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In the paper, we discussed the distribution of unique range sets and its elements over the
extended complex plane from a different point of view and obtained some new results regarding
the structure and position of unique range sets. These new results have immense applications
like classifying different subsets of C to be or not to be a unique range set, exploring the
fact that every bi-linear transformation preserves unique range sets for meromorphic functions,
providing simpler and shorter proofs of existence of some unique range sets, unfolding the
fact that zeros or poles of any meromorphic function lie in a unique range set, in particular,
identifying the Fundamental Theorem of Algebra to a more specific region and many more
applications. We have also posed some open questions to unveil the mysterious arrangement of
the elements of unique range sets.

1. Introduction. Throughout the paper by any meromorphic function we mean it is defined
in C and non-constant unless otherwise stated. By C, R and R+ we mean the extended
complex plane, set of all real numbers and set of all positive real numbers, respectively.

For a meromorphic function f and a ∈ C we define
Ef (a) = {(z, p) ∈ C× N : f(z) = a with multiplicity p}, Ef (a) = {z : f(z) = a}.

For a = ∞ we define Ef (∞) = E 1
f
(0) and Ef (∞) = E 1

f
(0).

Let S ⊆ C. Then we define
Ef (S) =

⋃
a∈S

Ef (a), Ef (S) =
⋃
a∈S

Ef (a).

For two arbitrary meromorphic functions f , g and a set S ⊆ C if Ef (S) = Eg(S), then
we say f , g share the set S counting multiplicities or CM in brief. If Ef (S) = Eg(S), then
we say f , g share the set S ignoring multiplicities or IM in brief.

Moreover, if Ef (S) = Eg(S) implies f ≡ g, then S is called a unique range set for
meromorphic functions [5,9,15] or URSM in short and if Ef (S) = Eg(S) implies f ≡ g, then
S is called a unique range set for meromorphic functions ignoring multiplicity or URSM-IM
in short. By S and SI we denote the class of unique range sets for meromorphic functions and
unique range set for meromorphic functions ignoring multiplicity, respectively. For example,
S ∈ S means that S is a unique range set for meromorphic functions.

The interest to this topic come from the paper of F. Gross [7] and F. Gross, C. C. Yang
[8]. There was formulated the well-known Gross problem: Can one find two (or possibly
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even one) finite sets Sj (j = 1, 2) such that any two entire functions f and g satisfying
f−1(Sj) = g−1(Sj) for j = 1, 2 must be identical? If “yes”, then how small can they be?

Throughout the last four decades a lot of research in this direction have been done by
various authors. Many mathematicians investigated various partial cases of the problem [1,2,
4,6,8] because the final answer to the problem is quite far away. One of the approaches uses
the notion of unique range set [3, 10, 11, 16] to consider the Gross problem for meromorphic
functions. Recently, the author [12,13] used the notion to study a narrow formulation of the
Gross problem for powers of meromorphic functions.

In due course of time, the research in this area has been splitted in two directions.
One is to find out the smallest possible S ∈ S (S ∈ SI) and the other is to find out the
characterization of S (SI). But in both the cases the authors always took finite S ∈ S or
S ∈ SI into consideration. More precisely, they always considered some specific polynomials
whose zero sets form a set S ∈ S (S ∈ SI) to obtain the best possible answers in both the
above directions. Since from the very definition of a set S ∈ S (S ∈ SI) it is a subset of C,
so it is natural that ∞ may belong to S. But till date we have no such example or theory.
So natural query arises whether there exist any sets S ∈ S (S ∈ SI) containing ∞ or not.
In this paper, we unveil this fact in affirmative.

The present paper attempts to provide a qualitative description of unique range sets, to
find out their geometric nature and their properties using the Möbius transformation.

Not only that, since every S ∈ S (S ∈ SI) is a subset of C, so these sets may or may
not be infinite. And if there exists S ∈ S (S ∈ SI) containing infinite number of elements,
then what can be said about the characteristics of those sets. In this paper, we would like
to explore the characteristics of any kind of S ∈ S (S ∈ SI) irrespective of it’s finiteness or
infiniteness.

We have also discussed some applications of our results which shows that applying our
results one can have very simple and short proofs of existence of some URSM’s (URSM-IM’s).

Furthermore, we have also posed different natural questions throughout the paper which
are open problems.

2. Results on unique range set for meromorphic functions. Let a set S ∈ S be finite
or infinite. Then we see that the elements of S are not symmetric in nature. Because if for
every a ∈ S, we have −a ∈ S, then f and −f share S CM. Hence S /∈ S.

So natural query arises whether the elements of a set S ∈ S can be reciprocal in nature
or not. In relation to that for a set S ⊆ C, finite or infinite, we define

S∗ =
{ 1

ak
: ak ∈ S

}
.

Because S ⊆ C, then by the definition, 1
0
= ∞, 1

∞ = 0. Thus, the definition of S∗ is correct.
Let us pose the first question of this section as follows.

Question 1. Let S ∈ S. Does S∗ ∈ S?

In the following theorem we answer Question 1 in affirmative.

Theorem 1. S ∈ S ⇐⇒ S∗ ∈ S.

Proof. (=⇒) Firstly we suppose that S ∈ S. Let f and g be two meromorphic functions
such that Ef (S∗) = Eg(S

∗). Now we consider the following four cases.
Case 1. Let 0,∞ /∈ S. Since Ef (S∗) = Eg(S

∗), we get
⋃
ai∈S Ef (

1
ai
) =

⋃
ai∈S Eg(

1
ai
). Now
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Ef

(
1

ai

)
= {(z, p) : f(z)− 1

ai
= 0} =

{
(z, p) :

1

f1(z)
− 1

ai
= 0

}
=

{
(z, p) :

ai − f1(z)

aif1(z)
= 0

}
,

where f1(z) = 1
f(z)

. Clearly ai points of f1 can not coincide with zeros of f1. Hence,
Ef (

1
ai
) = {(z, p) : f1(z)− ai = 0} = Ef1 (ai) .

Similarly we shall obtain Eg(
1
ai
) = {(z, p) : g1(z) − ai = 0} = Eg1 (ai) , where g1(z) = 1

g(z)
.

