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In the present work, we study problem related to the approximation of continuous 2π-
periodic functions by linear means of their Fourier series. The simplest example of a linear
approximation of a periodic function is the approximation of this function by partial sums of
the Fourier series. However, as well known, the sequence of partial Fourier sums is not uniformly
convergent over the class of continuous 2π-periodic functions. Therefore, a significant number
of papers is devoted to the research of the approximative properties of different approximation
methods, which are generated by some transformations of the partial sums of the Fourier series.
The methods allow us to construct a sequence of trigonometrical polynomials that would be
uniformly convergent for all functions f ∈ C. Particularly, Cesàro means and Féjer sums have
been widely studied in past decades. One of the important problems in this field is the study of
the exact constant in an inequality for upper bounds of linear means deviations of the Fourier
sums on fixed classes of periodic functions. Methods of investigation of integral representations
for trigonometric polynomial deviations are generated by linear methods of summation of the
Fourier series. They were developed in papers of Nikolsky, Stechkin, Nagy and others.

The paper presents known results related to the approximation of classes of continuous
functions by linear means of the Fourier sums and new facts obtained for some particular
cases. In the paper, it is studied the approximation by the Cesàro means of Fourier sums in
Lipschitz class. In certain cases, the exact inequalities are found for upper bounds of deviations
in the uniform metric of the second order rectangular Cesàro means on the Lipschitz class of
periodic functions in two variables.

1. Introduction. Let Hα,β be the class of functions f(x; y) continuous on R2, 2π-periodic
in each variable, and satisfying the condition

|f(x; y)− f(x1; y1)| ≤ |x− x1|α + |y − y1|β, (x; y), (x1; y1) ∈ T 2,

where T 2 = [−π; π]2, and 0 < α, β ≤ 1 are absolute constants.
Let γ, δ ∈ N. The rectangular Cesàro means σγ,δ

m,n of order (γ, δ) and power (m,n) for
function f ∈ C are defined by relationship [8], [19, p. 130]

σγ,δ
m,n[f ](x; y) =

1

π2

∫∫
T 2

f(x+ t; y + s)Kγ
m(t)K

δ
n(s) dt ds,
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where

Kγ
i (t) =

1

2
+

i∑
k=1

(
1− k

i+ 1

)
. . .

(
1− k

i+ γ

)
cos kt.

If γ, δ = 1, then the rectangular Cesàro means σγ,δ
m,n[f ] are the rectangular Fejér sums

σm,n[f ] of the function f

σm,n[f ](x; y) =
1

(m+ 1)(n+ 1)

m∑
k=0

n∑
j=0

Sm,n[f ](x; y),

where
Sm,n[f ](x; y) =

1

π2

∫∫
T 2

f(x+ t; y + s)Dm(t)Dn(s) dt ds

is a rectangular partial sum of power (m,n) of the Fourier series for the function f , Di(t) is
the Dirichlet kernel of power i.

In the one-dimensional case, the Cesàro means and their special cases (Fejér sums) have
been extensively studied for past decades by many prominent experts in the theory of functi-
ons. In 1946, Nikolsky [12, 13] established the asymptotic equality

sup
f∈H1

∥f − σn[f ]∥C =
2

π

lnn

n
+O

(
1

n

)
, n → ∞.

Asymptotic equalities for upper bounds of the Cesàro means deviations σδ
n of any order

δ > 0 on the classes H1 was obtained by Ryźankova [14]

sup
f∈H1

∥f − σδ
n[f ]∥C =

2δ

π

lnn

n
+O

(
1

n

)
, n → ∞.

For δ ∈ N, this equality was obtained by Nagy in [9, 10]. In the present paper, we want to
find sharp estimates for upper bounds of linear methods deviations on a fixed class.

Let Un[f ], n = 1, 2, . . . be a sequence of linear polynomial operators defined on the set C
and ω(f ;µ) be a modulus of continuity of function f ∈ C for a given real number µ > 0.
The problem of finding the quantity

sup
f∈C

f ̸=const

∥f(x)− Un[f ]∥C
ω(f ;µn)

,

that defines the exact constant in the inequality

∥f(x)− Un[f ]∥C ≤ Aω(f ;µn)

is one of the important problems in the theory of approximation. Problems of this type for
different linear operators were considered by Wang Xing-hua [18], Stechkin [17], Schurer and
Steutel [15, 16], and others [1, 2, 4, 6, 7]. In more general case for the matrix summation
methods this problem was solved by Falaleev in [3].

