
Математичнi Студiї. Т.54, №1 Matematychni Studii. V.54, No.1

C. Belabbaci
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In this paper, we study the spectral radius of some S-essential spectra of a bounded li-

near operator defined on a Banach space. More precisely, via the concept of measure of
noncompactness, we show that for any two bounded linear operators T and S with S non
zero and non compact operator the spectral radius of the S-Gustafson, S-Weidmann, S-Kato
and S-Wolf essential spectra are given by the following inequalities

β(T )

α(S)
≤ re,S(T ) ≤

α(T )

β(S)
, (1)

where α(.) stands for the Kuratowski measure of noncompactness and β(.) is defined in [11].
In the particular case when the index of the operator S is equal to zero, we prove the last
inequalities for the spectral radius of the S-Schechter essential spectrum. Also, we prove that
the spectral radius of the S-Jeribi essential spectrum satisfies inequalities (2) when the Banach
space X has no reflexive infinite dimensional subspace and the index of the operator S is
equal to zero (the S-Jeribi essential spectrum, introduced in [7] as a generalisation of the Jeribi
essential spectrum).

1. Introduction. The spectral theory of operators pencils (λS−T ) (operator-valued functi-
ons of a complex argument) play a crucial role in many branches of mathematical physics
see, for example, [2, 5, 4, 12].

The purpose of this paper is to study the spectral radius of some S-essential spectra of
a bounded linear operator on a Banach space X. More precisely, we give a localization of
the spectral radius of the S-essential spectra of an operator T via the concept of measure
of noncompactness when S is a non compact and non zero bounded linear operator and T
is any bounded linear operator. This work continues research begun in [7], here we aim to
prove that the spectral radius of the S-Gustafson, S-Weidmann, S-Kato and S-Wolf essential
spectrum is given by the following inequalities:

β(T )

α(S)
≤ re,S(T ) ≤ α(T )

β(S)
, (2)

where α(.) stands for the Kuratowski measure of noncompactness and β(.) is defined in the
next section.

When the index of the operator S is equal to zero, then the inequalities (2) holds for
the S-Schechter essential spectrum. Also, we prove the above inequalities (2) for the S-Jeribi
essential spectrum, introduced in [7] as a generalisation of the Jeribi essential spectrum, in
the particular case when the Banach space X has no reflexive infinite dimensional subspace.
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The paper is organised as follows. Section 2 contains an overview of the necessary
background and Section 3 contains the main results.

2. Preliminaries. The notion of measure of non-compactness have been successfully applied
in many different domains in mathematics; in fixed point theory, differential equations, functi-
onal equations, integral and integro-differential equations, etc. (see for example [14, 13, 3, 8]).
In order to recall this notion denote by X a Banach space, MX the set of all nonempty and
bounded subsets ofX. The Kuratowski measure of noncompactness of a set A inMX , denoted
α(A), is defined by

α(A) = inf
{
ε > 0: A ⊂

n⋃
i=1

Si, Si ⊂ X, diam Si ≤ ε, i = 1, ..., n
}
.

Denote by L(X) the space of all bounded linear operators of X into X and let T ∈ L(X).
The Kuratowski measure of noncompactness of an operator T is defined as follows

α(T ) = inf {k ≥ 0: α(T (A)) ≤ k α(A) for any set A ∈MX} ,

it can be equivalently defined as

α(T ) = sup

{
α(T (A))

α(A)
;A ∈MX , α(A) > 0

}
.

We define the following nonnegative quantity, β(T ), as (see [11])

β(T ) = inf

{
α(T (A))

α(A)
;A ∈MX , α(A) > 0

}
.

In what follows, we give some fundamental properties of α, β already given in [11].

Proposition 1. Let T , S be in L(X). Then the following claims hold:

1. α(λT ) = |λ|α(T ) and β(λT ) = |λ| β(T ) for all λ ∈ C.
2. |α(T )− α(S)| 6 α(T + S) 6 α(T ) + α(S).

