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We give a sufficient condition on coefficients ak of an algebraic polynomial P (z) =
n∑

k=0

akz
k,

an 6= 0, such that the pointwise Bernstein inequality |P ′(z)| ≤ n|P (z)| is true for all z, |z| ≤ 1.

1. Introduction and main result. Let P be an algebraic polynomial with complex
coefficients, and let z1, z2, . . . , zm be distinct zeros of P with multiplicities r1, r2, . . . , rm,
respectively, enumerated in ascending order of their moduli |z1| ≤ |z2| ≤ · · · ≤ |zm|;∑m

k=1 rk = degP . Here and in what follows, we assume that
∑0

k=1 = 0.
Consider the real part of the logarithmic derivative of P

Re
zP ′(z)

P (z)
= Re

m∑
k=1

rkz

z − zk
=
n

2
+

1

2

m∑
k=1

rk
|z|2 − |zk|2

|z − zk|2
, (1)

where n = degP . Since |Rew| ≤ |w|, w ∈ C, for all z ∈ C \ {z1, . . . , zm} we obtain∣∣∣n
2

+
1

2

m∑
k=1

rk
|z|2 − |zk|2

|z − zk|2
∣∣∣ ≤ ∣∣∣zP ′(z)

P (z)

∣∣∣. (2)

Denote D := {z ∈ D : |z| < 1}, T := {z ∈ C : |z| = 1}. Assume that zk 6∈ T,

k ∈ {1, . . . ,m}. By the Cauchy theorem,
∑j

k=1 rk = 1
2πi

∫
T
P ′(z)
P (z)

dz, therefore

j∑
k=1

rk ≤
1

2π

∫ 2π

0

∣∣∣P ′(eiθ)
P (eiθ)

∣∣∣dθ ≤ max
{∣∣∣P ′(z)

P (z)

∣∣∣ : z ∈ T
}
, (3)

where j ≤ m is the non-negative integer such that |zj| < 1 < |zj+1|.
From (2), (3) and the following Bernstein inequality

max{|P ′(z)| : z ∈ T} ≤ nmax{|P (z)| : z ∈ T}, (4)

we readily conclude that for any algebraic polynomial P , degP = n, having all its zeros in
D, the following inequalities hold n

1+|zm| ≤ min
{∣∣P ′(z)

P (z)

∣∣ : z ∈ T
}
≤ n ≤ max

{∣∣P ′(z)
P (z)

∣∣ : z ∈ T
}
.
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The first inequality was observed by Govil [1], the second one is the consequence of (4)
and the third one is the consequence of (3). All these results are sharp. The equalities are
attained for the polynomial P (z) = an(z − c)n and suitable c ∈ D.

Assume that all zeros z1, . . . , zm of P lie in the domain U := {z ∈ C : |z| ≥ 1}. Then it

follows from (1) that Re zP
′(z)

P (z)
≤ n/2 for all z ∈ D \ {z1, . . . , zm}. Aziz [2] noted that this

gives (see also Lemma 1 below), |zP ′(z)| ≤ |nP (z)− zP ′(z)| for all z ∈ D.
It is easy to see that if P is a polynomial of degree n having all its zeros in U2 :=

{z ∈ C : |z| ≥ 2}, then max
{∣∣ zP ′(z)

P (z)

∣∣ : z ∈ D
}
≤
∑m

k=1
rk
|zk|−1

≤ n. This is equivalent to

|zP ′(z)| ≤ n|P (z)| for all z ∈ D. We will call the last relation the pointwise Bernstein
inequality. Combining Aziz’s inequality |zP ′(z)| ≤ |nP (z)− zP ′(z)| and the pointwise Bern-
stein inequality, in the case {z1, . . . , zm} ∈ U2 we obtain that for all z ∈ D

|zP ′(z)| ≤ min{|nP (z)− zP ′(z)|, n|P (z)|}. (5)

In this note we give the sufficient condition on coefficients of the polynomial P such that
the pointwise Bernstein inequality is true for all z ∈ D. As we will see, our condition implies
(5) and does not require that all zeros of P lie in U2.

For further information about the estimates of derivative and the logarithmic derivative
of polynomials we refer to [3–6] and references therein.

Our main result is the following theorem.