Therefore, ⋃
ai∈S

Ef1(ai) =
⋃
ai∈S

Ef (
1
ai
) =

⋃
ai∈S

Eg(
1
ai
) =

⋃
ai∈S

Eg1(ai).

That is, Ef1 (S) = Eg1 (S). Since S ∈ S, we have f1 ≡ g1 and hence f ≡ g.
Case 2. Let 0 ∈ S and ∞ /∈ S. Then ∞ ∈ S∗. Now by definition we always have Ef (∞) =
Ef1 (0) , where f1(z) = 1

f(z)
. Similarly we shall obtain Eg (∞) = Eg1 (0) , where g1(z) = 1

g(z)
.

Now for 1
ai

∈ S∗, where ai ̸= 0; we proceed same as Case 1 of this theorem and obtain⋃
ai∈S\{0}

Ef1 (ai) =
⋃

ai∈S\{0}
Ef (

1
ai
),

⋃
ai∈S\{0}

Eg1(ai) =
⋃

ai∈S\{0}
Eg(

1
ai
).

That is⋃
ai∈S

Ef1 (ai) =
⋃

ai∈S\{0}
Ef (

1
ai
)
⋃
Ef (∞) =

⋃
ai∈S\{0}

Eg(
1
ai
)
⋃
Eg(∞) =

⋃
ai∈S

Eg1(ai),

as Ef (S∗) = Eg(S
∗). Hence the above equality says Ef1(S) = Eg1(S). Since S ∈ S, we have

f1 ≡ g1 and hence f ≡ g.
Case 3. Let ∞ ∈ S and 0 /∈ S. Then 0 ∈ S∗. This case can be dealt exactly in the same way
as Case 2 of this theorem.
Case 4. Let {0,∞} ⊂ S. Then {0,∞} ⊂ S∗. Since Ef (∞) = Ef1(0), Ef (0) = Ef1(∞) and
Eg(∞) = Eg1(0), Eg(0) = Eg1(∞), this case can also be resorted similarly like Case 2 of this
theorem. So we omit the detail.
(⇐=) For the converse part assuming bi = 1

ai
, the proof can be carried out in the same line

of proof as done in the first part. Hence the theorem.

So, we have obtained the answer of Question 1 in affirmative. Now we concentrate on the
discussion behind Question 1 which actually demands the answer of the following question.

Question 2. Does S∗ = S hold, when S ∈ S?

In this article, we prove that the answer to this question is negative. On the way of
providing the answer of this question we develop the following results.

For S ⊆ C and k1 ∈ C \ {0}, k2 ∈ C let us define
k1S + k2 = {k1ai + k2 : ai ∈ S}.

We prove the following theorem.

Theorem 2. Let k1 ∈ C \ {0}, k2 ∈ C. Then, S ∈ S ⇐⇒ k1S + k2 ∈ S.

Proof. (=⇒) Let S ∈ S. Then we need to show that k1S + k2 ∈ S. Let f and g be two
meromorphic functions such that Ef (k1S + k2) = Eg(k1S + k2). Now we split this part of
the proof in two cases.
Case 1. Let ∞ /∈ S. Since Ef (k1S + k2) = Eg(k1S + k2), we get

⋃
ai∈S Ef (k1ai + k2) =⋃

ai∈S Eg(k1ai + k2).

Now for f1(z) = f(z)−k2
k1

we get Ef (k1ai + k2) = {(z, p) : f(z) − k1ai − k2 = 0} =
= {(z, p) : k1f1(z) + k2 − k1ai − k2 = 0} = {(z, p) : f1(z)− ai = 0} = Ef1(ai).
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Similarly, for the meromorphic functions g and g1, where g1(z) = g(z)−k2
k1

, we have
Eg(k1ai + k2) = Eg1(ai). Hence,⋃

ai∈S

Ef1(ai) =
⋃
ai∈S

Ef (k1ai + k2) =
⋃
ai∈S

Eg(k1ai + k2) =
⋃
ai∈S

Eg1(ai).

Since S ∈ S, f1 ≡ g1 and hence f ≡ g. Therefore k1S + k2 ∈ S.
Case 2. Let ∞ ∈ S. Then for the meromorphic function f1(z) = f(z)−k2

k1
, we always have

Ef1(∞) = Ef (∞). Similarly for the meromorphic function g1(z) =
g(z)−k2
k1

, we always have
Eg1(∞) = Eg(∞). Hence proceeding similarly for all other points of S like in Case 1 of this
theorem we shall obtain⋃
ai∈S

Ef1(ai) =
⋃

ai∈S\{∞}

Ef (k1ai+k2)
⋃

Ef (∞) =
⋃

ai∈S\{∞}

Eg(k1ai+k2)
⋃

Eg(∞) =
⋃
ai∈S

Eg1(ai).

Therefore, f1 ≡ g1, i.e. f ≡ g.
(⇐=) The converse part follows immediately as an application of the first part, so we omit it.

Taking into account Theorem 2 with k1 = k, k2 = 0 we obtain the following statement.

Proposition 1. S ∈ S ⇐⇒ kS ∈ S.

Define a relation R on S by
R = {(S1, S2) : S1 = kS2, k ∈ C \ {0}}.

The following statement is an elementary consequence of Proposition 1.

Proposition 2. The relation R is an equivalence.

Since R is an equivalence relation, we have a partition of S into different equivalence
classes.

Now we ask a more general question than Question 2.

Question 3. Does S∗ ∈ [S] hold?

In the following theorem we obtain the answer of above Question 3 as well as the answer
of Question 2.

Theorem 3. If S ∈ S then S∗ /∈ [S].

