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In the earlier work, expensive Taylor formula and conditions on derivatives up to the eighth
order have been utilized to establish the convergence of a derivative free class of seventh order
iterative algorithms. Moreover, no error distances or results on uniqueness of the solution were
given. In this study, extended ball convergence analysis is derived for this class by imposing
conditions on the first derivative. Additionally, we offer error distances and convergence radius
together with the region of uniqueness for the solution. Therefore, we enlarge the practical
utility of these algorithms. Also, convergence regions of a specific member of this class are di-
splayed for solving complex polynomial equations. At the end, standard numerical applications
are provided to illustrate the efficacy of our theoretical findings.

1. Introduction. Let us consider the equation

A (w) = 0, (1)

where A : U ⊆ X1 → X2 is derivable according to Fréchet. The symbols X1, X2 denote
Banach spaces and U stands for a non-empty, convex and open subset of X1. Solving nonli-
near equations of the type (1) is a significant and difficult research topic in computational
mathematics. This topic has a plethora of applications in scientific and technical disciplines.
However, only in limited circumstances the solutions can be derived in closed form. Numeri-
cal approaches are thus the standard way to approximate the solutions. Newton’s procedure
is one of the earliest known algorithms for addressing nonlinear equations. When assuming
the function is continuously differentiable and a decent starting estimate of solution is given,
this algorithm is written as

wn+1 = wn − A ′(wn)
−1A (wn), (2)

and it converges quadratically. The first derivative does not exist or is difficult to compute in
many practical situations. A quadratically convergent Tarub’s approach, free form derivative,
is often used in such circumstances. This algorithm is expressed as follows.

wn+1 = wn − [bn, wn;A ]−1A (wn), (3)
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where [bn, wn;A ]−1 denotes the inverse of the first order divided difference [bn, wn;A ] of A
and bn = wn + aA (wn), a ̸= 0 is arbitrary.

Iterative approaches tend to converge to a solution at varying speed, thus researchers are
continually working to improve the efficiency of iterative approaches. Increasing the order
of convergence or minimizing the computational cost of an algorithm are both effective
approaches to enhance its efficiency. Some of the higher order approaches that are already
established may be found in literature [1, 2, 4, 6, 7, 8, 9, 12, 15, 19, 21, 26], along with the
references therein. A derivative free fourth convergence order iterative algorithm is discussed
in [16]. This algorithm needs computations of three values of A , three divided differences
and two inversions of matrix in each iteration. Grau-Sánchez et al. [14], by applying central
divided differences to approximate derivatives, derived fourth and sixth convergence order
algorithms. A sixth order family of derivative free algorithms is described in [24]. They used
the generalizations of Steffenson-like algorithms [16] to derive specific cases of the family.
A class of derivative free algorithms is provided by Wang and Zhang [27]. This family is
seventh order convergent and its particular cases demand evaluations of four values of A ,
five divided differences and three inversions of matrix in each iterations. Sharma and Arora
[23] designed a derivative free seventh order algorithm that involves four values of A , five
divided differences and two inversions matrix. Another seveth order algorithm independent
of derivative is constructed by Wang et al. [28], which needs evaluations of one inversion
of matrix, five values of A and three divided differences in each iteration. More results on
iterative schemes and their convergence can be found in [3, 5, 11, 10, 13, 17, 22, 25].

We discuss extended ball convergence of a seventh convergence order derivative free class
of iterative algorithms proposed by Narang et al. [18]. This class of algorithms is expressed
as follows

yn = wn − A−1
n A (wn),

zn = yn − A−1
n A (yn),

wn+1 = zn −
(
17

4
I + A−1

n Bn

(
− 27

4
I + A−1

n Bn

(
19

4
I − 5

4
A−1

n Bn

)))
A−1

n A (zn), (4)

where An = [bn, sn;A ], Bn = [un, vn;A ],

bn = wn + αA (wn), sn = wn + βA (wn),

un = zn + γA (zn), vn = zn + δA (zn),

α, β, γ, δ arbitrary and [., ;A ] : U × U → L(X1,X1). Expensive Taylor formula and
assumptions on derivative of the eighth order were utilized in [18] to obtain its seventh rate
of convergence. Because of such convergence technique, the scope of application of this class
is limited. In order to support our claim, we introduce the function

