A. V. Savchuk

POINTWISE ESTIMATES FOR THE DERIVATIVE OF ALGEBRAIC POLYNOMIALS

A. V. Savchuk. Pointwise estimates for the derivative of algebraic polynomials, Mat. Stud. 56 (2021), 208-211.

We give a sufficient condition on coefficients a_{k} of an algebraic polynomial $P(z)=\sum_{k=0}^{n} a_{k} z^{k}$, $a_{n} \neq 0$, such that the pointwise Bernstein inequality $\left|P^{\prime}(z)\right| \leq n|P(z)|$ is true for all $z,|z| \leq 1$.

1. Introduction and main result. Let P be an algebraic polynomial with complex coefficients, and let $z_{1}, z_{2}, \ldots, z_{m}$ be distinct zeros of P with multiplicities $r_{1}, r_{2}, \ldots, r_{m}$, respectively, enumerated in ascending order of their moduli $\left|z_{1}\right| \leq\left|z_{2}\right| \leq \cdots \leq\left|z_{m}\right|$; $\sum_{k=1}^{m} r_{k}=\operatorname{deg} P$. Here and in what follows, we assume that $\sum_{k=1}^{0}=0$.

Consider the real part of the logarithmic derivative of P

$$
\begin{equation*}
\operatorname{Re} \frac{z P^{\prime}(z)}{P(z)}=\operatorname{Re} \sum_{k=1}^{m} \frac{r_{k} z}{z-z_{k}}=\frac{n}{2}+\frac{1}{2} \sum_{k=1}^{m} r_{k} \frac{|z|^{2}-\left|z_{k}\right|^{2}}{\left|z-z_{k}\right|^{2}}, \tag{1}
\end{equation*}
$$

where $n=\operatorname{deg} P$. Since $|\operatorname{Re} w| \leq|w|, w \in \mathbb{C}$, for all $z \in \mathbb{C} \backslash\left\{z_{1}, \ldots, z_{m}\right\}$ we obtain

$$
\begin{equation*}
\left|\frac{n}{2}+\frac{1}{2} \sum_{k=1}^{m} r_{k} \frac{|z|^{2}-\left|z_{k}\right|^{2}}{\left|z-z_{k}\right|^{2}}\right| \leq\left|\frac{z P^{\prime}(z)}{P(z)}\right| \tag{2}
\end{equation*}
$$

Denote $\mathbb{D}:=\{z \in \mathbb{D}:|z|<1\}, \mathbb{T}:=\{z \in \mathbb{C}:|z|=1\}$. Assume that $z_{k} \notin \mathbb{T}$, $k \in\{1, \ldots, m\}$. By the Cauchy theorem, $\sum_{k=1}^{j} r_{k}=\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{P^{\prime}(z)}{P(z)} d z$, therefore

$$
\begin{equation*}
\sum_{k=1}^{j} r_{k} \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\frac{P^{\prime}\left(e^{i \theta}\right)}{P\left(e^{i \theta}\right)}\right| d \theta \leq \max \left\{\left|\frac{P^{\prime}(z)}{P(z)}\right|: z \in \mathbb{T}\right\} \tag{3}
\end{equation*}
$$

where $j \leq m$ is the non-negative integer such that $\left|z_{j}\right|<1<\left|z_{j+1}\right|$.
From (2), (3) and the following Bernstein inequality

$$
\begin{equation*}
\max \left\{\left|P^{\prime}(z)\right|: z \in \mathbb{T}\right\} \leq n \max \{|P(z)|: z \in \mathbb{T}\} \tag{4}
\end{equation*}
$$

we readily conclude that for any algebraic polynomial $P, \operatorname{deg} P=n$, having all its zeros in \mathbb{D}, the following inequalities hold $\frac{n}{1+\left|z_{m}\right|} \leq \min \left\{\left|\frac{P^{\prime}(z)}{P(z)}\right|: z \in \mathbb{T}\right\} \leq n \leq \max \left\{\left|\frac{P^{\prime}(z)}{P(z)}\right|: z \in \mathbb{T}\right\}$.