Proof. On the contrary suppose that S∗ ∈ [S]. Then ∃ kS ∈ [S] such that kS = S∗. Now we
prove the theorem considering the following cases.
Case 1. Let 0,∞ /∈ S. Then from the definition of kS and S∗, we have kS = {kai : ai ∈ S}
and S∗ = { 1

ai
: ai ∈ S}. Clearly for every kai ∈ kS, there exist 1

aj
∈ S∗ such that kai = 1

aj

and viceversa. Therefore for those ai, aj we have aiaj = 1
k
. Now let f be a meromorphic

function, then 1
kf

is so. We have

E( 1
kf )

(ai) =
{
(z, p) : 1

kf(z)
− ai = 0

}
=

{
(z, p) :

aiaj
f(z)

− ai = 0
}
=

=
{
(z, p) : ai

f(z)
[aj − f(z)] = 0

}
=

{
(z, p) : f(z)− aj = 0

}
= Ef (aj).
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Therefore
⋃
ai∈S E( 1

kf )
(ai) =

⋃
ai∈S Ef (ai). Since S ∈ S, so 1

kf
= f , which is a contradiction

to the fact that f is non-constant. Hence S∗ /∈ [S].
Case 2. Let 0 ∈ S and ∞ /∈ S. Then from the definition of kS and S∗, we have that ∞ /∈ kS
and ∞ ∈ S∗. Hence S∗ ̸= kS, a contradiction.
Case 3. Let ∞ ∈ S and 0 /∈ S. Then from the definition of kS and S∗, we have that 0 /∈ kS
and 0 ∈ S∗. Hence S∗ ̸= kS, a contradiction.
Case 4. Let 0,∞ ∈ S. Then from the definition of kS and S∗, we have {0,∞} ⊂ kS ∩ S∗.
Now proceeding in the same fashion as done in Case 1 of this theorem for other points of kS
and S∗, we would obtain

⋃
ai∈S\{0,∞}E( 1

kf )
(ai) =

⋃
ai∈S\{0,∞}Ef (ai). Also E( 1

kf )
(∞) = Ef (0)

and E( 1
kf )

(0) = Ef (∞) always hold for any meromorphic function f . Hence we obtain⋃
ai∈S

E( 1
kf )

(ai) =
⋃
ai∈S

Ef (ai).

Since S ∈ S, again we arrive at a contradiction as f is non-constant. Hence S∗ /∈ [S].

Remark 1. Since S∗ /∈ [S], clearly S∗ ̸= S, which settles Question 2. Hence the elements of
an S ∈ S can not be reciprocal in nature.

Now taking Proposition 1 into account, one can ask the parallel question to Question 2
for kS as follows.

Question 4. Is kS = S, when S ∈ S and k ∈ C \ {0, 1}?

With respect to Question 4, we prove the following statement.

Proposition 3. Let S ∈ S. Then kS ̸= S, for all k ∈ C \ {0, 1}.

Proof. We assume that kS = S for some k ∈ C\{0, 1}. Now we prove the proposition under
the following two cases.
Case 1. Let 0,∞ /∈ S. Then for every aj ∈ kS there exist ai ∈ S such that kai = aj. Let f
be a meromorphic function. Then kf is so. Now

E(kf)(aj) = Ekf (kai) = {(z, p) : kf(z)− kai = 0} =

= {(z, p) : k(f(z)− ai) = 0} = {(z, p) : f(z)− ai = 0} = Ef (ai).

So clearly
⋃
ai∈S E(kf)(ai) =

⋃
ai∈S Ef (ai). Since S ∈ S, so kf = f , which contradicts that

f is non-constant.
Case 2. Let 0 ∈ S or ∞ ∈ S or both of them belong to S. Since E(kf)(0) = Ef (0) and
E(kf)(∞) = Ef (∞), so this case can be dealt in a similar manner like Case 1 of this theorem.

We know that every Möbius transformation of C takes the circles and straight lines onto
circles or straight lines. Also cross ratios remain invariant under any Möbius transformation.
Now in view of Theorem 1 and Theorem 2, we explore another beautiful property of Möbius
transformation as follows.

Proposition 4. If S ∈ S and h is a Möbius transformation of C, then h(S) ∈ S.

Proof. Let S ∈ S and h(z) = αz+β
γz+δ

be a Möbius transformation defined in the extended
plane C. Now clearly for γ ̸= 0 we have h(S) = α

γ
+ βγ−αδ

γ
(γS + δ)∗. For γ = 0 we have

h(S) = α
δ
S+ β

δ
. Since S ∈ S, so applying Theorem 2 and Theorem 1 for h(S) we obtain that

h(S) ∈ S.
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Now in view of Theorem 3 and Proposition 3, one may naturally enquire about the fact
whether all sets S ∈ S disjoint or they may have some common points. We have the following
statement.

Proposition 5. There exist two sets S1 ∈ S and S2 ∈ S such that S1 ∩ S2 ̸= ∅.

Proof. Let S1 ∈ [S]. Then we claim that there exists a set S2 ∈ S, S2 /∈ [S] such that
S1 ∩ S2 ̸= ∅. Let T ∈ [T ], where [T ] ̸= [S]. Consider a ∈ S1 \ {0} and b ∈ T \ {0}. Then
kb ∈ kT ∈ [T ] for any k ∈ C \ {0}. So let us choose k = a

b
. Hence kb = a ∈ kT = S2 (say).

Therefore, a ∈ S1 ∩ S2, i.e., S1 ∩ S2 ̸= ∅.

Pertinent to Proposition 5, we formulate the following questions.

Question 5. Do any two S1, S2 ∈ S intersect each other?

Question 6. Do there exist two sets S1 ∈ S, S2 ∈ S such that S1 ∩ S2 = ∅?

Following theorem shows that the answer of Question 6 is affirmative.

Theorem 4. There exist two sets S1 ∈ S, S2 ∈ S such that S1 ∩ S2 = ∅.

Proof. Let S1 = {b1, b2, . . . , bn} ∈ S be such that bi ̸= 0,∞ for all i ∈ {1, 2, . . . , n}. In view
of Proposition 1, kS1 ∈ S, where k ∈ C\{0}. Now we can arrange the elements of S1 in non-
decreasing moduli. In that case, let bj and bl are the elements in S1 so that |bj| ≤ |bi| ≤ |bl|
for all i ∈ {1, 2, . . . , n}. Let k = r

|bj | , where r > |bl| is a real number. Clearly each bi is of the
form bi = |bi|eiθ. Then kbi = r

|bj | |bi|e
iθ for all i ∈ {1, 2, . . . , n}. Hence |kbi| = r

|bj | |bi| > |bl| for
all i ∈ {1, 2, . . . , n}. That is by multiplying this suitable k with each element of S1 we have
just amplified the distance of these elements from the origin so that the distance of each kbi
from the origin is larger than the largest distant element of S1 from the origin. Therefore
bi /∈ kS1 for all i ∈ {1, 2, . . . , n} which implies S1 ∩ kS1 = ∅. Denote kS1 by S2. Then we
write S1 ∩ S2 = ∅. This proves the theorem.

