ON THE GROWTH OF SERIES IN SYSTEMS OF FUNCTIONS AND LAPLACE-STIELTJES TYPE INTEGRALS

For a regularly convergent in \mathbb{C} series $A(z) = \sum_{n=1}^{\infty} a_n f(\lambda_n z)$ in the system $f(\lambda_n z)$, where $f(z) = \sum_{k=0}^{\infty} f_k z^k$ is an entire transcendental function and (λ_n) is a sequence of positive numbers increasing to $+\infty$, it is investigated the relationship between the growth of functions A and f in terms of a generalized order. It is proved that if $a_n \geq 0$ for all $n \geq n_0$,

$$\ln \lambda_n = o(\beta^{-1}(\alpha(\frac{1}{m_{\lambda_n} \ln \frac{1}{a_n}})))$$

for each $c \in (0, +\infty)$ and $\ln n = O(\Gamma_f(\lambda_n))$ as $n \to \infty$ then

$$\lim_{r \to +\infty} \frac{\alpha(\ln M_f(r))}{\beta(\ln r)} = \lim_{r \to +\infty} \frac{\alpha(\ln M_f(r))}{\beta(\ln r)},$$

where $M_f(r) = \max\{|f(z)|: |z| = r\}$. $\Gamma_f(r) := \frac{dM_f(r)}{\ln x}$ and positive continuous on $(x_0, +\infty)$ functions α and β are such that $\beta((1 + o(1))x) = (1 + o(1))\beta(x)$, $\alpha(x) = (1 + o(1))\alpha(x)$ and $\frac{d\beta^{-1}(\alpha(x))}{d\ln x} = O(1)$ as $x \to +\infty$ for each $c \in (0, +\infty)$. A similar result is obtained for the Laplace-Stieltjes type integral $I(r) = \int_0^{\infty} a(x)f(rx)dF(x)$.

1. Introduction. Let

$$f(z) = \sum_{k=0}^{\infty} f_k z^k$$

be an entire function, $M_f(r) = \max\{|f(z)|: |z| = r\}$ and (λ_n) be a sequence of positive numbers increasing to $+\infty$. Suppose that the series

$$A(z) = \sum_{n=1}^{\infty} a_n f(\lambda_n z)$$

in the system $f(\lambda_n z)$ regularly convergent in \mathbb{C}, i.e., $\sum_{n=1}^{\infty} |a_n|M_f(r\lambda_n) < +\infty$ for all $r \in [0, +\infty)$. Many authors have studied the representation of analytic functions by series in the system $f(\lambda_n z)$. We will specify here only on the monographs of A.F. Leont’ev [1] and B.V. Vinnitskyi [2], where references are to other works. Since series (2) regularly convergent in \mathbb{C}, the function A is entire. To study its growth, we will use generalized orders. For this purpose, as in [3] by L we denote the class of continuous non-negative on $(-\infty, +\infty)$ functions α such that $\alpha(x) = \alpha(x_0) \geq 0$ for $x \leq x_0$ and $\alpha(x) \uparrow +\infty$ as $x_0 \leq x \to +\infty$. We say that $\alpha \in L^0$, if $\alpha \in L$ and $\alpha((1 + o(1))x) = (1 + o(1))\alpha(x)$ as $x \to +\infty$. Finally, $\alpha \in L_{si}$, if $\alpha \in L$

2010 Mathematics Subject Classification: 30B50, 30D10, 30D20.

Keywords: entire function; regularly converging series; generalized order.

doi:10.30970/ms.55.2.124-131

© M. M. Sheremeta, 2021
Lemma 3.\(vative).\n
Lemma 3. \(\text{Lemma 3}\).

Lemma 1 ([1]). If \(a \in L_s, \beta \in L^0\) and \(\frac{d\beta^{-1}(\alpha(x))}{dx} = O(1)\) as \(x \to +\infty\) for each \(c \in (0, +\infty)\), i.e. \(\alpha\) is a slowly increasing function. Clearly, \(L_s \subseteq L^0\). For \(a \in L\) and \(\beta \in L\) quantity \(\varrho_{a, \beta}[f] = \lim_{r \to +\infty} \frac{\alpha(r)}{\beta[r]}\) is called generalized \((\alpha, \beta)\)-order of the entire function \(f\) ([3]). Note that functions of form (2) were also studied in [4].