Keywords: algebraic polynomial; logarithmic derivative; Bernstein's inequality. doi:10.30970/ms.56.2.208-211

The first inequality was observed by Govil [1], the second one is the consequence of (4) and the third one is the consequence of (3). All these results are sharp. The equalities are attained for the polynomial $P(z)=a_{n}(z-c)^{n}$ and suitable $c \in \mathbb{D}$.

Assume that all zeros z_{1}, \ldots, z_{m} of P lie in the domain $\mathbb{U}:=\{z \in \mathbb{C}:|z| \geq 1\}$. Then it follows from (1) that $\operatorname{Re} \frac{z P^{\prime}(z)}{P(z)} \leq n / 2$ for all $z \in \overline{\mathbb{D}} \backslash\left\{z_{1}, \ldots, z_{m}\right\}$. Aziz [2] noted that this gives (see also Lemma 1 below), $\left|z P^{\prime}(z)\right| \leq\left|n P(z)-z P^{\prime}(z)\right|$ for all $z \in \overline{\mathbb{D}}$.

It is easy to see that if P is a polynomial of degree n having all its zeros in $\mathbb{U}_{2}:=$ $\{z \in \mathbb{C}:|z| \geq 2\}$, then $\max \left\{\left|\frac{z P^{\prime}(z)}{P(z)}\right|: z \in \overline{\mathbb{D}}\right\} \leq \sum_{k=1}^{m} \frac{r_{k}}{\left|z_{k}\right|-1} \leq n$. This is equivalent to $\left|z P^{\prime}(z)\right| \leq n|P(z)|$ for all $z \in \overline{\mathbb{D}}$. We will call the last relation the pointwise Bernstein inequality. Combining Aziz's inequality $\left|z P^{\prime}(z)\right| \leq\left|n P(z)-z P^{\prime}(z)\right|$ and the pointwise Bernstein inequality, in the case $\left\{z_{1}, \ldots, z_{m}\right\} \in \mathbb{U}_{2}$ we obtain that for all $z \in \overline{\mathbb{D}}$

$$
\begin{equation*}
\left|z P^{\prime}(z)\right| \leq \min \left\{\left|n P(z)-z P^{\prime}(z)\right|, n|P(z)|\right\} \tag{5}
\end{equation*}
$$

In this note we give the sufficient condition on coefficients of the polynomial P such that the pointwise Bernstein inequality is true for all $z \in \overline{\mathbb{D}}$. As we will see, our condition implies (5) and does not require that all zeros of P lie in \mathbb{U}_{2}.

For further information about the estimates of derivative and the logarithmic derivative of polynomials we refer to [3-6] and references therein.

Our main result is the following theorem.
Theorem 1. Let $n \in \mathbb{Z}_{+}$and $\left\{k_{\nu}\right\}_{\nu=0}^{n}, 0 \leq k_{0}<k_{1}<\ldots<k_{n}$, be positive integers and let $P(z)=\sum_{\nu=0}^{n} a_{\nu} z^{k_{\nu}}$ be an algebraic polynomial of degree k_{n} with coefficients $\left\{a_{\nu}\right\}_{\nu=0}^{n} \in$ $\mathbb{C} \backslash\{0\}$. If

$$
\begin{equation*}
\min _{\mathrm{t} \in \overline{\mathbb{D}}} \operatorname{Re} \sum_{j=0}^{n-\nu} \frac{a_{j+\nu}}{a_{\nu}} t^{k_{j+\nu}-k_{\nu}} \geq \frac{1}{2}, \quad \nu=0,1, \ldots, n \tag{6}
\end{equation*}
$$

then the following assertions hold:
(i) The polynomial P has no zeros in $\overline{\mathbb{D}}$, provided $k_{0}=0$, and has no zeros in $\overline{\mathbb{D}} \backslash\{0\}$ for $k_{0}>0$.
(ii) For all $z \in \overline{\mathbb{D}}$

$$
\begin{equation*}
\left|z P^{\prime}(z)\right| \leq k_{n}|P(z)| \tag{7}
\end{equation*}
$$

For $z \in \mathbb{D}$ the equality in this inequality is attained only in the case $n=0$, that is for $P(z)=a_{0} z^{k_{0}}, k_{0}>0$.
(iii) for $k_{0}=0$ and for all $n \geq 1, z \in \mathbb{D}$ we have $\left|P^{\prime}(z)\right|<k_{n}|P(z)|$.