A (w) =

{
w3 ln(w2) + w5 − w4, if w ̸= 0,

0, if w = 0.
(5)

where X1 = X2 = R and A is defined on U = [−1
2
, 3
2
]. Then, since A ′′′ is not bounded, the

existing convergence theorem [18] does not apply to this example. Additionally, no statements
on error ∥wn−w∗∥, the convergence ball and accurate position of the solution w∗ are discussed
in [18]. Analyzing the convergence ball of an iterative algorithm is very beneficial for many
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different purposes including determining the radii of convergence balls, bounds on error
∥wn − w∗∥ and area of uniqueness for the solution w∗. Notably, the consequences of ball
convergence are highly valuable since they offer insight on the complicated problem of picking
initial choices. This leads us to analyze the convergence ball of algorithm (4) by imposing
conditions on just the first derivative of A . By using our work, one is able to compute the
convergence radii and the estimations on error ∥wn −w∗∥. Our analysis also offers a precise
position of the solution w∗.

The arrangement of the whole text can be summarized as: Section 1 serves as the
introduction. For algorithm (4), the analysis of convergence ball is discussed in Section 2.
Section 3 describes attraction basins for this algorithm. The results of numerical investigati-
ons are shown in Section 4.

2. Convergence. We rely on some scalar parameters and functions to show the local
convergence analysis of method (4). Set M = [0,∞). Consider parameters a, b, c, d ≥ 0
and p, q > 0.

We assume the following properties of functions:
(1) µ0(t) − 1 has a smallest root ρ0 ∈ M \ {0} for some function µ0 : M → M , which is
continuous and non-decreasing. Set M0 = [0, ρ0).

(2) λ1(t)− 1 has a smallest root R1 ∈M0 \ {0} for some function µ : [0, 2ρ0) →M , which is
continuous and non-decreasing and function λ1 : M0 →M is defined by

λ1(t) =
µ(t)

1− µ0(t)
.

(3) λ2(t) − 1 has a smallest root R2 ∈ M0 \ {0} for some function µ1 : M0 → M , which is
continuous and non-decreasing and function λ2 : M0 →M is defined by

λ2(t) =
µ1(t)λ1(t)

1− µ0(t)
.

(4) λ3(t)−1 has a smallest root R3 ∈M0\{0} for some function µ2 : M0 →M , µ3 :M0 →M ,
which is continuous and non-decreasing and functions h : M0 →M , λ3 : M0 →M are defined
by

h(t) =
µ3(t)

1− µ0(t)

and
λ3(t) =

[
µ2(t)

1− µ0(t)
+
p

4
(5h2(t) + 4h(t) + 4)

h(t)

1− µ0(t)

]
λ2(t).

The parameter R defined by

R = min{Rm}, m = 1, 2, 3 (6)

shall be shown to be a convergence radius for method (4). Set M1 = [0, R).
By the definition of method (4) we have that for all t ∈M1

0 ≤ µ0(t) < 1, (7)
0 ≤ h(t) < 1 (8)
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and
0 ≤ λm(t) < 1, m = 1, 2, 3. (9)

By S[w∗, ρ] we denote the closure of the open ball S(w∗, ρ) having center w∗ ∈ X1 and of
radius ρ > 0. L(X1,X2) stands for the set {Y : X1 → X2 is bounded and linear}.

We assume from now on that w∗ is a simple solution of equation A (w) = 0, divi-
ded difference [., .;A ] → L(X1,X1) exists and the functions λm are as defined previously.
Moreover, the following hypotheses (H) are used.
(h1) For each w ∈ U

∥A ′(w∗)
−1([w + αA (w), w + βA (w);A ]− A ′(w∗))∥ ≤ µ0(∥w − w∗∥),

∥I + α[w,w∗;A ]∥ ≤ a

and
∥I + β[w,w∗;A ]∥ ≤ b.

Set U0 = S[w∗, ρ0] ∩ U .
(h2) For each w, y, z ∈ U0

∥A ′(w∗)
−1([w + αA (w), w + βA (w);A ]− [w,w∗;A ])∥ ≤ µ(∥w − w∗∥),

∥A ′(w∗)
−1([w + αA (w), w + βA (w);A ]− [y, w∗;A ])∥ ≤ µ1(∥w − w∗∥),

∥A ′(w∗)
−1([w + αA (w), w + βA (w);A ]− [z, w∗;A ])∥ ≤ µ2(∥w − w∗∥),

∥A ′(w∗)
−1([z + γA (z), z + δA (z);A ]− [w + αA (w), w + βA (w);A ])∥ ≤ µ3(∥w − w∗∥),

∥I + γ[w,w∗;A ]∥ ≤ c, ∥I + δ[w,w∗;A ]∥ ≤ d, ∥A ′(w∗)
−1[w,w∗;A ]∥ ≤ p

and ∥[w,w∗;A ]∥ ≤ q.
(h3) S[w∗, R∗] ⊂ U , where R∗ = max{aR, bR, cR, dR,R}.