From Theorem 4, we can conclude that arbitrary intersection of URSM’s may not be a
URSM. After the completion of Theorem 4, one would naturally ask the following questions
regarding the union of sets from S.

Question 7. 10. Do the union of URSM’s again become a URSM?
20. Is the union of all URSM’s dense in C or C?
30. Do the union of all URSM’s cover C or C?

In this connection, first of all we would like to pay attention towards the fact whether 0
belongs to any S ∈ S or not. Below we provide an example of a set S ∈ S which contains 0.

Example 1. Let

P (z) =
z13

13
+
z12

6
+

6z11

11
+ z10 +

5z9

3
+

5

2
z8 +

20

7
z7 +

10

3
z6 + 3z5 +

5z4

2
+ 2z3 + z2 + z.

Observe that z = 0 is a zero of P (z) and P
′
(z) = (z + 1)2(z − i)5(z + i)5. Now consider

S = {z : P (z) = 0}. So clearly: i) P (−1) ̸= P (i) ̸= P (−i), ii) none of −1, i,−i is arithmetic
mean of the other two, iii) P (−1)

P (i)
̸= P (i)

P (−i) ̸= P (−i)
P (−1)

. Then according to Theorem 5.2 and
Theorem 1.4 of [6], S ∈ S.
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Now we consider the following example showing that there exist S ∈ S containing ∞.

Example 2. Consider the following polynomial

Q(z) = z12 + z11 + 2z10 +
5z9

2
+ 3z8 +

10z7

3
+

20z6

7
+

5z5

2
+

5z4

3
+ z3 +

6z2

11
+
z

6
+

1

13
.

Let T = {z : Q(z) = 0}
⋃
{∞}. Note that all the zeros of Q(z) are nothing but the reciprocals

of the non-zero zeros of P (z) in Example 1. Hence in view of Theorem 1 and Example 1,
T ∈ S.

Remark 2. Though from the very definition of S ∈ S, it is a subset of C but a set S ∈ S
containing ∞ is for the first time being exemplified in the literature by the above example.

Theorem 5.
⋃
S∈S S = C.

Proof. Let S1 ∈ S be such that 0,∞ /∈ S1. Clearly kS1 ∈ S. Since kS1 ⊆ C \ {0,∞}, so⋃
kS1∈[S1]

kS1 ⊆ C \ {0,∞}. Now let z ∈ C \ {0,∞} be arbitrary. Then for any a ∈ S1, there
exist z

a
= k ∈ C such that z = ka ∈ kS1 ⊆

⋃
kS1∈[S1]

kS1. That is,
⋃
kS1∈[S1]

kS1 ⊇ C\{0,∞}.
Therefore,

⋃
kS1∈[S1]

kS1 = C \ {0,∞}. Now consider S2 ∈ S, S3 ∈ S such that {0,∞} ⊂
S2

⋃
S3. Then

⋃
kS1∈[S1]

kS1

⋃
S2

⋃
S3 = C.

The following statement immediately follows from Theorem 5.

Corollary 1. Every point a ∈ C is an element of some set S ∈ S.

Hence Theorem 5 or Corollary 1 fully answers Questions 7.20 and 7.30 together. Now with
respect to Question 7.10, we have the following counterexamples that an arbitrary union of
URSM’s may not be a URSM.

Example 3. Consider the functions f(z) = 1
z

and g(z) = −1

z
.

Then Ef (C) = Eg(C) but f ̸≡ g. Hence C /∈ S.

Example 4. Consider the functions f(z) = z and g(z) = −z.
Then Ef (C) = Eg(C) but f ̸≡ g. Therefore C /∈ S.

Example 5. Consider the functions f(z) = ez and g(z) = e−z.
Then Ef (C \ {0}) = Eg(C \ {0}) but f ̸≡ g. Hence C \ {0} /∈ S.

Example 6. Consider the functions f(z) = tg z and g(z) = ctg z.
Then Ef (C \ {i,−i}) = Eg(C \ {i,−i}) but f ̸≡ g. Hence C \ {i,−i} /∈ S.

Example 7. Consider the functions f(z) = ez + a and g(z) = −ez + a.
Then Ef (C \ {a}) = Eg(C \ {a}) but f ̸≡ g. Hence for any given complex number a,
C \ {a} /∈ S.

Example 8. Consider the functions f(z) = aez−b
ez−1

and g(z) = bez−a
1−ez .

Then Ef (C\{a, b}) = Eg(C\{a, b}) but f ̸≡ g. Hence for any two arbitrary complex number
a, b, one has C \ {a, b} /∈ S.
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So, after the answers of Questions 7, it is clear that every element of the extended complex
plane participates in forming at least one S ∈ S. Mainly Theorem 5 and Corollary 1 proves
that the elements of a URSM are distributed all over the extended plane. But they are
distributed over the extended plane with a very special arrangement as follows from the
other theorems proved above.

Now we focus our research on the distribution of URSM’s over the extended plane. In
this connection, we prove the following theorem.

Before stating the theorem we need to recall some basic definitions of the metric space
(C, d), d(a, b) = |a− b| for a, b ∈ C.

We also recall the usual notion of diameter of a non-empty set A in C as
δ(A) = sup{d(a, b) : a, b ∈ A}.

Theorem 6. For any given positive real number r there exists a set S ∈ S of diameter r.
In fact, there exists uncountably many sets S ∈ S of diameter δ(S) = r.