Remark 1. Let P be chosen as in Theorem 1. Then we have the implication $(i i) \Rightarrow(i)$.
This is a consequence of the Riemann theorem on removable singularities applied to the function $z \mapsto \frac{z P^{\prime}(z)}{P(z)}=\sum_{k=1}^{m} \frac{r_{k} z}{z-z_{k}}$.
Corollary 1. Let P be as in Theorem 1 with $a_{0} \geq a_{1} \geq \ldots \geq a_{n}>0, n \in \mathbb{N}$ and $k_{0}=0$. If $0 \leq \Delta^{2}\left(a_{\nu}\right):= \begin{cases}a_{\nu+2}-2 a_{\nu+1}+a_{\nu}, & \text { if } \nu=0,1, \ldots, n-2, \\ a_{n-1}-2 a_{n}, & \text { if } \nu=n-1, \\ a_{n}, & \text { if } \nu=n,\end{cases}$
then $\left|z P^{\prime}(z)\right| \leq \min \left\{\left|k_{n} P(z)-z P^{\prime}(z)\right|, k_{n}|P(z)|\right\}$ for all $z \in \overline{\mathbb{D}}$.

We denote $\lambda_{k, \nu}=\left\{\begin{array}{l}\frac{a_{k+\nu}}{a_{\nu}}, 0 \leq k \leq n-\nu, \\ 0, k=n-\nu+1 .\end{array} \quad\right.$ For each $\nu \in\{0,1, \ldots, n\}$ the sequence $\left\{\lambda_{k, \nu}\right\}_{k=0}^{n-\nu+1}$ is non-negative, monotonically non-increasing and convex, i.e. $\lambda_{0, \nu} \geq \lambda_{1, \nu} \geq$ $\ldots \geq \lambda_{n-\nu, \nu}>\lambda_{n-\nu+1, \nu}=0$ and $\Delta^{2}\left(\lambda_{k, \nu}\right) \geq 0$ for $k=0,1, \ldots, n-\nu+1$. Thus by the Fejér Theorem (see [3, p.310]) the trigonometric polynomials $\frac{\lambda_{0, \nu}}{2}+\sum_{k=1}^{n-\nu} \lambda_{k, \nu} \cos k x$, $\nu=0,1, \ldots, n$, are non-negative for all $x \in \mathbb{R}$. This is equivalent to the condition (6).

Example 1. Let $n \in \mathbb{N} \backslash\{1\}$ and $P(z)=\sum_{k=0}^{n}(n+1-k) z^{k}$. Then for $t=\mathrm{e}^{\mathrm{i} x}, x \in \mathbb{R}$, we have

$$
\frac{1}{2}+\operatorname{Re} \sum_{k=1}^{n-\nu} \frac{n+1-(k+\nu)}{n+1-\nu} t^{k}=\frac{1}{2}+\sum_{k=1}^{n-\nu}\left(1-\frac{k}{n+1-\nu}\right) \cos k x=F_{n-\nu+1}(x) \geq 0
$$

for all $x \in \mathbb{R}, \nu \in\{0,1, \ldots, n\}$, where F_{k} is the Fejér kernel (see [3, p.311, p.313]).
Therefore, combining Aziz's inequlity and (7), we obtain

$$
\left|\sum_{k=1}^{n}(n+1-k) k z^{k}\right| \leq \min \left\{\left|\sum_{k=0}^{n-1}(n+1-k)(n-k) z^{k}\right|, n\left|\sum_{k=0}^{n}(n+1-k) z^{k}\right|\right\} .
$$

By the Eneström-Kakeya's Theorem (see [4, p.255]) with refinement given by Anderson, Saff and Varga [7, Corollary 2], zeros of P satisfy $\left|z_{k}\right|<2, k \in\{1, \ldots, n\}$.
2. Lemmas. For the proof of Theorem 1 we require the following lemmas.