In the multidimensional case, the search of the sharp constant becomes problematic. On a
class of continuous functions in two variables sharp constant were obtained in [1] for Jackson
polynomials:

sup
(m,n)∈N2

sup
f∈C

∥f −Dm,n[f ]∥C
max {ω1(f ;

2π
m
);ω2(f ;

2π
n
)}

=
8

3
− 45

√
3

38π
,
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where

ω1(f ; δ) = sup
y

sup
|x−x1|≤δ

|f(x; y)− f(x1; y)|, ω2(f ; γ) = sup
x

sup
|y−y1|≤γ

|f(x; y)− f(x; y1)|

are partial modules of continuity for the function f ∈ C.
The aim of the present paper is to present sharp constants in the estimation of the

approximation of classes H1,1 by the second order rectangular Cesàro means.

2. Result. Our main result is contained in the following theorem.

Theorem. Let f ∈ H1,1, and n, m ∈ N. Then the inequality

∥f − σ2,2
m,n[f ]∥C ≤ 6π2 − 16

3π ln 2
max

{
ln(m+ 1)

m+ 1
;
ln(n+ 1)

n+ 1

}
(1)

is true. The constant 6π2−16
3π ln 2

is sharp.

Proof. First, we prove an auxiliary statement.

Lemma. Let (m,n) ∈ N2. Then

sup
f∈H1,1

∥f − σ2,2
m,n[f ]∥C =

1

π

π∫
−π

|s|K2
n(s) ds+

1

π

π∫
−π

|t|K2
m(t) dt. (2)

Proof. The lemma can be proved by the procedure proposed in [12]. Since f ∈ H1,1 and
K2

i (t) ≥ 0, i = 0, 1, . . . [3], we have

|f(x; y)− σ2,2
m,n[f ](x; y)| ≤

1

π2

∫∫
T 2

|f(x; y)− f(x+ t; y + s)|K2
m(t)K

2
n(s) dt ds ≤

≤ 1

π2

∫∫
T 2

(|t|+ |s|)K2
m(t)K

2
n(s) dt ds =

1

π

π∫
−π

|s|K2
n(s) ds+

1

π

π∫
−π

|t|K2
m(t) dt.

Denote by f ∗ 2π-periodic in each variable extension on R2 of function |x| + |y|. We get
f ∗ ∈ H1,1, and

|f ∗(0; 0)− σ2,2
m,n[f

∗](0; 0)| = 1

π2

∫∫
T 2

(|t|+ |s|)K2
m(t)K

2
n(s) dt ds.

Hence,

sup
f∈H1,1

∥f − σ2,2
m,n[f ]∥C =

1

π2

∫∫
T 2

(|t|+ |s|)K2
m(t)K

2
n(s) dt ds.

Using the last relation, we obtain the lemma statement.

Further, we denote

Ω(j) :=
1

π

π∫
−π

|t|K2
j (t) dt.
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We have

Ω(j) =
1

π(j + 1)(j + 2)

π∫
0

t

[
(j + 1)(j + 2) + 2

j∑
k=1

(j − k + 1)(j − k + 2) cos kt

]
dt =

=
1

π(j + 1)(j + 2)

[
(j + 1)(j + 2)

π2

2
+ 2

j∑
k=1

(j − k + 1)(j − k + 2)

π∫
0

t cos kt

]
dt =

=
1

π(j + 1)(j + 2)

[
(j + 1)(j + 2)

π2

2
+ 2

j∑
k=1

(j − k + 1)(j − k + 2)
(−1)k − 1

k2

]
.

Taking into account

j∑
k=1

(j − k + 1)(j − k + 2)
(−1)k − 1

k2
=

= −2

[ j+1
2

]−1∑
k=0

[
(j + 1)(j + 2)− 2(j + 1)(2k + 1) + 2k(2k + 1)

]
1

(2k + 1)2
,

we get

Ω(j) =
4

π(j + 1)(j + 2)

[
(j+1)(j+2)

π2

8
−

[ j+1
2

]−1∑
k=0

(
(j + 1)(j + 2)

(2k + 1)2
−2j + 3− (2k + 1)

(2k + 1)

)]
. (3)

By the well-known formula [5, p. 21]

∞∑
k=0

1

(2k + 1)2
=

π2

8
,

we can write

Ω(j) =
4

π(j + 1)(j + 2)

[
(j+1)(j+2)

∞∑
k=[ j+1

2
]

1

(2k + 1)2
+(2j+3)

[ j+1
2

]−1∑
k=0

1

2k + 1
−[

j + 1

2
]

]
. (4)

Denote
λ(j) :=

(j + 1)

ln(j + 1)
Ω(j). (5)

Combining (4) and (5), we obtain

λ(j) =
4

π(j + 2) ln(j + 1)

[
(j + 1)(j + 2)

∞∑
k=[ j+1

2
]

1

(2k + 1)2
+ (2j + 3)

[ j+1
2

]−1∑
k=0

1

2k + 1
− [

j + 1

2
]

]
.

