent: 1. R is a ring of stable range 1; 2. R is a ring of von
Neumann regular range 1.

The paper also introduces the concept of Gelfand element and a ring of Gelfand range 1 for
the case of a duo ring. We proved that Hermite duo ring of Gelfand range 1 is an elementary
divisor ring (Theorem 3).

Definition of stable range came to the ring theory from the K-theory and was very useful
for solving some open problems and tasks. This definition was introduced by Bass [3].
Through last few decades a lot of authors, e.g. Ara [1], Chen [4], Goodearl [8], Lam
[16], McGovern [13], Menal [15], Zabavsky [19] and many others, have been studying
the influence of stable range on the properties of rings and their behavior in the solutions
of different ring-theoretical problems. Moreover, there was noticed that rings with some
properties have constraints on the stable range, and the nature of these properties can
vary. From here, we can conclude that there are very close relationships between the stable
range and other properties of rings. Now, the stable range is very popular and widely used
in problems of diagonal reduction of matrices (e.g., McGovern [14], Zabavsky [19], and
Zabavsky [20]). There are suggested some generalizations of this concept, among which is a
notion of stable range. The similar problems were considered by Zabavsky in [21].

Throughout this article, all rings are assumed to be associative with unit and 1 ̸= 0. The
set of nonzero divisors (also called regular elements) of R is denoted by R(R), the set of
units by U(R), and the set of idempotents by B(R). The Jacobson radical of the ring R is
denoted by J(R). The classical ring of quotients of the ring R is denoted by QCl(R).

A ring R is said to be a duo ring if every right or left one-sided ideal in R is two-sided.
Such rings were investigated by E. Feller [6] and G. Thierrin [17] Trivial examples of duo rings
are, of course, commutative rings and division rings. Nontrivial duo rings are not difficult
to come by (e.g., any noncommutative special primary ring is duo, since the only right or
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left ideals are powers of the unique maximal ideal). In fact some interesting examples of duo
rings have already occurred in the literature: M. Auslander and O. Goldman have shown in
[2, p. 13] that there exist noncommutative maximal orders which are both duo rings and
Noetherian domains. Further investigations of such rings have been carried out by G. Maury
in [12].

Recall that a ring R is said to be a right (left) Bezout ring if every finitely-generated right
(left) ideal is principle. The right and left Bezout ring is called a Bezout ring [10]. A ring
R is said to be an abelian ring if for every idempotent e = e2 ∈ R holds ae = ea for any
element a ∈ R. In other words, any idempotent e = e2 of ring R is central.

We should notice that the class of abelian rings contains the class of right (left) duo
rings. Indeed, let e = e2 ∈ R and a ∈ R. Due to the definition of duo rings, we have the
equality ea = a′e for some element a′ ∈ R. Then we have the equality ea = (a′e)e = eae.
For symmetry ae = eae. From here we obtaine that ea = ae.

Also, the example of an abelian ring is any reduced ring. In [9], Corollary 2.2, it was
shown that R is abelian if and only if eg = ge for all idempotents e and all units g of R.
A direct sum of division rings is an example of abelian regular ring, which is not a division
ring.

A row (a1; a2; . . . ; an) over a ring R is called unimodular if a1R + a2R · · · + anR = R.
If (a1; a2; . . . ; an) is a unimodular n-row over a ring R, then we say that (a1; a2; . . . ; an) is
reducible if there exists (n−1)-row (b1; b2; . . . ; bn−1) such that the (n−1)-row (a1+anb1; a2+
anb2; . . . ; an−1 + anbn−1) is unimodular. A ring R is said to have a stable range n if n is the
least positive integer such that every unimodular (n+ 1)-row is reducible.