Lemma 1. Let P and Q be functions defined on a compact set $K \subset \mathbb{C}, \mathcal{Z}(Q):=\{z \in \mathbb{C}$: $Q(z)=0\}$ and $K \backslash \mathcal{Z}(Q) \neq \varnothing$. In order that $|P(z)-Q(z)| \leq|P(z)|$ for all $z \in K$ it is necessary and sufficient that $\inf \left\{\operatorname{Re} \frac{P(z)}{Q(z)}: z \in K \backslash \mathcal{Z}(Q)\right\} \geq \frac{1}{2}$.

Proof. The assertion readily follows from the obvious identity $|w|^{2}-|w-1|^{2}=2 \operatorname{Re} w-1$, for $w=\frac{P(z)}{Q(z)}$ with $z \in K \backslash \mathcal{Z}(Q)$.

Lemma 2. Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}, n \in \mathbb{N}$, and $a_{n} \neq 0$. Then for all $z \in \mathbb{C} \backslash\{0\}$ and $w \in \mathbb{C}$ we have

$$
\left|z \frac{P(z)-P(w)}{z-w}\right| \leq A(z, w) \max \left\{\left|P(z)-\sum_{j=0}^{k} a_{j} z^{j}\right|: k \in\{0, \ldots, n-1\}\right\},
$$

$A(z, w)=\left\{\begin{array}{ll}\frac{|z|^{n}-|w|^{n}}{|z| n^{n-1}(|z|-|w|)}, & \text { if }|z| \neq|w|, \\ n, & \text { if }|z|=|w| .\end{array}\right.$ The result is best possible and the equality holds for the polynomial $P(z)=a_{0}+a_{n} z^{n}$ in the case $\arg z=\arg w$.

Proof. Fix $z \in \mathbb{C} \backslash\{0\}$. Summation by parts yields

$$
P(w)=P(z)\left(\frac{w}{z}\right)^{n}+\left(1-\frac{w}{z}\right) \sum_{k=1}^{n}\left(\sum_{j=0}^{k-1} a_{j} z^{j}\right)\left(\frac{w}{z}\right)^{k-1}
$$

This gives $z \frac{P(z)-P(w)}{z-w}=\sum_{k=0}^{n-1}\left(P(z)-\sum_{j=0}^{k} a_{j} z^{j}\right)\left(\frac{w}{z}\right)^{k}$. From this equality it follows the assertion of the lemma.
3. Proof of Theorem 1. Denote

$$
\rho_{k}(P)(z):=\sum_{j=k}^{k_{n}} c_{j} z^{j}, k=0,1, \ldots, k_{n}, \quad c_{j}= \begin{cases}0, & \text { if } j \notin\left\{k_{\nu}\right\}_{\nu=0}^{n}, \\ a_{j}, & \text { if } j \in\left\{k_{\nu}\right\}_{\nu=0}^{n}\end{cases}
$$

(i) By Lemma 1 the condition (6) is equivalent to

$$
\begin{equation*}
|P(z)| \geq\left|\rho_{k_{0}}(P)(z)\right| \geq \ldots \geq\left|\rho_{k_{n}}(P)(z)\right|=\left|a_{n} z^{k_{n}}\right| \quad \forall z \in \overline{\mathbb{D}} \tag{8}
\end{equation*}
$$

This gives that $P(z) \neq 0$ for $z \in \overline{\mathbb{D}} \backslash\{0\}$. If $k_{0}=0$ then in addition $P(0)=a_{k_{0}} \neq 0$.
(ii) It follows from (8) that the sequence $\left\{\left|\rho_{k_{\nu}}(P)(z)\right|\right\}_{\nu=0}^{n}$ is non-increasing. Since $\rho_{j}(P)=$ $\rho_{k_{\nu}}(P)$ for $k_{\nu-1}<j \leq k_{\nu}, \nu=0,1, \ldots, n$, where $k_{-1}=-1$, we conclude that the sequence $\left\{\left|\rho_{j}(P)(z)\right|\right\}_{j=0}^{k_{n}}$ is also non-increasing. Therefore, by Lemma 2 we get

$$
\left|z \frac{P(z)-P(z t)}{1-t}\right| \leq k_{n}\left|\rho_{n_{0}}(P)(z)\right| \leq k_{n}|P(z)|
$$