Lemma 1 ([1]). If \(a \in L_s, \beta \in L^0\) and \(\frac{d\beta^{-1}(\alpha(x))}{dx} = O(1)\) as \(x \to +\infty\) for each \(c \in (0, +\infty)\) then

\[\varrho_{a, \beta}[f] = \lim_{k \to +\infty} \frac{\alpha(k)}{\beta(\frac{k}{\ln(1/k)})}.\]

(3)

Using Lemma 1 here we establish a relationship between the growth of the entire functions \(f\) and \(F\) in terms of generalized orders.

2. Main result. Suppose that \(a_n \geq 0\) for all \(n \geq 1\). Since

\[A(z) = \sum_{n=1}^{\infty} a_n \sum_{k=0}^{\infty} f_k(z\lambda_n)^k = \sum_{k=0}^{\infty} f_k \left(\sum_{n=1}^{\infty} a_n \lambda_n^k \right) z^k,\]

in view of Cauchy’s inequality we have

\[M_A(r) \geq |f_k| \left(\sum_{n=1}^{\infty} a_n \lambda_n^k \right) r^k \geq a_n |f_k| (\lambda_n r)^k\]

for all \(n \geq 1, k \geq 0\) and \(r \in [0, +\infty)\). Hence it follows that \(M_A(r) \geq |f_k| \mu_D(k)r^k\), where \(\mu_D(\sigma) = \max\{|a_n| \exp\{\sigma \ln \lambda_n\} : n \geq 1\}\) is the maximal term of entire Dirichlet series

\[D(\sigma) = \sum_{n=1}^{\infty} |a_n| \exp\{\sigma \ln \lambda_n\}.\]

(4)

Therefore, \(M_A(r) \geq \mu_G(r)\), where \(\mu_G(r) = \max\{|f_k| \mu_D(k)r^k : k \geq 0\}\) is the maximal term of the series

\[G(r) = \sum_{k=0}^{\infty} |f_k| \mu_D(k)r^k.\]

(5)

To obtain the estimate \(M_A(r)\) from above, in addition to Lemma 1, the following two well-known lemmas will be required.

Lemma 2. If a function \(f\) is transcendental then the function \(\ln M_f(r)\) is logarithmically convex and, thus,

\[\Gamma_f(r) := \frac{d \ln M_f(r)}{dr} \to +\infty, \quad r \to +\infty,\]

(in points where the derivative does not exist, under \(\frac{d \ln M_f(r)}{dr}\) we mean the right-hand derivative).

Lemma 3. If a function \(f\) is transcendental then

\[M_f(r) \leq \sum_{k=0}^{\infty} |f_k|(2r)^k 2^{-k} \leq 2\mu_f(2r).\]

Lemma 4 ([5]). If \(\beta \in L\) and \(B(\delta) = \lim_{x \to +\infty} \frac{\beta((1+\delta) x)}{\beta(x)}\), \(\delta > 0\), then in order that \(\beta \in L^0\), it is necessary and sufficient that \(B(\delta) \to 1\) as \(\delta \to +0\).
Since series (2) regularly convergent in \mathbb{C}, for every $r \in [0, +\infty)$ and $\tau > 0$ we have

$$M_A(r) \leq \sum_{n=1}^{\infty} |a_n| M_f(r \lambda_n) \leq \mu_A((1 + \tau)r) \sum_{n=1}^{\infty} \frac{M_f(r \lambda_n)}{M_f((1 + \tau)r \lambda_n)},$$

(6)

where $\mu_A(r) = \max\{|a_n| M_f(r \lambda_n): n \geq 1\}$.