Theorem 1. Let n ∈ Z+ and {kν}nν=0, 0 ≤ k0 < k1 < . . . < kn, be positive integers and
let P (z) =

∑n
ν=0 aνz

kν be an algebraic polynomial of degree kn with coefficients {aν}nν=0 ∈
C \ {0}. If

min
t∈D

Re
n−ν∑
j=0

aj+ν
aν

tkj+ν−kν ≥ 1

2
, ν = 0, 1, . . . , n, (6)

then the following assertions hold:
(i) The polynomial P has no zeros in D, provided k0 = 0, and has no zeros in D \ {0} for
k0 > 0.
(ii) For all z ∈ D

|zP ′(z)| ≤ kn|P (z)|. (7)

For z ∈ D the equality in this inequality is attained only in the case n = 0, that is for
P (z) = a0z

k0 , k0 > 0.
(iii) for k0 = 0 and for all n ≥ 1, z ∈ D we have |P ′(z)| < kn|P (z)|.

Remark 1. Let P be chosen as in Theorem 1. Then we have the implication (ii)⇒ (i).

This is a consequence of the Riemann theorem on removable singularities applied to the
function z 7→ zP ′(z)

P (z)
=
∑m

k=1
rkz
z−zk

.

Corollary 1. Let P be as in Theorem 1 with a0 ≥ a1 ≥ . . . ≥ an > 0, n ∈ N and k0 = 0. If

0 ≤ ∆2(aν) :=


aν+2 − 2aν+1 + aν , if ν = 0, 1, . . . , n− 2,

an−1 − 2an, if ν = n− 1,

an, if ν = n,

then |zP ′(z)| ≤ min
{
|knP (z)− zP ′(z)|, kn|P (z)|

}
for all z ∈ D.
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We denote λk,ν =

{
ak+ν
aν
, 0 ≤ k ≤ n− ν,

0, k = n− ν + 1.
For each ν ∈ {0, 1, . . . , n} the sequence

{λk,ν}n−ν+1
k=0 is non-negative, monotonically non-increasing and convex, i.e. λ0,ν ≥ λ1,ν ≥

. . . ≥ λn−ν,ν > λn−ν+1,ν = 0 and ∆2(λk,ν) ≥ 0 for k = 0, 1, . . . , n − ν + 1. Thus by

the Fejér Theorem (see [3, p.310]) the trigonometric polynomials λ0,ν
2

+
∑n−ν

k=1 λk,ν cos kx,
ν = 0, 1, . . . , n, are non-negative for all x ∈ R. This is equivalent to the condition (6).

Example 1. Let n ∈ N \ {1} and P (z) =
∑n

k=0(n + 1 − k)zk. Then for t = eix, x ∈ R, we
have

1

2
+ Re

n−ν∑
k=1

n+ 1− (k + ν)

n+ 1− ν
tk =

1

2
+

n−ν∑
k=1

(
1− k

n+ 1− ν
)

cos kx = Fn−ν+1(x) ≥ 0,

for all x ∈ R, ν ∈ {0, 1, . . . , n}, where Fk is the Fejér kernel (see [3, p.311, p.313]).
Therefore, combining Aziz’s inequlity and (7), we obtain∣∣∣∣ n∑

k=1

(n+ 1− k)kzk
∣∣∣∣ ≤ min

{∣∣∣∣∣
n−1∑
k=0

(n+ 1− k)(n− k)zk

∣∣∣∣∣, n
∣∣∣∣ n∑
k=0

(n+ 1− k)zk
∣∣∣∣
}
.

By the Eneström–Kakeya’s Theorem (see [4, p.255]) with refinement given by Anderson,
Saff and Varga [7, Corollary 2], zeros of P satisfy |zk| < 2, k ∈ {1, . . . , n}.

2. Lemmas. For the proof of Theorem 1 we require the following lemmas.

Lemma 1. Let P and Q be functions defined on a compact set K ⊂ C, Z(Q) := {z ∈ C :
Q(z) = 0} and K \ Z(Q) 6= ∅. In order that |P (z) − Q(z)| ≤ |P (z)| for all z ∈ K it is

necessary and sufficient that inf{Re P (z)
Q(z)

: z ∈ K \ Z(Q)} ≥ 1
2
.

Proof. The assertion readily follows from the obvious identity |w|2 − |w − 1|2 = 2 Rew − 1,

for w = P (z)
Q(z)

with z ∈ K \ Z(Q).

Lemma 2. Let P (z) =
∑n

j=0 ajz
j, n ∈ N, and an 6= 0. Then for all z ∈ C \ {0} and w ∈ C

we have ∣∣∣∣zP (z)− P (w)

z − w

∣∣∣∣ ≤ A(z, w) max
{∣∣P (z)−

k∑
j=0

ajz
j
∣∣ : k ∈ {0, . . . , n− 1}

}
,

A(z, w) =

{
|z|n−|w|n

|z|n−1(|z|−|w|) , if |z| 6= |w|,
n, if |z| = |w|.

The result is best possible and the equality holds for

the polynomial P (z) = a0 + anz
n in the case arg z = argw.