3. β(T )− α(S) 6 β(T + S) 6 β(T ) + α(S).

4. α(T ◦ S) 6 α(T )α(S) and β(T ◦ S) > β(T )β(S).

5. α(T ) = 0 if and only if T is compact.

Recall now the following important operators. Let T ∈ L(X), denote by R(T ) the range
of T and ker(T ) the null space of T . The nullity of T , n(T ), is defined as the dimension of
ker(T ) and the deficiency of T , d(T ), is defined as the codimension of the range R(T ) in X.
An operator T ∈ L(X) is called upper semi Fredholm operator if R(T ) is closed and n(T )
is finite, it is called lower semi Fredholm operator if d(T ) is finite. The set of all upper
(respectively lower) semi Fredholm operators is denoted respectively by Φ+(X) and Φ−(X).
Φ(X) = Φ+(X)∩Φ−(X) is called the set of Fredholm operators and Φ±(X) = Φ+(X)∪Φ−(X)
is called the set of semi Fredholm operators. The index of an operator T ∈ Φ±(X) is defined
as ind(T ) = n(T )− d(T ). The following properties are well known.

Proposition 2. Let T ∈ L(X) and T ∗ be the adjoint operator of T . Then the following
claims hold:
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1. β(T ) > 0 if and only if T ∈ Φ+(X);

2. β(T ∗) > 0 if and only if T ∈ Φ−(X).

Let T , S ∈ L(X) with S non zero. We define the S-resolvent set of T by

ρS(T ) = {λ : λS − T has a bounded inverse }

and the S-spectrum of T by σS(T ) = C\ρS(T ). There are several definitions of the S-essential
spectrum of a bounded linear operator on a Banach space, in this paper we are interested
with the following definitions:

S-Wolf σe1,S(T ) = {λ ∈ C : (λS − T ) /∈ Φ(X)};
S-Gustafson σe2,S(T ) = {λ ∈ C : (λS − T ) /∈ Φ+(X)};
S-Weidmann σe3,S(T ) = {λ ∈ C : (λS − T ) /∈ Φ−(X)};
S-Kato σe4,S(T ) = {λ ∈ C : (λS − T ) /∈ Φ±(X)};
S-Schechter σe5,S(T ) = C/Φ0(T );

Φ0(T ) = {λ : (λS − T ) ∈ Φ(X)with ind(λS − T ) = 0};
S-Jeribi σej,S(T ) =

⋂
W∈W∗(X)

σS(T +W );

whereW∗(X) stands for each one of the sets of weakly compact operatorsW(X) and strictly
singular operators S(X). The following inclusion σej,S(T ) ⊂ σe5,S(T ) is always satisfies since
the setW∗(X) contains the set of compact operators K(X). In general, we have the following
inclusions:

σe4,S(T ) = σe2,S(T ) ∩ σe3,S(T ) ⊆ σe1,S(T ) ⊆ σe5,S(T ).

Note that if S is the identity operator, we recover the usual definition of essential spectra
of a bounded linear operator T ; σei(T ) for i = 1, . . . , 5 and σj(T ). The interested reader
may find further results on the essential spectra and S-essential spectra in [10], [9]. When
the S-essential spectrum is a non empty set, we define the S-essential spectral radius of T as
follows

rei,S(T ) = sup {|λ| : λ ∈ σei,S(T )} ; i = 1, . . . , 5, j.

3. Main results. In this section we present our main results. We give a localization for
the spectral radius of some S-essential spectra. In the particular, the S-Gustafson, S-Wolf,
S-Weidmann, S-Kato, S-Schechter and S-Jeribi essential spectrum.

We begin by the spectral radius of the S-Gustafson essential spectrum. We have the
following main theorem.