Then by Lemma 2 for $r \geq 1$ we have

$$\ln M_f((1 + \tau)r \lambda_n) - \ln M_f(r \lambda_n) = \int_{r \lambda_n}^{(1 + \tau)r \lambda_n} \frac{d \ln M_f(x)}{d \ln x} d \ln x = \int_{r \lambda_n}^{(1 + \tau)r \lambda_n} \Gamma_f(x) d \ln x \geq \Gamma_f(r \lambda_n) \ln(1 + \tau) \geq \Gamma_f(\lambda_n) \ln(1 + \tau)$$

Therefore, if $\ln n \leq q \Gamma_f(\lambda_n)$ for all $n \geq n_0$ and $\ln(1 + \tau) > q$ then

$$\sum_{n=n_0}^{\infty} \frac{M_f(r \lambda_n)}{M_f((1 + \tau)r \lambda_n)} \leq \sum_{n=n_0}^{\infty} \exp\{-\Gamma_f(\lambda_n) \ln(1 + \tau)\} \leq \sum_{n=n_0}^{\infty} \exp\{-\frac{\ln(1 + \tau)}{q} \ln n\} < +\infty$$

and (6) for $r \geq 1$ implies

$$M_A(r) \leq T \mu_A((1 + \tau)r), \quad T = \text{const} > 0.$$ (7)

Also we have

$$\mu_A(r) \leq \max\{|a_n| \sum_{k=0}^{\infty} |f_k|(r \lambda_n)^k: n \geq 1\} \leq \sum_{k=0}^{\infty} \max\{|a_n| \lambda_n^k: n \geq 1\}|f_k|r^k =\sum_{k=0}^{\infty} \mu_D(k)|f_k|r^k \leq \mu_G(2r) \sum_{k=0}^{\infty} 2^{-k} = 2\mu_G(2r).$$ (8)

From (7) and (8) we get the estimate $M_A(r) \leq 2T \mu_G(2(1 + \tau)r)$ for $r \geq 1$ and, thus,

$$\ln \mu_G(r) \leq \ln M_A(r) \leq \ln \mu_G(2(1 + \tau)r) + \ln(2T), \quad r \geq 1.$$ (9)

Now we can prove such a theorem.

Theorem 1. Let f be an entire transcendental function, $a_n \geq 0$ for all $n \geq 1$ and series (2) regularly convergent in \mathbb{C}. Suppose that the functions α and β satisfy the conditions of Lemma 1, $\ln n = O(\Gamma_f(\lambda_n))$ as $n \to \infty$ and for each $c \in (0, +\infty)$

$$\ln \lambda_n = o\left(\beta^{-1}(c \alpha)\left(\frac{1}{\ln \lambda_n} \ln \frac{1}{a_n}\right)\right), \quad n \to \infty.$$ (10)

Then $\varrho_{\alpha, \beta}[A] = \varrho_{\alpha, \beta}[f]$.

Proof. Since $\mu_D(\sigma) \to +\infty$ as $\sigma \to +\infty$, we have $\mu_D(k) \geq 1$ for $k \geq k_0$. For simplicity, we assume that $k_0 = 0$. Then $\mu_G(r) = \max\{|f_k|\mu_D(k)r^k: k \geq 0\} \geq \max\{|f_k|r^k: k \geq 0\} = \mu_f(r)$, whence in view of (9) and Lemma 3 it follows that $\varrho_{\alpha, \beta}[f] \leq \varrho_{\alpha, \beta}[F]$.

On the other hand, in view of (9) \(g_{\alpha,\beta}[A] \leq g_{\alpha,\beta}[G] \). By Lemma 1

\[
\varrho_{\alpha,\beta}[G] = \lim_{k \to +\infty} \beta \left(\frac{\lambda}{\mu_{\nu_{D}^{(\alpha)(\beta)}}} \right) \leq \lim_{k \to +\infty} \beta \left(\frac{\lambda}{\mu_{\nu_{D}^{(\alpha)(\beta)}}} \right).
\]

If \(g_{\alpha,\beta}[f] < +\infty \) then by Lemma 1 for every \(\varrho > g_{\alpha,\beta}[f] \) and all \(k \geq k_{0}(\varrho) \) we have \(\alpha(k) \leq \varrho \beta(\frac{1}{k} \ln \frac{1}{\lambda_{k}}) \) and, thus,

\[
\frac{1}{k} \ln \frac{1}{\lambda_{k}} \geq \beta^{-1} \left(\frac{\alpha(k)}{\varrho} \right), \quad k \geq k_{0}(\varrho).
\]

Let \(\nu_{D}(\sigma) = \max \{ n : |a_{n}| \exp \{ \sigma \ln \lambda_{n} \} = \mu_{D}(\sigma) \} \) be the central index of series (4). Then ([6, p.17])

\[
\int_{\sigma_{0}}^{\sigma} \ln \nu_{D}(x)dx, \quad \sigma_{0} \leq \sigma.
\]