Proof. Let r > 0 be an arbitrary real number. Let S = {a1, a2, . . . , an} be a URSM of
diameter p and ∞ /∈ S. The existence of such URSM is already given by Example 1. Now
δ(S) = p = sup

ai,aj∈S
d(ai, aj) = max

ai,aj∈S
d(ai, aj), as S is finite. Then suppose max

ai,aj∈S
d(ai, aj) =

|al− am| for some l,m ∈ {1, 2, . . . , n}. That is |al− am| ≥ |ai− aj| for all i, j ∈ {1, 2, . . . , n}.
Hence |kal − kam| ≥ |kai − kaj| for all i, j ∈ {1, 2, . . . , n}, where k ∈ R+. Therefore for the
set kS; δ(kS) = max

kai,kaj∈kS
d(kai, kaj) = |kal − kam| = k|al − am| = kp. Since this is true for

any k ∈ R+, let us choose k = r
p
. Then r

p
S is of diameter r. Now r

p
∈ R+ ⊆ C \ {0}. So in

view of Proposition 1, r
p
S ∈ S. Since r was chosen arbitrarily, so the existence the set S ∈ S

of diameter r for any r ∈ R+ is proved.
Now let θ1, θ2, . . . , θn be the principal arguments of the elements r

p
a1,

r
p
a2, . . . ,

r
p
an, respecti-

vely. Choose θ ∈
(
0,min

{
|θi−θj| : i, j ∈ {1, 2, . . . , n}, θi ̸= θj

})
. Then according to Proposi-

tion 1, eiθ r
p
S ∈ S. Observe that the diameter of eiθ r

p
S is also r. We can always have

uncountably many such θ’s.

3. Results on unique range set for meromorphic functions ignoring multiplicity.
All results and remarks except Examples 1, 2 and Remark 2 obtained in the above section
for URSM’s are also true for URSM-IM’s. But in this section we shall prove some other
results regarding URSM-IM’s which may or may not be true for all URSM’s.

On this occasion, we would like to recall the fact that till date a lot of the sets S ∈ S
and S ∈ SI have been obtained in the literature [3–5, 10, 11, 15, 16] and eventually all these
sets S are finite. So natural query arises:

Question 8. Can we have a set S ∈ S or S ∈ SI containing infinitely many elements?

In the next two statements, we answer Question 8 and also find a necessary and sufficient
condition for S /∈ SI .

Proposition 6. Let S ⊆ C. Then S /∈ SI ⇐⇒ C \ S /∈ SI .

Proof. (=⇒) Suppose S /∈ SI . Then there exist meromorphic functions f and g such that
Ef (S) = Eg(S) and f ̸≡ g. Since f and g are defined in C, for this f and g we have
Ef (C \ S) = Ef (C) \ Ef (S) = C \ Eg(S) = Eg(C) \ Eg(S) = Eg(C \ S). Hence C \ S /∈ SI .
(⇐=) For the converse let us assume C \ S /∈ SI . Then according to the above part S =
C \ (C \ S) /∈ SI .
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The next statement immediately follows from the above theorem.

Corollary 2. Let S ⊆ C. Then S ∈ SI ⇐⇒ C \ S ∈ SI .

Remark 3. Since SI ⊂ S, considering any finite URSM-IM, from Corollary 2 one can easily
obtain a set S1 ∈ SI (as well as S1 ∈ S) having uncountable number of elements.

Remark 4. Corollary 2 also confirms that union of two S1, S2 ∈ S (or S1, S2 ∈ SI) is not
always a URSM (or URSM-IM, respectively). For example if S1 ∈ SI , then S1 ∈ S and
S2 = C \ S1 ∈ S. But S1

⋃
S2 = C /∈ S (as well S1

⋃
S2 /∈ SI).

From Corollary 2 we also observe that for two sets S1, S2 ∈ SI , if S1 ∩ S2 = ∅ then
S2

⋃
(C \ {S1}) = C \ {S1} ∈ S (as well S2 ∩ (C \ {S1}) = S2 ∈ S). Hence keeping all

the results and remarks of this section and the above section for union and intersection of
URSM’s (URSM-IM’s) in mind we conjecture the following.

Conjecture 1. Union or intersection of two S1, S2 ∈ S (S1, S2 ∈ SI) is again a set from S
(a set from SI) if and only if one of them is contained in the other.

Now we prove another result which may lead us to obtain the smallest possible URSM-IM
provided the answer of the following question is affirmative.

Question 9. Is S
⋃
{a} ∈ SI , where S ∈ SI and a /∈ S?

With respect to Question 9, we obtain the following theorem.

Theorem 7. Let S ∈ SI . Then there exists a ∈ C \ S, the set S
⋃
{a} is not a set from SI .

Proof. On the contrary suppose that S
⋃
{a} ∈ SI for all a. Now consider a finite set S ∈ SI

of n elements. In particular, let S = {a1, a2, . . . , an}. Since S ∈ SI , according to Corollary 2,
C \ S ∈ SI . So from our assumption, (C \ S)

⋃
{a1} ∈ SI , where a1 ∈ S. Using the same

logic, we get that (C \ S)
⋃
{a1}

⋃
{a2} ∈ SI . Proceeding in this way we would get that

(C \ S)
⋃
S = C ∈ SI , which is a contradiction. Hence S

⋃
{a} is not always a URSM-

IM.

From Theorem 2, we know that for a set S ∈ SI , C \ S ∈ SI . Hence, for any set S ∈ SI ,
if (C \ S)

⋃
{a} ∈ SI and this happens for a set S ∈ SI of cardinality 17, then at instant we

would be able to find out a set S1 ∈ SI of cardinality 16 and so on. Therefore the following
questions are natural under this situation.

Question 10. 10. Can the answer of Question 9 be affirmative for at least a single set
S ∈ SI?
20. What can be the relation between any two meromorphic functions sharing S

⋃
{a}, where

S ∈ SI and a /∈ S?
30. Under which condition any two meromorphic functions sharing a set S will share S

⋃
{a},

where a /∈ S?

The following example to show the existence of a set S ∈ SI such that ∞ ∈ S.
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Example 9. Let

P (z) =
z19

19
− z18

9
+

10z17

17
− z16 +

12z15

5
− 4z14 +

84z13

13
− 28z12

3
+

126z11

11
− 14z10+

+14z9 − 14z8 + 12z7 − 28z6

3
+

36z5

5
− 4z4 + 3z3 − z2 + z.