Next, the hypotheses (H) are used to show the main ball convergence result for method
(4).

Theorem 1. Under hypotheses (H) further suppose w0 ∈ S(w∗, R) \ {w∗}. Then, the
sequence {wn} starting from w0 converges to w∗.

Proof. Mathematical induction is used to show assertions

{wn} ⊂ S(w∗, R), (10)
∥yn − w∗∥ ≤ λ1(∥wn − w∗∥)∥wn − w∗∥ ≤ ∥wn − w∗∥ < R, (11)

∥zn − w∗∥ ≤ λ2(∥wn − w∗∥)∥wn − w∗∥ ≤ ∥wn − w∗∥, (12)
∥wn+1 − w∗∥ ≤ λ3(∥wn − w∗∥)∥wn − w∗∥ ≤ ∥wn − w∗∥ (13)

and
lim
n→∞

wn = w∗, (14)

with the radius R defined in (6) and functions λm as given before.
By (6), (7) and (h1), we have for w ∈ S(w∗, R) \ {w∗}

∥w + αA (w)− w∗∥ = ∥(I + α[w,w∗;A ])(w − w∗)∥ ≤
≤ ∥I + α[w,w∗;A ]∥ ∥w − w∗∥ ≤ aR ≤ R∗, (15)

∥w + βA (w)− w∗∥ = ∥(I + β[w,w∗;A ])(w − w∗)∥ ≤ bR < R∗ (16)



76 I. ARGYROS, D. SHARMA, C. ARGYROS, S. PARHI, S. SUNANDA, M. ARGYROS

and

∥A ′(w∗)
−1([w + αA (w), w + βA (w);A ]− A ′(w∗))∥ ≤ µ0(∥w − w∗∥) ≤ µ0(R) < 1. (17)

It follows from (17) and a lemma attributed to Banach on invertible linear operators [3, 20]
that A−1

0 ∈ L(X1,X1) for w = w0 ∈ S(w∗, R) \ {w∗} and

∥A−1
0 A ′(w∗)∥ ≤ 1

1− µ0(∥w0 − w∗∥)
. (18)

Hence, iterates y0, z0, w1 exists.
Using the first substep of method (4) we get in turn

y0 − w∗ = w0 − w∗ − A−1
0 A (w0) = A−1

0 (A0 − [w0, w∗;A ])(w0 − w∗). (19)

In view of (6), (9)(for m = 1), (18), (19), and (h2) we have in turn

∥y0 − w∗∥ ≤ µ(∥w0 − w∗∥)∥w0 − w∗∥
1− µ0(∥w0 − w∗∥)

≤ λ1(∥w0 − w∗∥)∥w0 − w∗∥ ≤ ∥w0 − w∗∥ < R, (20)

showing y0 ∈ S(w∗, R) and (11) for n = 0. Similarly but using (9)(for m = 2) and the second
substep of method (4), we obtain in turn that

z0 − w∗ = y0 − w∗ − A−1
0 A (y0) = A−1

0 (A0 − [y0, w∗;A ])(y0 − w∗),

so

∥z0 − w∗∥ ≤ µ1(∥w0 − w∗∥)∥y0 − w∗∥
1− µ0(∥w0 − w∗∥)

≤ λ2(∥w0 − w∗∥)∥w0 − w∗∥ ≤ ∥w0 − w∗∥ < R, (21)

showing z0 ∈ S(w∗, R) and (12) for n = 0. Moreover using the third substep of method (4)
we can also write in turn

w1 − w∗ = z0 − w∗ − A−1
0 A (z0)+

+
1

4
(5(A−1

0 B0 − I)2 − 4(A−1
0 B0 − I) + 4)(A−1

0 B0 − I)A−1
0 A (z0). (22)

Then, as with the previous estimates but using (9)(for m = 3), we get in turn that

∥w1 − w∗∥ ≤
[

µ2(∥w0 − w∗∥)
1− µ0(∥w0 − w∗∥)