From condition (10) with \(c = 1/\varrho \) we get

\[
\ln a_{n} \leq - \ln \lambda_{n} \alpha^{-1} \left(\varrho \beta \left(\frac{\ln \lambda_{n}}{\epsilon} \right) \right)
\]

for each \(\epsilon > 0 \) and all \(n \geq n_{0}(\epsilon) \). Therefore, for all \(\sigma \geq \sigma_{0} = \sigma_{0}(\epsilon) \)

\[
\ln \mu_{D}(\sigma) = \ln a_{n} \nu_{D}(\sigma) + \sigma \ln \lambda_{n} \nu_{D}(\sigma) \leq - \ln \lambda_{n} \nu_{D}(\sigma) \alpha^{-1} \left(\varrho \beta \left(\frac{\ln \lambda_{n} \nu_{D}(\sigma)}{\epsilon} \right) \right) + \sigma \ln \lambda_{n} \nu_{D}(\sigma) = \ln \lambda_{n} \nu_{D}(\sigma) \left(\sigma - \alpha^{-1} \left(\varrho \beta \left(\frac{\ln \lambda_{n} \nu_{D}(\sigma)}{\epsilon} \right) \right) \right).
\]

Since \(\mu_{D}(\sigma) \to +\infty \) as \(\sigma \to +\infty \), hence it follows that \(\sigma - \alpha^{-1}(\varrho \beta(\ln \lambda_{n} \nu_{D}(\sigma)/\epsilon)) \geq 0 \), i.e. \(\ln \lambda_{n} \nu_{D}(\sigma) \leq \epsilon \beta^{-1}(\sigma/\varrho) \) for \(\sigma \geq \sigma_{0} \). Therefore, in view of (13)

\[
\ln \mu_{D}(\sigma) \leq \ln \mu_{D}(\sigma_{0}) + \epsilon \int_{\sigma_{0}}^{\sigma} \beta^{-1} \left(\frac{\alpha(x)}{\varrho} \right) dx \leq \ln \mu_{D}(\sigma_{0}) + \epsilon \beta^{-1} \left(\frac{\alpha(\sigma)}{\varrho} \right)
\]

and, thus,

\[
\frac{\ln \mu_{D}(k)}{k} \leq \epsilon + \epsilon \beta^{-1} \left(\frac{\alpha(k)}{\varrho} \right), \quad k \geq k_{0}(\epsilon).
\]

From (11), (12) and (14) we obtain

\[
\varrho_{\alpha,\beta}[G] \leq \lim_{k \to +\infty} \beta \left(\frac{\alpha(k)}{\varrho} \right) = \lim_{k \to +\infty} \beta \left(\frac{\alpha(k)}{\varrho} \right) = \frac{\alpha(k)}{\varrho} \leq \varrho B(\varepsilon),
\]

where by Lemma 4 \(B(\varepsilon) = \lim_{k \to +\infty} \frac{\beta(x)}{\varrho(1-\varepsilon)x} \to 1 \) as \(\varepsilon \to 0 \). Thus, \(\varrho_{\alpha,\beta}[G] \leq \varrho \) and since \(\varrho \) is arbitrary, we obtain the inequality \(\varrho_{\alpha,\beta}[G] \leq \varrho_{\alpha,\beta}[f] \) which is obvious when \(\varrho_{\alpha,\beta}[f] = +\infty \). Finally, (9) implies the inequality \(\varrho_{\alpha,\beta}[A] \leq \varrho_{\alpha,\beta}[G] \leq \varrho_{\alpha,\beta}[f] \). \(\square \)
The functions $\alpha(x) = \ln^+ x$ and $\beta(x) = x^+$ satisfy the conditions of Theorem 1. Therefore, Theorem 1 implies the following statement.

Corollary 1. Let an entire transcendental function f have the order $\rho[f] := \lim_{r \to +\infty} \frac{\ln \ln M_f(r)}{\ln r} = \rho \in (0, +\infty)$ and

$$0 < \underline{\sigma}_f := \lim_{r \to +\infty} \frac{\ln M_f(r)}{r^\rho} \leq \overline{\sigma}_f := \lim_{r \to +\infty} \frac{\ln M_f(r)}{r^\rho} < +\infty. \quad (15)$$

Suppose that $a_n \geq 0$ for all $n \geq 1$ and series (2) regularly convergent in C. If $\ln n = O(\lambda_n^\rho)$ and $\ln \lambda_n = o(\ln(\ln(1/a_n)))$ as $n \to \infty$ then $\rho[A] = \rho[f]$.