A ring R is said to be a ring of an idempotent stable range 1 if for any a, b ∈ R such
that Ra + Rb = R, there exists an idempotent e ∈ R such that a + eb is a unit of R. An
obvious example of a ring of idempotent regular range 1 is a ring of idempotent stable range
1, i.e a commutative clean ring. An element a is called an element of stable range 1 if for
any element b ∈ R such that aR + bR = R, there exists t ∈ R such that (a + bt)R = R.
An element a of a ring R is called an element of almost stable range 1 if the quotient-ring
R/aR is a ring of stable range 1. A duo ring in which every nonzero element is an element
of almost stable range 1 is called a ring of almost stable range 1. An element a of a ring R
is (von Neumann) regular element, if axa = a for some element x ∈ R.

Similar to article [21], we give the following definitions.
A ring R is said to have a von Neumann regular range 1 if for any a, b ∈ R such that

aR+ bR = R, there exists y ∈ R such that a+ by is a (von Neumann) regular element of R.
The obvious example of a ring of von Neumann regular range 1 is a ring of stable range 1.
An element a of a ring R is called a left (right) semihereditary element if Ra(aR) is

projective.
A ring R is said to have a semihereditary range 1 if for any a, b ∈ R such that aR+bR = R,

there exists y ∈ R such that a+ by is a semihereditary right element of R.

Obviously, an example of a ring of semihereditary range 1 is a ring of stable range 1 and
a commutative semihereditary ring. A special place in the class of rings of semihereditary
range 1 is taken by semihereditary local rings.

A duo ring R is called a semihereditary (regular) local ring if for any a, b ∈ R such that
aR + bR = R, element a or element b is a semihereditary (regular) element of R.

A ring R is said to have regular range 1 if for any a, b ∈ R such that aR+ bR = R, there
exists y ∈ R such that a+ by is a regular element of R.
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Moreover, let us introduce some propositions about relationships between duo rings and
other types of rings.

Due to Cohn [5], a ring R is called reversible if ab = 0 implies ba = 0 for a, b ∈ R.
Reduced rings are clearly reversible.

Proposition 1. Let R be a reversible Bezout duo ring. If φ ∈ B(R)(QCl(R)) then φ ∈ B(R).

Proof. By Tuganbayev [18] the classical quotient ring exists. Let φ ∈ B(R)(QCl(R)) and
φ = es−1, where s is a regular element of R. Let eR + sR = δR, then e = e0δ, s = s0δ, and
eu + sv = δ for some elements e0, s0, u, v ∈ R. Since s is a regular element, δ is a regular
element as a divisor of s. Since eu+ sv = δ, then δ(e0u+ s0v− 1) = 0. Since δ ̸= 0 and δ is a
regular element of R, we have e0u+ s0v − 1 = 0. Then es−1 = e0s

−1
0 , where e0R+ s0R = R.

Since e0s
−1
0 ∈ B(QCl(R)), we have e0s

−1
0 e0 = e0 and (e0s

−1
0 − 1)e0 = 0. Since R is reversible,

QCl(R) is reversible by Theorem 2.6 from [11]. Now we obtain e0(e0s
−1
0 − 1) = 0. Therefore,

e20s
−1
0 = e0 and e20 = e0s0
Since e0u + s0v = 1, we have e20u + e0s0v = e0 and s0(e0u + s0v) = e0. Note that all

idempotents in duo rings are central. Hence e0s
−1
0 ∈ R.

Proposition 2. Let R be a Bezout duo ring and a is a (von Neumann) regular element
of R. Then a = eu, where e ∈ B(R) and u ∈ U(R).

Proof. Let axa = a. This implies axax = ax, i.e. e = ax ∈ B(R) and e ∈ aR. Since axa = a,
we have ea = a, i.e. a ∈ eR, and aR = eR. Consider the element u = (1 − e) + a. Since
u(1− e) = 1− e, we have uR+ eR = R. We proved that eR = aR, then uR+ aR = R. Since
ue = ((1 − e) + a)e = ae = a, we deduce aR ⊂ uR. Obviously, the equality uR + aR = R
and inclusion aR ⊂ uR in a duo ring is possible if u ∈ U(R).