Observe that z = 0 is a zero of P (z) and P
′
(z) = (z − 1)2(z − i)8(z + i)8. Now consider

S = {z : P (z) = 0}. So clearly: i) P (1) ̸= P (i) ̸= P (−i), ii) None of 1, i,−i is arithmetic
mean of the other two, iii) P (1)

P (i)
̸= P (i)

P (−i) ̸= P (−i)
P (1)

. Then according to Theorem 5.2 and
Theorem 1.4 of [6], S ∈ SI .

Now consider the polynomial

Q(z) = z18 − z17 + 3z16 − 4z15 +
36z14

5
− 28z13

3
+ 12z12 − 14z11 + 14z10 − 14z9+

+
126z8

11
− 28z7

3
+

84z6

13
− 4z5 +

12z4

5
− z3 +

10z2

17
− z

9
+

1

19
.

Note that all the zeros of Q(z) are nothing but the reciprocals of the non-zero zeros of P (z).
Let us denote T = {z : Q(z) = 0}

⋃
{∞}. Hence T = S∗. Therefore in view of analog of

Theorem 1 for the class SI see, the first sentence at the beginning of Section 3, T ∈ SI .

Now we would like to conclude this section with a short discussion. In the previous section
observing the Examples 3–8 carefully, it seems that if S /∈ S then C \ S would not be in S
too. In this section, we have proved this result for the clas of the sets SI and more generally
we have proved this to be a necessary and sufficient condition for a set S to be SI . Hence
for S ∈ S ∩ SI our presumption is true. In view of these observations, we conjecture the
following.

Conjecture 1. Let S ⊆ C. Then, S ∈ S ⇐⇒ C \ S ∈ S.

Note that if Conjecture 1 is proved to be true, then all the results and discussions of this
section would be improved up to the class S.

4. On analogues for entire functions. For two arbitrary non-constant entire functions
f , g and S ⊆ C if Ef (S) = Eg(S) implies f ≡ g, then S is called a unique range set for
entire functions or URSE in short [5] (we write S ∈ SE). Similarly if Ef (S) = Eg(S) implies
f ≡ g, then S is called a unique range set for entire functions ignoring multiplicities or
URSE-IM in short [4] and we write S ∈ SEI . Like URSM and URSM-IM there is a similar
literature of URSE and URSE-IM [14, see section 10.5.3 to 10.6.2]. However, now we discuss
the analogues of all the results proved in Section 2 and Section 3 with respect to SE and
SEI , respectively.

Note that all the results proved in Section 2 and Section 3 except Theorems 1 and 3
and Proposition 4 are also true for the classes of the sets SE and SEI . For the results of
Theorem 1, Theorem 3 and Proposition 4 to be true or false in case of the classes of the sets
SE and SEI , we need proofs. But for other results we just need to replace C by C as every
set S ∈ SE or S ∈ SEI by definition is a subset of C. For example, analogues to Theorem
5 and Theorem 2 for SE and SEI are as follows.

Theorem 8.
⋃
S∈SE S =

⋃
S∈SEI

S = C.
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Theorem 9. Let S ⊂ C. Then, S ∈ SEI ⇐⇒ C \ S ∈ SEI .

Proof. The proof is obvious as for any non-constant entire function f we always have
Ef (C) = C.

Remark 5. On this occasion, we would like to recall that in case of the classs SE (SEI),
there are examples of finite sets S ∈ SE (S ∈ SEI) (as well a infinite set S ∈ SE). But
there is only one example of infinite set S ∈ SE [8] which is as follows {z : ez + z = 0}.
Obviously this is a countable set. So it is still unfold whether there can be any URSE having
uncountable number of elements. Observe that, Theorem 9 confirms the existence of a set
S ∈ SE (as well a set S ∈ SEI) having uncountable number of elements.

Since Theorem 1, Theorem 3 and Proposition 4 are uncertain to be true for the class SE
or SEI , so one would naturally raise the following question for further investigations.

Question 11. Can Theorem 1, 3 and Proposition 4 be proved for the class SE or SEI?

5. Some applications.
Application 1 (Simple proofs of existence of some unique range set). Note that as an
application of Theorem 1, one can make a very small and simple proof of the result of [16]
using the result of [15] and also the result of [4] using the result of [17].

In [15] and [16], respectively, H. X. Yi proved that the set of zeros of each of the polynomi-
als zn + czm + d and zn + azn−m + b are URSM’s, where the polynomials have only simple
zeros, n ≥ 2m+ 9, m ≥ 2 and gcd(m,n) = 1. Now choose a, b ∈ C \ {0} in such a way that
the polynomial P (z) = zn + a

b
zm + 1

b
has only simple zeros. Then according to Yi’s result

in [15], S = {z : P (z) = 0} ∈ S for n ≥ 2m+ 9, m ≥ 2 and gcd(m,n) = 1.
Observe that the zeros of Q(z) = zn + azn−m + b are nothing but the reciprocals of the

zeros of P (z). Hence T = {z : Q(z) = 0} = S∗. Therefore according to Theorem 1, T ∈ S.
Let n ≥ 17 and a, b ∈ C\{0} be such that abn−2 ̸= 2, UY := U(Pa,b,n) be the set of zeros

of polynomial
Pa,b,n(z) = azn − n(n− 1)z2 + 2n(n− 2)bz − (n− 1)(n− 2)b2.

In [17] H. X. Yi proved that UY ∈ SI . S. Bartels [4] proved that the set UB := U(Qc,n) of
zeros of polynomial

Qc,n(z) = (n− 1)(n− 2)zn − 2n(n− 2)zn−1 + n(n− 2)zn−2 − 2c
is also a URSM-IM, i.e. UB ∈ SI for n ≥ 17, where c ̸= 0, 1.

Now for b = 1 and a = 2c we get P2c,1,n(z) = 2czn−n(n−1)z2+2n(n−2)z−(n−1)(n−2),
where c ̸= 0, 1. Observe that the zeros of Qc,n(z) are nothing but the reciprocals of the zeros
of P2c,1,n(z). Denote V = U(Qc,n) and U = U(P2,1,n). Hence V = U∗. Therefore according
to Theorem 1, V ∈ SI for n ≥ 17.