Indeed, it is clear that

$$\ln M_f(r) = \ln M_f(r_0) + \int_{r_0}^r \frac{\Gamma_f(t)}{t} \, dt, \quad 0 \leq r_0 \leq r < +\infty.$$

Therefore, if we put

$$\tau = \lim_{r \to +\infty} \frac{\Gamma_f(r)}{r^\rho}, \quad \overline{\tau} = \lim_{r \to +\infty} \frac{\Gamma_f(r)}{r^\rho},$$

then using results from [7] we get

$$\underline{\tau} \leq \rho \overline{\sigma} \leq \tau \left(1 + \ln \frac{\overline{\tau}}{\underline{\tau}}\right) \leq \overline{\tau} \leq e\rho \overline{\sigma}.$$

Hence in view of (15) it follows that $\overline{\tau} < +\infty$ and $\underline{\tau} > 0$. Therefore, $\Gamma_f(r) \asymp r^\rho$ as $r \to +\infty$ and, thus, the conditions $\ln n = O(\lambda_n^\rho)$ and $\ln n = O(\Gamma_f(\lambda_n))$ as $n \to \infty$ are equivalent.

We remark also that condition (10) now looks like $\ln \lambda_n = o(\ln(\ln(1/a_n)))$, i.e. $\ln \lambda_n = o(\ln(\ln(1/a_n)))$ as $n \to \infty$.

All conditions of Theorem 1 are satisfied and Theorem 1 implies Corollary 1.

3. Growth of Laplace-Stieltjes type integrals. Let V be the class of nonnegative nondecreasing unbounded continuous on the right functions F on $[0, +\infty)$. We assume that f is an entire transcendental function and $f_k \geq 0$ for all $k \geq 0$ and a positive on $[0, +\infty)$ function a is such that the Laplace-Stieltjes type integral

$$I(r) = \int_0^\infty a(x)f(rx) \, dF(x) \quad (16)$$

exists for every $r \in [0, +\infty)$. The asymptotical behavior of such integrals in the case when $f(x) = e^x$ is studied in the monograph [8] (see also [9, 10, 11]), as well as for the case of positive functions f such that the function $\ln f$ is convex on $(0, +\infty)$ in [12].

Suppose that $x_0 > 1$ is such that $\int_1^{x_0} a(x) \, dF(x) \geq c > 0$. Then

$$I(r) \geq \int_1^{x_0} a(x)f(rx) \, dF(x) \geq f(r)c. \quad (17)$$
On the other hand, as in the proof of Theorem 1 for \(r \geq 1 \) we have \(\ln f((1 + \tau)rx) - \ln f(rx) \geq \Gamma_f(x)\ln(1 + \tau) \). Therefore, if \(\mu_f(r) = \max\{a(x)f(rx) : x \geq 0\} \) is the maximum of the integrand, \(\ln F(x) \leq q\Gamma_f(x) \) and \(\ln(1 + \tau) > q \)

\[
I(r) = \int_0^\infty a(x)f((1 + \tau)rx)\frac{f(rx)}{f((1 + \tau)rx)}dF(x) \leq \mu_f((1 + \tau)r) \int_0^\infty \frac{f(rx)}{f((r + \tau)rx)}dF(x) \leq \\
\leq \mu_f((1 + \tau)r) \int_0^\infty e^{-\Gamma_f(x)\ln(1+\tau)}dF(x) = \\
= \mu_f((1 + \tau)r) \left(T_1 + \ln(1 + \tau) \int_0^\infty F(x)e^{-\Gamma_f(x)\ln(1+\tau)}d\Gamma_f(x) \right) \leq \\
\leq \mu_f((1 + \tau)r) \left(T_1 + \ln(1 + \tau) \int_0^\infty e^{-\Gamma_f(x)((\ln(1+\tau)-q)}d\Gamma_f(x) \right) \leq T_2\mu_f(r + \tau). \quad (18)
\]