Then we have ue = a.

Proposition 3. Let R be a duo ring. Then a is a semihereditary element if and only if
a = er, where e ∈ B(R) and r ∈ Re(R).

Proof. Let φR = {x|xa = 0} and φ ∈ B(R). Since φa = 0, we have (1 − φ)a = a. Let
r = a − φ and rx = 0. Since ax = φx and (1 − φ)a = a, we obtain (1 − φ)ax = φx
and (1 − φ)φx = 0. Then φx = 0 and ax = 0. Since ax = 0, we have x ∈ φR, i.e.
x = xφ. Since xφ = 0, we get x = 0. Then we see that r is a regular element of R. In fact,
r(1 − φ) = a(1 − φ) − φ(1 − φ) = a(1 − φ) = a, i.e. a = r(1 − φ). Put 1 − φ = e, we have
a = re, where e ∈ B(R) and r ∈ Re(R). Obviously, {x|x(re) = 0} = (1− e)R.

Proposition 4. A semihereditary local duo ring is a ring of semihereditary range 1.

Proof. Let R be a semihereditary local duo ring and aR + bR = R. If a is a semihereditary
element, the representation a+ b0 is as required. If a is not semihereditary, by the condition
aR + (a+ b)R = R, the element a+ b1 is semihereditary.

Proposition 5. A regular local Bezout duo ring is a ring of stable range 2.

Proof. Let R be a regular local Bezout ring. Let a, b be nonzero elements of R. Since R is
a duo Bezout ring, we have aR + bR = dR. Then we have au + bv = d, a = da0, b = db0
for some elements a0, b0, u, v ∈ R. Since d(a0u+ b0v − 1) = 0, by the definition of a ring R,
we see that either a0u + b0v or a0u + b0v − 1 is a regular element of R. If a0u + b0v − 1
is a regular element, by d(a0u + b0v − 1) = 0 we have d = 0, i.e. a = b = 0 and this is
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impossible. Let a0u+ b0v = r be a regular element of R. Let a0R + b0R = δR. If δ /∈ U(R),
we have a0x + b0y = δ, a0 = δa1, b0 = δb1 for some elements a1, b1, x, y ∈ R. This implies
δ(a1u+ b1v) = a0u+ b0v = r. Since r ∈ Re(R), we deduce δ ∈ Re(R).

This implies δ(a1x + b1y − 1) = 0 and, since δ ̸= 0, we have a1x + b1y − 1 = 0, i.e.
a1R + b1R = R. Thus, we have a = dδa1, b = dδb1, a1R + b1R = R. By Kaplansky [10] , R
is an Hermite ring and by [15] we obtain that R is a ring of stable range 2.

And now we can state the type conditions for abelian rings.

Theorem 1. For an abelian ring R the following conditions are equivalent:
1. R is a ring of stable range 1;
2. R is a ring of von Neumann regular range 1.

Proof. (2) ⇒ (1).
Let aR + bR = R. Since R is a ring of von Neumann regular range 1, we have a + bx =

eu(e2 = e, u ∈ U(R)). Then ea + ebex = eu is invertible in eR. Also (1 − e)a = (1 − e)bx.
Thus, the condition aR+ bR = R implies that (1− e)b is invertible in (1− e)R. As a result,
(1− e)a+ (1− e)by is invertible in (1− e)R for some y ∈ (1− e)R.

If z = ex+ y, then a+ bz is invertible in R.
(1) ⇒ (2) Obvious.

Theorem 2. For an abelian ring R the following conditions are equivalent:
1. R is a ring of regular range 1;
2. R is a ring of semihereditary range 1.

Proof. Let aR+ bR = R. Since R has semihereditary range 1, we have a+ bx = er(e2 = e, r
is not a zero divisor). Then ea + ebex = er is not a zero divisor in eR. By analogy with
Theorem 1, (1− e)b is invertible in (1− e)R. As a result, (1− e)a+ (1− e)by is not a zero
divisor in (1− e)R for some y ∈ R.