Theorem 1. Let T , S be two bounded operators on X, with S nonzero and noncompact.
Then the radius of the S-Gustafson essential spectrum is given by

β(T )

α(S)
≤ re2,S(T ) ≤ α(T )

β(S)
. (3)

Proof. Let us consider λ ∈ C such that |λ| > α(T )
β(S)

. Then we have β(λS)− α(T ) > 0. Using
respectively assertion (1) of Proposition 1 and assertion (2) of Proposition 2, we obtain
(λS − T ) ∈ Φ+(X), i.e. λ is not in the S-Gustafson essential spectrum σe2,S(T ). That is, if
λ belongs to σe2,S(T ) then |λ| ≤ α(T )

β(S)
. Hence

re2,S(T ) ≤ α(T )

β(S)
. (4)
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To prove the last inequality, let λ ∈ C such that |λ| < β(T )
α(S)

. Then we have β(T )−α(λS) > 0.
Using assertion (1) of Proposition 1 and assertion (2) of Proposition 2 respectively, we get
(λS − T ) ∈ Φ+(X), i.e. λ /∈ σe2,S(T ). Thus

λ ∈ σe2,S(T )⇒ |λ| ≥ β(T )

α(S)
.

So, we have

re2,S(T ) ≥ β(T )

α(S)
(5)

From the above inequalities (4) and (5), we deduce that

β(T )

α(S)
≤ re2,S(T ) ≤ α(T )

β(S)
.

We shall prove Theorem 1 for the S-Weidmann essential spectrum, but first we need to prove
the following lemma:

Lemma 1. Let T , S be two bounded operators on X, with S nonzero and noncompact.
Then we have

α(T )

β(S)
=
α(T ∗)

β(S∗)
,

where T ∗, S∗ are the adjoint operator of T and S, respectively.

Proof. The following inequalities are well known (see [10])

1

2
α(T ) ≤ α(T ∗) ≤ α(T ). (6)

For any bounded set A in X with A non relatively compact set, we have

1

2

α(S(A))

α(A)
≤ α(S∗(A))

α(A)
≤ α(S(A))

α(A)
.

This implies that

inf

{
α(S∗(A))

α(A)
, α(A) > 0

}
≤ 1

2
inf

{
α(S(A))

α(A)
, α(A) > 0

}
and

inf

{
α(S(A))

α(A)
, α(A) > 0

}
≤ inf

{
α(S∗(A))

α(A)
, α(A) > 0

}
.

By definition of β, we get β(S∗) ≤ 1
2
β(S) and β(S) ≤ β(S∗) i.e

2

β(S)
≤ 1

β(S∗)
≤ 1

β(S)
. (7)

Timing the inequalities (7) and (6) we get the results.

The following main theorem holds.
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Theorem 2. Let T , S be two bounded operators on X, with S non zero and non compact.
Then the spectral radius of the S-essential spectra is given by

β(T )

α(S)
≤ rei,S(T ) ≤ α(T )

β(S)
for i = 3, 4, 1. (8)

Proof. First, we prove the inequalities (8) for the S-Weidmann essential spectrum. Let λ ∈ C
such that |λ| < β(T ∗)

α(S∗)
, then β(T ∗) − α(λS∗) > 0. From proposition (2), this implies that

β((λS − T )∗) > 0. Using properties of β, we see that (λS − T ) ∈ Φ−(X). i.e λ /∈ σe3,S(T ).
Therefore, if λ ∈ σe3,S(T ) then |λ| ≥ α(T ∗)

β(S∗)
. By the use of Lemma (1) we conclude that

re3,S(T ) >
α(T )

β(S)
. (9)

In order to prove the other inequality, let us take λ ∈ C such that |λ| > α(T ∗)
β(S∗)

. Then
β(λS∗) > α(T ∗). From assertion (1) of proposition (1) and assertion (2) of proposition (2)
respectively, we get (λS − T ) ∈ Φ−(X). This means that λ /∈ σe3,S(T ). Consequently, by the
use of Lemme (1) we get the following implication

λ ∈ σe3,S(T )⇒ |λ| 6 α(T )

β(S)
(10)

Hence
re3,S(T ) 6

α(T )

β(S)
. (11)

From the two inequalities (9) and (11), we get a localization for the S-Weidmann essential
spectrum

β(T )

α(S)
≤ re3,S(T ) ≤ α(T )

β(S)
.