where \(T_j = \text{const} > 0 \). Also, as above, we have

\[
\mu_f(r) = \max \left\{ a(x) \sum_{k=0}^\infty f_k(xr)^k : x \geq 0 \right\} \leq \\
\leq \sum_{k=0}^\infty \max\{a(x)x^k : x \geq 0\} f_k r^k = G_1(r) := \sum_{k=0}^\infty \mu_j(k) f_k r^k, \quad (19)
\]

where \(\mu_j(\sigma) = \max\{a(x)e^{\sigma \ln x} : x \geq 0\} \) is the maximum of the integrand for Laplace-Stieltjes integral

\[
J(\sigma) = \int_0^\infty a(x)e^{\sigma \ln x}dF(x).
\]

Now we prove the following analog of Theorem 1.

Theorem 2. Let \(F \in V, f \) be an entire transcendental function and \(f_k \geq 0 \) for all \(k \geq 0 \). Suppose that \(\ln F(x) \leq q\Gamma_f(x) \) for some \(q > 0 \) and all \(x \geq 0 \), the functions \(\alpha \) and \(\beta \) satisfy the conditions of Lemma 1 and for each \(c \in (0, +\infty) \)

\[
\ln x = o \left(\beta^{-1} \left(c\alpha \left(\frac{1}{\ln x} \ln \frac{1}{a(x)} \right) \right) \right), \quad x \to +\infty. \quad (20)
\]

Then \(\varrho_{a,\beta}[I] = \varrho_{a,\beta}[f] \).

Proof. From (17) it follows that \(\varrho_{a,\beta}[f] \leq \varrho_{a,\beta}[I] \).

On the other hand, in view of (18) and (19) \(\varrho_{a,\beta}[I] \leq \varrho_{a,\beta}[G_1] \). By Lemma 1

\[
\varrho_{a,\beta}[G_1] = \lim_{k \to +\infty} \frac{\alpha(k)}{\beta \left(k \ln \frac{1}{G_k} - \frac{\ln \mu_j(k)}{k} \right)}. \quad (21)
\]

If \(\varrho_{a,\beta}[f] < +\infty \) then as above we get (12).
As in [8, p.24], let \(\nu_j(\sigma) \) be the central point of \(\mu_j(\sigma) \). Then [8, p.26]

\[
\ln \mu_j(\sigma) = \ln \mu_j(\sigma_0) + \int_{\sigma_0}^{\sigma} \ln \nu_j(x) \, dx, \quad \sigma_0 \leq \sigma. \tag{22}
\]

From condition (20) with \(c = 1/\theta \) we get \(\ln a(x) \leq -\ln x \alpha^{-1} \left(\frac{\ln x}{\varepsilon} \right) \) for each \(\varepsilon > 0 \) and all \(x \geq x_0(\varepsilon) \). Therefore, as in the proof of Theorem 1, for all \(\sigma \geq \sigma_0 = \sigma_0(\varepsilon) \) we have

\[
\ln \mu_j(\sigma) \leq \ln \nu_j(\sigma) \left(\sigma - \alpha^{-1} \left(\frac{\ln \nu_j(\sigma)}{\varepsilon} \right) \right),
\]

whence it follows that \(\ln \nu_j(\sigma) \leq \varepsilon \beta^{-1} (\alpha(\sigma)/\theta) \) for \(\sigma \geq \sigma_0 \). Therefore, in view of (22) \(\ln \mu_j(\sigma) \leq \ln \mu_j(\sigma_0) + \varepsilon \sigma \beta^{-1} (\alpha(\sigma)/\theta) \) and, thus,

\[
\frac{\ln \mu_D(k)}{k} \leq \varepsilon + \varepsilon \beta^{-1} \left(\frac{\alpha(k)}{\theta} \right), \quad k \geq k_0(\varepsilon). \tag{23}
\]

From (21), (12) and (23) as in the proof of Theorem 1 we get \(\varrho_{\alpha,\beta}[I] \leq \varrho_{\alpha,\beta}[G_1] \leq \varrho_{\alpha,\beta}[f] \). \(\square \)

For the functions \(\alpha(x) = \ln^+ x \) and \(\beta(x) = x^+ \) Theorem 2 implies the following statement.