If z = ex+ y, then a+ bz is not a zero divisor in R.

Recall that matrix A admits diagonal reduction if there exists unimodular matrices P,Q
such that PAQ = diag(d1, d2, ...), where Rdi∩diR ⊇ Rdi+1R. If every matrix over R admits
diagonal reduction, we call R an elementary divisor ring ([10]).

We call R a right Hermite ring if every 1 by 2 matrix admits diagonal reduction; R is
a left Hermite ring if 2 by 1 matrices admit diagonal reduction, and if both then R is an
Hermite ring. [10]

Obviously, an elementary divisor ring is Hermite and it is easy to see that an Hermite
ring is Bezout [10]. Examples that neither implication is revertible are provided by Gillmann
and Henriksen in [7]. In the case of commutative rings there are many developments on this
rings, while noncommutative rings are little investigated and fragmented. A general picture
is far from its full description.

It is an open problem: when a ring of stable range 1 is an elementary divisor ring?
Next we describe a new class of noncommutative elementary divisor rings.
An element a of a duo ring R is said to be a Gelfand element if for any elements b, s ∈ R

such that aR + bR + cR = R there exist such elements r, s ∈ R that a = rs, rR + bR = R
and rR + sR = R.

A duo ring R is said to be a ring of Gelfand range 1 if for any elements a, b ∈ R such
that aR + bR = R there exists such element t ∈ R that a+ bt is a Gelfand element of R.



96 A. A. DMYTRUK, A. I. GATALEVYCH, M. I. KUCHMA

Theorem 3. Let R be a Hermite duo ring of Gelfand range 1. Then R is an elementary
divisor ring.

Proof. Let A =

(
a 0
b c

)
and aR+ bR+ cR = R. For the proof of our statement, according

to [10], it is sufficient to show that matrix A admits diagonal reduction.
Let aR + cR = dR, i.e. au + cv = d for some elements u, v ∈ R. From the condition

aR + bR + cR = R, it follows that bR + dR = R. Since R is a ring of Gelfand range 1, we
obtain that b+ (au+ cv)t = k is a Gelfand element for some element t. Thus(

1 0
t′u′ 1

) (
a 0
b c

) (
1 0
vt 1

)
=

(
a 0
k c

)
where t′u′a = t′au = aut. Then, obviously, aR + kR + cR = R and r is a Gelfand element.

Then k = rs, where rR + aR = R and sR + cR = R. Let p ∈ R be a such element
that sp + cl = 1 for some element l ∈ R. Hence rsp + rcl = r and kp + cr′l = r for some
element r′ ∈ R. Denoting r′l = q, we obtain (kp+ cq)R + aR = R. Suppose pR + qR = δR,
i.e. p = p1δ, q = q1δ and δ = px + qy, p1R + q1R = R for some elements x, y, p1, q1 ∈ R.
Then from pR ⊂ p1R and pR + cR = R ⇒ p1R + cR = R, and from p1R + q1R = R ⇒
p1R + (p1k + q1c)R = R.

Since pk+ qc = δ(p1k+ q1c) and (pk+ qc)R+aR = R, we obtain (p1d+ q1c)R+aR = R.
As well as p1R + (p1d + q1c)R = R, finally we have p1aR + (p1k + q1c)R = R. By using

the ideas from [22] for duo rings, the matrix
(
a 0
k c

)
admits diagonal reduction. Hence,

obviously, the matrix
(
a 0
b c

)
admits diagonal reduction.

The theorem is proved.

Corollary 1 ([23], Th. 21). Let R be a commutative Bezout ring of stable range 2 and of
Gelfand range 1. Then R is an elementary divisor ring.

Proof. A commutative Bezout ring of stable range 2 is a Hermite ring [19]. This completes
the proof.
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