for all $t \in \mathbb{T}$. In particularly, for $t=1$ we obtain (7).
Now assume that the equality in (7) is attained at some $z \in \mathbb{D}$. Then by part (i) of Theorem 1, the function $F(t):=\frac{t P^{\prime}(t)}{k_{n} P(t)}=\frac{k_{0}}{k_{n}}+\frac{\left(k_{1}-k_{0}\right) a_{1}}{k_{n} a_{0}} t^{k_{1}-k_{0}}+\ldots$ is holomorphic in \mathbb{D}, $|F(t)| \leq 1$ for all $t \in \mathbb{D}$ and $|F(z)|=1$. Therefore, by the maximum modulus principle $F(t)=c$ for all $t \in \mathbb{D}$ with $|c|=1$. But $F(0)=k_{0} / k_{n}$. So, $c=k_{0} / k_{n}=1$. This is equivalent to $n=0$ and $P(t)=\mathrm{e}^{\mathrm{M}} t^{k_{0}}$ for some $M \in \mathbb{C}$.
(iii) Let $k_{0}=0$. In view of proved properties of the function F, we have that $F(0)=0$. Therefore, by the Schwarz Lemma we get $|F(t)| \leq|t|$ for all $t \in \mathbb{D}$. Moreover, if $|F(z)|=|z|$ for some $z \in \mathbb{D} \backslash\{0\}$, then $F(t)=c t$ for some $c \in \mathbb{C}$ with $|c|=1$. It follows that $c=F^{\prime}(t)=\frac{k_{1}^{2} a_{1}}{k_{n} a_{0}} t^{k_{1}-1}+\cdots, \quad t \in \mathbb{D}$. Hence, it is necessary that $k_{1}=1$ and $\left|a_{1}\right|=k_{n}\left|a_{0}\right|$. However, under condition (6),

$$
\begin{aligned}
\left|a_{1} / a_{0}\right| & =\frac{1}{2 \pi}\left|\int_{0}^{2 \pi} e^{i\left(k_{1}-k_{0}\right) \theta} \operatorname{Re}\left(1+2 \sum_{j=1}^{n} \frac{a_{j}}{a_{0}} e^{i\left(k_{j}-k_{0}\right) \theta}\right) d \theta\right| \leq \\
& \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{Re}\left(1+2 \sum_{j=1}^{n} \frac{a_{j}}{a_{0}} e^{i\left(k_{j}-k_{0}\right) \theta}\right) d \theta=1
\end{aligned}
$$

Thus, $k_{n}=1$ or equivalently, $n=1$. But for $n=1$ the condition (6) implies $\left|a_{0}\right| \geq 2\left|a_{1}\right|$. This is a contradiction. Hence, $|F(t)|<|t|$ for all $t \in \mathbb{D}$.

References

1. Govil, N. K. On the derivative of a polynomial. Proc. Amer. Math. Soc. 41 (1973), 543-546.
2. A. Aziz, Integral mean estimates for polynomials with restricted zeros, J. Approx. Theory, 55 (1988), №2, 232-239.
3. G.V. Milovanović, D.S. Mitrinović, Th.M. Rassias, Topics in polynomials: extremal problems, inequalities, zeros, World Scientific Publishing Co., Inc., River Edge, NJ, 1994, 821 p.
4. Q.I. Rahman, G. Schmeisser, Analytic theory of polynomials, London Mathematical Society Monographs, New Series, 26, The Clarendon Press, Oxford University Press, Oxford, 2002, 742 p.
5. T. Sheil-Small, Complex polynomials, Cambridge Studies in Advanced Mathematics, 75. Cambridge University Press, Cambridge, 2002, 428 p.
6. V.I. Danchenko, M.A. Komarov, P.V. Chunaev, Extremal and approximative properties of simple partial fractions, Russ Math., 62 (2018), 6-41. https://doi.org/10.3103/S1066369X18120022
7. N. Anderson, E.B. Saff, R.S. Varga, On the Eneström-Kakeya theorem and its sharpness, Linear Algebra Appl., 28 (1979), 5-16.

Taras Shevchenko National University of Kyiv, Kyiv, Ukraine University of Toulon, Toulon, France
adrian.savchuk.v@gmail.com, adrian-savchuk@etud.univ-tln.fr