Proof. Fix z ∈ C \ {0}. Summation by parts yields

P (w) = P (z)
(w
z

)n
+
(

1− w

z

) n∑
k=1

( k−1∑
j=0

ajz
j
)(w

z

)k−1
.

This gives z P (z)−P (w)
z−w =

∑n−1
k=0

(
P (z) −

∑k
j=0 ajz

j
) (

w
z

)k
. From this equality it follows the

assertion of the lemma.

3. Proof of Theorem 1. Denote

ρk(P )(z) :=
kn∑
j=k

cjz
j, k = 0, 1, . . . , kn, cj =

{
0, if j 6∈ {kν}nν=0,

aj, if j ∈ {kν}nν=0.
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(i) By Lemma 1 the condition (6) is equivalent to

|P (z)| ≥ |ρk0(P )(z)| ≥ . . . ≥ |ρkn(P )(z)| =
∣∣anzkn∣∣ ∀z ∈ D. (8)

This gives that P (z) 6= 0 for z ∈ D \ {0}. If k0 = 0 then in addition P (0) = ak0 6= 0.
(ii) It follows from (8) that the sequence {|ρkν (P )(z)|}nν=0 is non-increasing. Since ρj(P ) =
ρkν (P ) for kν−1 < j ≤ kν , ν = 0, 1, . . . , n, where k−1 = −1, we conclude that the sequence
{|ρj(P )(z)|}knj=0 is also non-increasing. Therefore, by Lemma 2 we get∣∣∣∣zP (z)− P (zt)

1− t

∣∣∣∣ ≤ kn|ρn0(P )(z)| ≤ kn|P (z)|

for all t ∈ T. In particularly, for t = 1 we obtain (7).
Now assume that the equality in (7) is attained at some z ∈ D. Then by part (i) of

Theorem 1, the function F (t) := tP ′(t)
knP (t)

= k0
kn

+ (k1−k0)a1
kna0

tk1−k0 + . . . is holomorphic in D,

|F (t)| ≤ 1 for all t ∈ D and |F (z)| = 1. Therefore, by the maximum modulus principle
F (t) = c for all t ∈ D with |c| = 1. But F (0) = k0/kn. So, c = k0/kn = 1. This is equivalent
to n = 0 and P (t) = eMtk0 for some M ∈ C.
(iii) Let k0 = 0. In view of proved properties of the function F , we have that F (0) = 0.
Therefore, by the Schwarz Lemma we get |F (t)| ≤ |t| for all t ∈ D. Moreover, if |F (z)| = |z|
for some z ∈ D \ {0}, then F (t) = ct for some c ∈ C with |c| = 1. It follows that

c = F ′(t) =
k21a1
kna0

tk1−1 + · · · , t ∈ D. Hence, it is necessary that k1 = 1 and |a1| = kn|a0|.
However, under condition (6),

|a1/a0| =
1

2π

∣∣∣ ∫ 2π

0

ei(k1−k0)θRe
(

1 + 2
n∑
j=1

aj
a0
ei(kj−k0)θ

)
dθ
∣∣∣ ≤

≤ 1

2π

∫ 2π

0

Re
(

1 + 2
n∑
j=1

aj
a0
ei(kj−k0)θ

)
dθ = 1.

Thus, kn = 1 or equivalently, n = 1. But for n = 1 the condition (6) implies |a0| ≥ 2|a1|.
This is a contradiction. Hence, |F (t)| < |t| for all t ∈ D.
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3. G.V. Milovanović, D.S. Mitrinović, Th.M. Rassias, Topics in polynomials: extremal problems, inequalities,

zeros, World Scientific Publishing Co., Inc., River Edge, NJ, 1994, 821 p.
4. Q.I. Rahman, G. Schmeisser, Analytic theory of polynomials, London Mathematical Society Monographs,

New Series, 26, The Clarendon Press, Oxford University Press, Oxford, 2002, 742 p.
5. T. Sheil-Small, Complex polynomials, Cambridge Studies in Advanced Mathematics, 75. Cambridge

University Press, Cambridge, 2002, 428 p.
6. V.I. Danchenko, M.A. Komarov, P.V. Chunaev, Extremal and approximative properties of simple partial

fractions, Russ Math., 62 (2018), 6–41. https://doi.org/10.3103/S1066369X18120022
7. N. Anderson, E.B. Saff, R.S. Varga, On the Eneström-Kakeya theorem and its sharpness, Linear Algebra

Appl., 28 (1979), 5–16.

Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
University of Toulon, Toulon, France
adrian.savchuk.v@gmail.com, adrian-savchuk@etud.univ-tln.fr

Received 26.04.2021