Corollary 2. Let an entire transcendental function (1) with \(f_k \geq 0 \) satisfy condition (15). If \(\ln F(x) = O(x^\rho) \) and \(\ln x = o(\ln \ln(1/a(x))) \) as \(x \to +\infty \) then \(\varrho[I] = \varrho[f] \).

4. Remarks. The conditions \(\ln n = O(\lambda^g_n) \) and \(\ln \lambda_n = o(\ln \ln(1/a_n)) \) as \(n \to \infty \) in Corollary 1 and their analogues \(\ln F(x) = O(x^\rho) \) and \(\ln x = o(\ln \ln(1/a(x))) \) as \(x \to +\infty \) in Corollary 2 are natural. Let us show this by the example of the function \(A_\rho(z) = \sum_{n=1}^{\infty} a_n E_\rho(z\lambda_n) \), where

\[
E_\rho(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(1+k/\rho)}, \quad 0 < \rho < +\infty,
\]

is the Mittag-Leffler function. The properties of this function have been used in many problems in the theory of entire functions. We only need the following property of the Mittag-Leffler function: if \(0 < \rho < +\infty \) then [13, p.115]

\[
M_{E_\rho}(r) = E_\rho(r) = (1 + o(1)) \rho e^{r^\rho}, \quad r \to +\infty.
\]

Hence it follows that \(\varrho[E_\rho] = \rho \) and \(\varrho[A_\rho] = \varrho[A_\rho^*] \), where \(A_\rho^*(r) = \sum_{n=1}^{\infty} a_n \exp\{r^\rho \lambda_n^g\} \). We put \(r^\rho = \sigma \) and \(\lambda_n^g = \mu_n \). Then \(A_\rho^*(r) = D_\rho(\sigma) = \sum_{n=1}^{\infty} a_n e^{\sigma \mu_n} \) and \(\varrho[A_\rho^*] = \varrho[D_\rho] \), where

\[
\varrho[D_\rho] = \lim_{\sigma \to +\infty} \frac{\ln \ln D_\rho(\sigma)}{\ln \sigma}
\]

is the logarithmic order of Dirichlet series \(D_\rho \). It is known [14] that if \(\ln n = O(\mu_n) \) as \(n \to \infty \) then \(\varrho[D_\rho] = p_l + 1 \), where

\[
p_l = \lim_{n \to +\infty} \frac{\ln \mu_n}{\ln \left(\frac{1}{\mu_n} \ln \frac{1}{a_n} \right)}.
\]
ON THE GROWTH OF SERIES IN SYSTEMS OF FUNCTIONS

Therefore, if \(\ln n = O(\lambda^n) \) as \(n \to \infty \) and \(p_l = 0 \) then \(\varrho[A_\varrho] = \varrho = \varrho[E_\varrho] \). Finally, \(p_l = 0 \) if and only if \(\ln \mu_n = o(\ln(1/a_n)) \), i.e. \(\ln \lambda_n = o(\ln(1/a_n)) \) as \(n \to \infty \).

By a similar method, studying the growth of an integral \(I_\varrho(r)(r) = \int_0^\infty a(x)E_\varrho(rx)dF(x) \) can be reduced to studying the growth of the integral \(J(\sigma) = \int_0^\infty a_1(x)e^{\sigma x}dF_1(x) \) and then use the formula [8, p.83]

\[
\lim_{\sigma \to +\infty} \frac{\ln J(\sigma)}{\ln \sigma} = \lim_{x \to +\infty} \frac{\ln x}{\ln \left(\frac{1}{x} \ln \left(\frac{1}{a_1(x)} \right) \right)} + 1,
\]

provided

\[
\lim_{x \to +\infty} \frac{\ln \ln F_1(x)}{\ln x} \leq 1.
\]

Acknowledgements. The authors express their gratitude to Dr. Ya.V. Mykytyuk for the formulation of the problem and thank him for his ideas to solve it.

REFERENCES

5. Sheremeta M.M. On two classes of positive functions and the belonging to them of main characteristics of entire functions // Mat. Stud. – 2003. – V.19, №1. – P. 75–82.

Ivan Franko National University of Lviv
Lviv, Ukraine
m.m.sheremeta@gmail.com

Received 30.11.2020
Revised 15.03.2021