Moreover, in [3] A. Banerjee and S. Mallick proved that the set of zeros of the polynomial
R(z) = zn + azn−m + bzn−2m + c; is a URSM for n ≥ 2m + 9, where a, b, c ∈ C \ {0}
be such that a2

4b
= n(n−2m)

(n−m)2
and the polynomial has only simple zeros. Observe that as

an application of Theorem 1 one can easily prove that the set of zeros of the polynomial
S(z) = czn + bz2m + azm + 1 is a URSM under the same condition as taken for R(z) and
the most interesting fact in this case is that we do not need any more detailed proof of this
result.
Application 2. Note that for the following sets S = −S: real line, imaginary line, set
of integers, set of rational numbers, cross halves, i.e. 2nd quadrant

⋃
4th quadrant, 1st
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quadrant
⋃

3rd quadrant, upper half
⋃

lower half, right half
⋃

left half. So these sets are
not URSM’s according to Proposition 3.

Now the following questions are natural under this situation.

Question 12. 10. Is each quadrant of the complex plane a URSM?
20. Is the upper half or the lower half of the complex plane a URSM?
30. Is the right half or the left half of the complex plane a URSM?

The answers of Questions 12 are also negative as can be obtained by simple application
of Proposition 3.
Application 3. Let us denote the first, second, third and fourth quadrant of the complex
plane by C1, C2, C3 and C4, respectively. Also denote the upper half, lower half, right half
and left half by UPH, LOH, RIH and LEH, respectively. Then clearly Ci = 2Ci for all
i = 1, 2, 3, 4 and UPH = 2 UPH, LOH = 2 LOH, RIH = 2RIH and LEH = 2LEH.
Hence according to Proosition 3, none of C1, C2, C3, C4, UPH, LOH can be URSM.

Not only the infinite sets, as an above application of Proposition 3, we can prove a finite
set like U0 = {z : zn = 1} is not a URSM as ω · U0 = U0, where ω ∈ U0.
Application 4. It is obvious that U0 ⊂ C := {z : |z| = 1}. Also note that real and imaginary
lines are not URSM’s. So natural inquisition gives rise to the following question.

Question 13. What can we say about any circle or any line in C with respect to URSM’s?

As an application of Theorem 2, we find the answer of Question 13 as follows.
Let rC = {reiθ : 0 ≤ θ < 2π} be a circle of radius r centered at the origin. Now consider

eiψ, where 0 < ψ < 2π. Then eiψrC = {rei(θ+ψ) : 0 ≤ θ ≤ 2π, 0 < ψ < 2π} = rC, i.e. eiψrC is
nothing but a circle of radius r centered at the origin. Since eiψ ̸= 1, so rC /∈ S according to
Proposition 3. Hence for any α ∈ C, rC + α /∈ S according to Theorem 2. Obviously rC + α
is nothing but a circle of radius r centered at α. Since α ∈ C is arbitrary, so we can conclude
that no circle in C is a URSM.

Let L denotes an arbitrary line in C passing through the origin. Clearly L /∈ S as
L = −L. Now every line parallel to L is nothing but {z + c : z ∈ L and c ∈ R}. Clearly
{z + c : z ∈ L and c ∈ R} = L + c. Since L /∈ S, so L + c /∈ S. Since every line in C not
passing through the origin is parallel to a line passing through the origin. Hence no line in
C is a URSM.

Applying our results, we can also similarly prove that A = {z : (z − a)m − b = 0} /∈ S
(see H. Fujimoto, [6, p. 1183]).
Application 5. In Examples 1 and 2 we have seen that given 0 or ∞ we can find URSM
containing 0 or ∞. Now let c ∈ C \ {0} be arbitrary. Denote (see Application 1) UY =
U(Pa,b,n) = {c1, c2, . . . , cn} for n ≥ 11. Clearly ci ̸= 0 for all i ∈ {1, 2, . . . , n}. Then as an
application of Proposition 1 we find that for each i ∈ {1, 2, . . . , n} the set c ∈ c

ci
U ∈ S. Thus

for every element in C there exists many URSM’s containing the element.
Hence the following question becomes inevitable in this situation.

Question 14. For each finite set B = {bj : 2 ≤ j ≤ n} ⊂ C, n ∈ N, is it possible to find a
set S ∈ S such that B ⊂ S?

The following theorem contains a complete answer to this question.

Theorem 10. Let B = {bj : 2 ≤ j ≤ n} ⊂ C be any given set of pairwise distinct numbers.
Then there exists a set S ∈ S such that B ⊂ S.
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Proof. 1. n = 2. Let B = {c, d} ⊂ C be arbitrary. We at first prove that there exists a
set S ∈ S containing c, d. Let S = {a1, a2, a3, . . . , an} ∈ S be such that ai ̸= 0, ∀ i ∈
{1, 2, 3, . . . , n}. We already have many examples of such sets as given by H. X. Yi [16],
G. Frank and M. Reinders [5], S. Mallick [10] and many others. Now consider the following
function h(z) = (c−d)z+da1−ca2

a1−a2 , where a1, a2 ∈ S. Obviously, h is a bi-linear transformation
as a1 ̸= a2 and c ̸= d. Observe that h(a1) = c and h(a2) = d.

Now h(S) = (c−d)
(a1−a2)S + da1−ca2

a1−a2 . Since S ∈ S and h(z) is a Möbius transformation, so
according to Proposition 4 we get that h(S) ∈ S. Therefore, (c−d)

(a1−a2)S + da1−ca2
a1−a2 ∈ S and is

the set containing these arbitrarily given c and d.
2. n = 3. Let B = {a, b, c} ⊂ C be arbitrary. We now prove that there exists a set S ∈ S
containing a, b, c. Let S = {a1, a2, a3, . . . , an} ∈ S be such that ai ̸= 0, ∀ i ∈ {1, 2, 3, . . . , n}.
Now consider the following Möbius transformation h(z) = αz+β

γz+δ
, where α = y2z1 − y1z2, γ =

x1z2 − x2z1, δ = x2y1 − x1y2 and β = −αa1 + γaa1 + δa with x1 = a1 − a2, x2 = a2 − a3, x3 =
a3 − a1, y1 = a2b − a1a, y2 = a3c − a2b, y3 = a1a − a3c, z1 = b − a, z2 = c − b, z3 = a − c.
Observe that h(a1) = a, h(a2) = b, h(a3) = c.

