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The aim of this paper is to study the zero distribution of the differential polynomial
afq0(f ′)q1 ...(f (k))qk − φ,

where f is a transcendental meromorphic function and a = a(z)( ̸≡ 0,∞) and φ(̸≡ 0,∞) are
small functions of f . Moreover, using this value distribution result, we prove the following
normality criterion for family of analytic functions:
Let F be a family of analytic functions on a domain D and let k ≥ 1, q0 ≥ 2, qi ≥ 0
(i = 1, 2, . . . , k − 1), qk ≥ 1 be positive integers. If for each f ∈ F : i. f has only zeros of
multiplicity at least k, ii.

fq0(f ′)q1 . . . (f (k))qk ̸= 1,
then F is normal on domain D.

1. Introduction. The topic of this article has its origin in Hayman’s ([3]) result that if f is
a transcendental meromorphic function and n ≥ 3, then fnf ′ assumes all finite values except
possibly zero infinitely often.

Later this result was complemented by E. Mues ([8]) (for n = 2) and H. Y. Chen and M.
L. Fang ([1]) (for n = 1). Using Bloch’s principle and Mues’s result ([8]), in 1989, X. C. Pang
([9]) gave an analogous theorem for meromorphic functions in the unit disc (or bounded
domain) in terms of normality of a family of meromorphic functions as follows:

Theorem A. ([9]) Let F be a family of meromorphic function on a domain D. If each
f ∈ F satisfies f 2f ′ ̸= 1, then F is normal on domain D.

The result of Mues was qualitative result. In 1992, Q. Zhang ([16]) gave the quantitative
version of Mues’s result as follows:

Theorem B. For a transcendental meromorphic function f , the following inequality holds

T (r, f) ≤ 6N
(
r,

1

f 2f ′ − 1

)
+ S(r, f).

In this direction, X. Huang and Y. Gu ([4]) further extended the Zhang’s result ([16]) by
replacing f ′ by f (k), (k ∈ N).

Theorem C. ([4]) Let f be a transcendental meromorphic function and k be a positive
integer. Then

T (r, f) ≤ 6N
(
r,

1

f 2f (k) − 1

)
+ S(r, f).
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Moreover, in the same paper, C. X. Huang and Y. Gu ([4]) proved the following normality
criterion for family of meromorphic functions:

Theorem D. ([4]) Let F be a family of meromorphic functions on a domain D and let
k be a positive integer. If for each f ∈ F , f has only zeros of multiplicity at least k and
f 2f (k) ̸= 1, then F is normal on domain D.

To study the value distribution of a differential polynomial in more general settings, in
2003, I. Lahiri and S. Dewan ([6]) proved the following theorem:

Theorem E. Let f be a transcendental meromorphic function and α = α(z)(̸≡ 0,∞) be a
small function of f . If ψ = α(f)n(f (k))p, where n(≥ 0) p(≥ 1), k(≥ 1) are integers, then for
any small function a = a(z)(̸≡ 0,∞) of ψ,

(p+ n)T (r, f) ≤ N(r,∞; f) +N(r, 0; f) + pNk(r, 0; f) +N(r, a;ψ) + S(r, f),

where Nk(r, 0; f) the counting function of zeros of f , where a zero of f with multiplicity q is
counted q times if q ≤ k, and is counted k times if q > k.

In this direction, a lot of investigations were made (e.g., ([12]), ([13]), ([14]), ([15])).
Moreover, one can go through the Steinmetz’ book, Nevanlinna theory, normal families, and
algebraic differential equations ([11]) for the generalizations the Hayman result (Chapter 3,
Section 3.2.).

Moreover, Theorem 4.12 of the same book ([11]) gave the following normality criterion:

Theorem F. ([11]) Let k ≥ 1 and n ≥ 1 be integers, and F be a family of analytic functions
f on some domain D, with zeros having multiplicity at least k ≥ 1 and such that fnf (k)

omits some fixed value a ̸= 0. Then F is normal on the domain D.

The aim of this paper is to study the zero distribution of the differential polynomial
a(z)(f)q0(f ′)q1 ...(f (k))qk ,

where a(z)(̸≡ 0,∞) is a small function of f . Moreover, using this value distribution result,
we give some normality criterion for family of analytic functions.

2. Main Results. Let f be a transcendental meromorphic function and a(z) be a small
function of f . Also, let q0, q1, ..., qk ∈ N ∪ {0}. Let us define

M [f ] := a(z)(f)q0(f ′)q1 ...(f (k))qk . (1)

Also, we define µ := q0 + q1 + ...+ qk and µ∗ := q1 + 2q2 + ...+ kqk.