(6)
To estimate the first sums in (6), we use the following relationship

1

(2k + 1)2
<

1

2k
− 1

2k + 1
.
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Hence,
∞∑

k=[ j+1
2

]

1

(2k + 1)2
<

∞∑
k=[ j+1

2
]

(
1

2k
− 1

2k + 1

)
=

1

2

1

[ j+1
2
]
<

1

j − 1
, j = 2, 3, . . . .

Taking into account [11, p. 208], we have

[ j+1
2

]−1∑
k=0

1

2k + 1
< 1 +

1

2
ln j, j = 2, 3, . . . .

Therefore,

λ(j) <
2

π

(
2 +

1

(j − 1) ln(j + 1)
+

4j + 5

(j + 2) ln(j + 1)
− 1

j + 2

)
, j = 2, 3, . . . . (7)

Let us consider the function

γ(x) :=
2

π

(
2 +

1

(x− 1) ln(x+ 1)
+

4x+ 5

(x+ 2) ln(x+ 1)
− 1

x+ 2

)
, x ≥ 2.

The function γ(x) is decomposed as follows

γ(x) = φ(1)(x) + φ(2)(x),

where

φ(1)(x) :=
4

π
+

2

π(x− 1) ln(x+ 1)
, φ(2)(x) :=

2

π(x+ 2)

(
4x+ 5

ln(x+ 1)
− 1

)
.

Denote y(x) = 4x+5
ln(x+1)

− 1. We obtain

φ′(x) =
2

π

(
y(x)

x+ 2

)′

=
2

π

y′(x)(x+ 2)− y(x)

(x+ 2)2
.

By the standard calculations we have y′(x)(x + 2) − y(x) < 0 as x ≥ 2. Applying these
facts, we conclude that γ(x) is a monotone decreasing function.

In view of (7), we get

λ(j) <
18

5π
+

3.9

π ln 2
, j ≥ 3.

Using the relations (3), (5), one has

λ(1) > λ(2) >
18

5π
+

3.9

π ln 2
.

Hence,

sup
j∈N

λ(j) = λ(1) =
3π2 − 8

3π ln 2
. (8)

The rate of uniformly approximation of functions from the class H1,1 by the Cesàro means
σ2,2
m,n[f ] is determined by inequality [8]

∥f − σ2,2
m,n[f ]∥C ≤ A max

m,n∈N

{
ln(m+ 1)

m+ 1
;
ln(n+ 1)

n+ 1

}
.
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In this inequality the constant

A∗ = sup
n,m∈N

sup
f∈H1,1

∥f − σ2,2
m,n(f)∥C

max{ ln(m+1)
m+1

; ln(n+1)
n+1

}
(9)

is the best constant in the class H1,1.
Taking into account (2), (5), and (8), we have

A∗ = sup
n,m∈N

Ω(m) + Ω(n)

max{ ln(m+1)
m+1

; ln(n+1)
n+1

}
=

= sup
n,m∈N

[
Ω(m)

max{ ln(m+1)
m+1

; ln(n+1)
n+1

}
+

Ω(n)

max{ ln(m+1)
m+1

; ln(n+1)
n+1

}

]
≤

≤ sup
n,m∈N

[
Ω(m)
ln(m+1)
m+1

+
Ω(n)
ln(n+1)
n+1

]
= sup

m∈N

(m+ 1)Ω(m)

ln(m+ 1)
+ sup

n∈N

(n+ 1)Ω(n)

ln(n+ 1)
= 2λ(1). (10)

Contrariwise, using (2) we find

sup
f∈H1,1

∥f − σ2,2
1,1[f ]∥C

max{ ln 2
2
; ln 2

2
}

=
Ω(1) + Ω(1)

ln 2
2

= 2λ(1). (11)

Combining (9)–(11), we have A∗ = 2λ(1). The proof is completed.
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