+

+
p

4
(5h2(∥w0 − w∗∥) + 4h(∥w0 − w∗∥) + 4)

h(∥w0 − w∗∥)
1− µ0(∥w0 − w∗∥)

]
∥z0 − w∗∥ ≤

≤ λ3(∥w0 − w∗∥)∥w0 − w∗∥ ≤ ∥w0 − w∗∥, (23)

showing w1 ∈ S(w∗, R) and (13) for n = 0. We also used the estimates

∥A ′(w∗)
−1([w0 + αA (w0), w0 + βA (w0);A ]− [z0, w∗;A ])∥ ≤ µ2(∥w0 − w∗∥)

and

∥A−1
0 B0 − I∥ ≤ ∥A−1

0 A ′(w∗)∥ ∥A ′(w∗)
−1(B0 − A0)∥ ≤

≤ µ3(∥w0 − w∗∥)
1− µ0(∥w0 − w∗∥)

= h(∥w0 − w∗∥).
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Hence, assertions (10)–(13) are shown for n = 0. If we simply replace w0, y0, z0, w1 by wn,
yn, zn, wn+1 in the previous calculations, we complete the induction for (10)–(11). Then, in
view of the estimation

∥wn+1 − w∗∥ ≤ r∥wn − w∗∥ < R, (24)

where r = λ3(∥w0 − w∗∥) is in [0, 1), we get wn+1 ∈ S(w∗, R) and lim
n→∞

wn = w∗.

Next, connecting the uniqueness of the solution we give a result not necessarily relying
on the hypotheses (H).

Proposition 1. Suppose that the equation A (w) = 0 has a simple solution w∗ ∈ U , for all
w ∈ U

∥A ′(w∗)
−1([w,w∗;A ]− A ′(w∗))∥ ≤ µ4(∥w − w∗∥) (25)

and the function µ4(t)−1 has the smallest positive root ρ, where µ4 : M →M is a continuous
and non-decreasing function. Set U1 = S[w∗, ρ̃] ∩ U for 0 < ρ̃ < ρ. Then, the only solution
of equation A (w) = 0 in the region U1 is w∗.

Proof. Set T = [w∗, w∗;A ] for some w∗ ∈ U1 with A (w∗) = 0. Then, using (25), we get

∥A ′(w∗)
−1(T − A ′(w∗))∥ ≤ µ4(∥w∗ − w∗∥) ≤ µ4(ρ̃) < 1,

so, T−1 ∈ L(X1,X1) and w∗ = w∗ follows from T (w∗ − w∗) = A (w∗)− A (w∗).

Remark. Let us consider choices

[w, y;A ] =
1

2
(A ′(w) + A ′(y)) or [w, y;A ] =

∫ 1

0

A ′(w + θ(y − w)) dθ

or the standard definition of the divided difference when X1 = Ri [18].
Moreover, suppose

∥A ′(w∗)
−1(A ′(w)− A ′(w∗))∥ ≤ ψ0(∥w − w∗∥)

and
∥A ′(w∗)

−1(A ′(w)− A ′(y))∥ ≤ ψ(∥w − y∥),

where functions ψ0 :M →M , ψ :M →M , are continuous and non-decreasing. Then, under
the first or second choice above it can easily be seen that these hypotheses (H) require

µ0(t) =
1

2
(ψ0(at) + ψ0(bt)), µ(t) =

1

2
(ψ(|α|qt) + ψ0(bt)),

µ1(t) =
1

2
(ψ(at+ λ1(t)t) + ψ0(bt)), µ2(t) =

1

2
(ψ(at+ λ2(t)t) + ψ0(bt))

and
µ3(t) =

1

2
ψ(cλ2(t)t+ at).

3. Attraction basins. We present the convergence regions of scheme (4) for obtaining
solutions of several complex polynomial equations. The region T = [−2, 2] × [−2, 2] on C is
used with a grid of 200× 200 points on T . Suppose {zi}∞i=0 is constructed by algorithm (4)
starting with z0 ∈ C. The set {z0 ∈ C : zi → z∗ as i→ ∞} serves as the attraction basin of
a zero z∗ of N (z), where N stands for a complex polynomial of degree higher than or equal
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to two. In order to produce convergence regions via attraction basins, each point z0 ∈ T is
taken as a starting choice and algorithm (4) is applied on ten complex functions. The stater
z0 remains in the basin of a zero z∗ of a test polynomial if limi→∞ zi = z∗. Then, z0 is painted
with a fixed color corresponding to z∗. In accordance with the iteration numbers, we apply
light to dark colors for each starting choice z0. The point z0 ∈ T is displayed in black if
it is not in the attraction basin of any zero of the test polynomial. We consider MATLAB
2019a for producing the fractal pictures. We set the tolerance ∥zi − z∗∥ < 10−6 to end the
iteration. Otherwise, iteration procedure is executed up to 100 times.