Now, we prove the above inequalities for the S-Wolf essential spectrum. From the inclusion
σe2,S(T ) ⊂ σe1,S(T ) we have re2,S(T ) ≤ re1,S(T ). So the following inequality holds

β(T )

α(S)
≤ re1,S(T ). (12)

For the last inequality, let us suppose λ ∈ C such that |λ| > α(T )
β(S)

. Then using Lemme (1), we
have |λ| > α(T )

β(S)
= α(T ∗)

β(S∗)
. i.e |λ| β(S) > α(T ) and |λ| β(S∗) > α(T ∗). Using properties of β we

get β(λS − T ) > 0 and β(λS∗ − T ∗) > 0. This implies that (λS − T ) ∈ Φ+(X) ∩ Φ−(X) =
Φ(X). Hence λ /∈ σe1,S(T ). Therefore

λ ∈ σe1,S(T )⇒ |λ| ≤ α(T )

β(S)

Consequently we have the following inequality

re1,S(T ) ≤ α(T )

β(S)
. (13)

From the two inequalities (13) and (12), we get the results.
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In what follows, we prove the above localization for the S-Kato essential spectrum. From
the equality σe4,S(T ) = σe2,S(T ) ∩ σe3,S(T ), we infer that re4,S(T ) 6 α(T )

β(S)
. Now it suffices to

show that re4,S(T ) ≥ β(T )
α(S)

. Suppose that |λ| < β(T )
α(S)

, then using properties of β we see that
(λS − T ) ∈ Φ+(X). Consequently λ /∈ σe4,S(T ). We deduce that, if λ belongs to σe4,S(T )

then |λ| ≥ α(T )
β(S)

. Hence re4,S(T ) ≥ α(T )
β(S)

.

In the following theorem, we prove formulae (2) for the S-Schechter essential spectrum.

Theorem 3. Let T , S be two bounded operators on a Banach space X, with S non zero and
non compact. Suppose that ind S = 0. Then the spectral radius of the S-Schechter essential
spectrum is given by

β(T )

α(S)
≤ re5,S(T ) ≤ α(T )

β(S)
. (14)

Proof. It follows immediately from the inclusion σe1,S(T ) ⊂ σe5,S(T ) that β(T )
α(S)

6 re5,S(T ).
In order to prove the last inequality, let us take λ ∈ C such that |λ| > α(T )

β(S)
. Using [1,

Theorem 2.2], we obtain that (λS − T ) ∈ Φ+(X) and ind(λS − T ) = ind(λS). According to
the hypothesis ensuring ind S = 0 , it follows that (λS − T ) ∈ Φ(X) with ind(λS − T ) = 0.
Hence λ ∈ σe1,S(T ) implies that |λ| ≤ α(T )

β(S)
. We deduce that re5,S(T ) ≤ α(T )

β(S)
.

We end this section by the spectral radius of the S-Jeribi essential spectrum. In the
definition of the S-Jeribi essential spectrum, we restrict K belonging to W(X) only since X
is a Banach space. The other main results is the following theorems:

Theorem 4. Let X be a Banach space which has no reflexive infinite dimensional subspaces
and T ∈ L(X). Then we have

σei,S(T ) ⊂ σj,S(T ), i = 1, . . . , 4.

Proof. Reasoning in the same way as the proof of [6, Theorem 3.3].

The following main theorem gives a localization for the spectral radius of the S-Jeribi
essential spectrum in the particular case when the Banach space X has no reflexive infinite
dimensional subspaces.

Theorem 5. Let X be a Banach space which has no reflexive infinite dimensional subspaces,
T, S ∈ L(X) and ind S = 0. Then the spectral radius of the S-Jeribi essential spectrum
satisfies formulae (2).

Proof. From the inclusion σej,S(T ) ⊂ σe5,S(T ), we infer that rej,S(T ) ≤ α(T )
β(S)

. The last inequali-
ty is satisfies by using Theorem 4.
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