Now clearly for γ ̸= 0 we have h(S) = α
γ
+ βγ−αδ

γ
(γS + δ)∗. For γ = 0 we have h(S) =

α

δ
S +

β

δ
. Hence according to Proposition 4 we obtain that h(S) ∈ S is the required set

containing a, b, c.
3. n ≥ 4. Let us consider the set S = {z : 120z17 − 255z16 + 136z15 + 1 = 0}. Obviously,
S ∈ SI according to S. Bartels [4], where n = 17.

The elements of S are all distributed in all quadrants.
If bi ∈ S, ∀i ∈ {1, 2, . . . , n}, then we are done.
If bi /∈ S for at least one i ∈ {1, 2, . . . , n}, then we find the the maximum of |bi| for all i ∈

{1, 2, . . . , n}. Suppose max |bi| = l. Further suppose min{|z| : z ∈ S} = p and k > l
p
. Then

obviously min{|kz| : kz ∈ kS} > l. Hence kS does not contain bi, ∀i ∈ {1, 2, . . . , n}. Since
S ∈ SI , so is kS and so is C \ kS, according to Proposition 1 and Theorem 6, respectively.
Since SI ⊂ S, hence bi ∈ C \ kS ∈ S (∀i ∈ {1, 2, . . . , n}).

Remark 6. For the cases n = 2 and n = 3 in Theorem 10, we found a finite set S ∈ S
containing the given points but for the case n ≥ 4 we have not always found that rather we
have found an infinite set S ∈ S containing the given points in some cases.

One can also frame an alternate version of Theorem 10 as the following assertion which
identifies the Fundamental Theorem of Algebra to a more specific region.

Corollary 3. All zeros of a polynomial in C lie in some set S ∈ S.

Since C and C are not URSM’s, so for any uncountable subset of C it is not always
possible to find out a URSM that contains the given uncountable set. Though there are
some uncountable sets which are themselves URSM’s as clarified in Remark 3.

However, for arbitrary countable subset of C we will always have URSM’s containing the
set. We prove this result by the following theorem.

Theorem 11. Let T be a countable subset of C. Then there exis an S ∈ S containing T .

Proof. Consider a set S ∈ SI such that no two of its elements have same arguments. For our
convenience we may work with the set S ∈ SI used in the proof of Theorem 10 (n ≥ 4 case).
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Now consider the collection {kiS} for all ki ∈ R+\(0, 1]. Obviously, this is an uncountable
collection and klS ∩ kmS = ∅ for distinct kl, km ∈ R+ \ (0, 1]. Note that for T , we must
have at least one kp ∈ R+ \ (0, 1] such that kpS ∩ T = ∅. Otherwise, T will be uncountable
as klS ∩ kmS = ∅ and {kiS} is an uncountable collection. Since S ∈ SI , so according to
Proposition 1, kpS ∈ SI . kpS does not intersect T which in view of Theorem 6 implies that
T ⊂ C \ kpS ∈ SI .

Observe that, we can frame an alternate version of Theorem 11 as the following statement.

Corollary 4. All zeros or poles of a meromorphic function lie in a URSM.

Remark 7. Note that Corollary 3 and Theorem 11 are also true for finite or countable
subsets of C. In this case, if R is the given subset containing ∞, then we shall find infinite
URSM containing R \ {∞} as found in the proof of Corollary 3 and Theorem 11 and that
URSM automatically contains R.

Application 6. Consider the polynomial Qc,n(z) (see Application 1) for c = 2 and n = 11.
We get Q2,11(z) = 90z11 − 198z10 + 110z9 − 4. Let W = U(Q2,11) and it’s diameter be p.
Now suppose we want a set S ∈ S of diameter δ(S) = 10. Then according to Theorem 6,
S = 10

p
W ∈ S has the diameter 10. Hence using Theorem 6, we can find S1 ∈ S of any

diameter we wish.

Remark 8. Since SI ⊂ S, so we can say that all the applications from Application 2 to 6
also hold good for the class SI .

Application 7. Let S ∈ S be a finite set containing ∞. Let f and g be any two distinct
non-constant entire functions. Then Ef (S) ̸= Eg(S). Since for any two non-constant entire
functions Ef (∞) = Eg(∞) = ∅, so Ef (S \ {∞}) ̸= Eg(S \ {∞}). This is true for any
two distinct non-constant entire functions. Hence S \ {∞} ∈ SE. Similar conclusion can be
drawn for URSE-IM with respect to URSM-IM.
Application 8. In view of Theorem 3, we conclude that every multiplicative subgroup of C
under usual multiplication of the complex numbers can not be a URSM or URSM-IM. Also
in view of Proposition 3 any additive subgroup of C can not be a URSM or URSM-IM.

Alternatively, we can say that URSM’s or URSM-IM’s can never be a subgroup of C
under usual addition or multiplication.

In case of URSE or URSE-IM we can say that they can never be a subgroup of C under
usual addition.
Application 9. In view of Pproposition 3 for a S ∈ S, clearly k1S ̸= k2S where k1, k2 ∈
C\{0} and k1 ̸= k2. Though S is not a subgroup of C under ususal addition or multiplication
but if we define the operation (∗1) on [S] by k1S ∗1 k2S = k1k2S, where k1, k2 ∈ C \ {0},
then as an application of Proposition 1, we get that ([S], ∗1) is an abelian group.

6. A few more open problems. Now we pose the following questions for further investi-
gations.

Question 15. 10. Can all the elements of a set S ∈ S belong to a line?
20. Can all the elements of a set S ∈ S belong to a circle?
30. Under which condition S

⋃
{a} ∈ SI , where S /∈ SI and a /∈ S?
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