In the beginning, we choose the quadratic complex polynomials N1(z) = z2 − z and
N2(z) = z2 − 1 to create the attraction basins for (4). Fig. 1(a) shows the attraction basins
related to the zeros 0 and 1 of N1(z) in magenta and green colors, respectively. In Fig. 1(b),
pink and green colors indicate the attraction basins of the zeros 1 and −1, respectively,
of N2(z). Further, we consider the complex polynomials N3(z) = z3 − z and N4(z) =
z3 − 1 of degree three. In Fig. 2(a), the attraction basins of the zeros 1, 0 and −1 of the
polynomial N3(z) are demonstrated in magenta, yellow and cyan colors, respectively. Fig.
2(b) represents the attraction basins associated to the zeros −1

2
−

√
3
2
i, −1

2
+

√
3
2
i and 1 of

N4(z) in pink, blue and green, respectively. Next, the complex polynomials N5(z) = z4 − z
and N6(z) = z4−1 of degree four are taken to illustrate the attraction basins associated with
their zeros. In Fig. 3(a), convergence to the zeros 0, −1

2
+ 0.866025i, 1 and −1

2
− 0.866025i

of the polynomial N5(z) is presented in green, red, blue and yellow, respectively. In Fig.
3(b), the basins of the solutions i, −1, −i and 1 of N6(z) = 0 are respectively displayed
in pink, blue, green and yellow zones. Furthermore, we choose polynomials N7(z) = z5 − z
and N8(z) = z5 − 1 of degree five. Fig. 4(a) displays the attraction basins related to the
solutions 0, i, −1, 1 and −i of N7(z) = 0 in green, magenta, red, blue and yellow colors,
respectively. In Fig. 4(b), pink, yellow, red, cyan and green colors indicate the attraction
basins of the zeros −0.809016 + 0.587785i, 0.309016 − 0.951056i, 0.309016 + 0.951056i, 1
and −0.809016 − 0.587785i, respectively, of N8(z). At the end, two complex polynomials
N9(z) = z6 − z and N10(z) = z6 − 1 degree six are considered. Fig. 5(a) presents the
attraction basins associated to the roots 1, 0.3090169+ 0.951056i, 0, 0.3090169− 0.951056i,
−0.809016 + 0.587785i and −0.809016− 0.587785i of N9(z) = 0 in green, yellow, red, cyan,
magenta and blue colors, respectively. In Fig. 5(b), the basins of the solutions 0.500000 −
0.866025i, 1, 0.500000 + 0.866025i, −0.500000 − 0.866025i, −1 and −0.500000 + 0.866025i
of N10(z) = 0 are painted in yellow, red, cyan, pink, green and blue, respectively.

4. Numerical examples. The convergence radius of the derivative free class of iterative
algorithms (4) is produced by utilizing the presented analysis.
Example 1. Let X1 = X2 = R3 and U = S[0, 1]. Consider A on U for w = (w1, w2, w3)

t

as
A (w) =

(
ew1 − 1,

e− 1

2
w2

2 + w2, w3

)t

.

We have w∗ = (0, 0, 0)t. Also, α = γ = 1, β = δ = −1 ψ0(t) = (e − 1)t, ψ1(t) = e
1

e−1 t,
a = c = 1

2
(3 + e

1
e−1 ) and b = d = p = q = 1

2
(1 + e

1
e−1 ). Using Theorem 1 the value of R is

determined and presented in Table 1.
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Fig. 1: Attraction basins for (4) related to degree two complex polynomials
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Fig. 2: Attraction basins for (4) related to degree three complex polynomials
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Fig. 3: Attraction basins for (4) related to degree four complex polynomials
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Fig. 4: Attraction basins for (4) related to degree five complex polynomials
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Fig. 5: Attraction basins for (4) related to degree six complex polynomials

Table 1: Convergence radii for Example 1

Method (4)
R1 = 0.175373
R2 = 0.156284
R3 = 0.109914
R = 0.109914
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