Theorem 1. Let f(z) be a transcendental meromorphic function and φ(z)(̸≡ 0,∞) be a
small function of f(z). If q0 ≥ 0, qk ≥ 1, then

µT (r, f) ≤ N(r,∞; f) +N(r, 0; f) +
k∑

i=1

qiNi(r, 0; f) +N(r, φ;M [f ]) + S(r, f).

Remark 1. Clearly Theorem 1 extends Theorem E.

Theorem 2. Let f(z) be a transcendental meromorphic function and φ(z)(̸≡ 0,∞) be a
small function of f(z) such that φ and f has no common zero. Moreover, we assume that 1

a(z)

and f has no common zero. If every pole of f(z) has multiplicity at least l(≥ 1), q0 > 1 + 1
l

and qk ≥ 1, then

T (r, f) ≤ 1

q0 − 1− 1
l

N
(
r,

1

M [f ]− φ

)
+ S(r, f).
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Corollary 1. Let f(z) be a transcendental entire function and φ(z)(̸≡ 0,∞) be a small
function of f(z) such that φ and f has no common zero. Moreover, we assume that 1

a(z)
and

f has no common zero. If q0 > 1 and qk ≥ 1, then

T (r, f) ≤ 1

q0 − 1
N
(
r,

1

M [f ]− φ

)
+ S(r, f).

Corollary 2. Let f(z) be a transcendental entire (resp. meromorphic function such that
every pole of f(z) has multiplicity at least l(≥ 1)) and φ(z)(̸≡ 0,∞) be a small function of
f(z) such that φ and f has no common zero. Moreover, we assume that 1

a(z)
and f has no

common zero. If q0 > 1 (resp. 1 + 1
l
) and qk ≥ 1, then M [f ]− φ has infinitely many zeros.

Morevoer, as an application of corollary 2, we prove a normality criterion for a family of
analytic functions.

Theorem 3. Let F be a family of analytic functions on a domain D and let k(≥ 1), q0(≥ 2),
qi(≥ 0) (i = 1, 2, . . . , k − 1), qk(≥ 1) be positive integers. If for each f ∈ F : i. f has only
zeros of multiplicity at least k, ii. f q0(f ′)q1 . . . (f (k))qk ̸= 1, then F is normal on domain D.

3. Lemmas.

Lemma 1. For a non-constant meromorphic function g, we obtain

N
(
r,
g′

g

)
−N

(
r,
g

g′

)
= N(r, g) +N

(
r,
1

g

)
−N

(
r,

1

g′

)
.

Proof. The proof is same as the formula (12) of ([5]).

Lemma 2. Let f be a transcendental meromorphic function and M [f ] be a differential
polynomial defined in (1), then

T
(
r,M [f ]

)
= O(T (r, f)) and S

(
r,M [f ]

)
= S(r, f).

Proof. The proof is similar to the proof of the Lemma 2.4 of ([7]).

Lemma 3. Let f be a transcendental meromorphic function and M [f ] be a differential
polynomial defined in (1) with q0 ≥ 1, then M [f ] must be non-constant.

Proof. Here
(
1

f

)µ

= a(z)

(
f ′

f

)q1 (f ′′

f

)q2

. . .

(
f (k)

f

)qk 1

M [f ]
. Thus by the first fundamental

theorem and lemma of logarithmic derivative, we have

µT (r, f) ≤
k∑

i=1

qiN

(
r,∞;

f (i)

f

)
+ T (r,M [f ]) + S(r, f) ≤

≤
k∑

i=1

iqi
(
N(r, 0; f) +N(r,∞; f)

)
+ T (r,M [f ]) + S(r, f) ≤

k∑
i=1

iqi

(
N(r, 0;M [f ])+

+N(r,∞;M [f ])
)
+ T (r,M [f ]) + S(r, f) ≤ (2µ∗ + 1)T (r,M [f ]) + S(r, f), (2)

Since f is a transcendental meromorphic function, thus M [f ] must be non-constant. This
completes the proof.
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Lemma 4. ([10]) Let F be a family of meromorphic functions on the unit disc ∆ such that
all zeros of functions in F have multiplicity at least k. Let α be a real number satisfying
0 ≤ α < k. Then F is not normal in any neighbourhood of z0 ∈ ∆ if and only if there exist
(i) points zn ∈ ∆, zn → z0, (ii) positive numbers ρn, ρn → 0 and (iii) functions fn ∈ F such
that ρ−α

n fn(zn + ρnζ) → g(ζ) spherically uniformly on compact subsets of C, where g is a
non-constant meromorphic function.

4. Proof of the Theorems.

Proof of Theorem 1. Since
1

fµ
=
M [f ]

fµ

1

M [f ]
, so by the first fundamental theorem and lemma

of logarithmic derivative, we have

µT (r, f) = N
(
r,

1

fµ

)
+m

(
r,

1

fµ

)
+O(1) ≤ N(r, 0; fµ) +m

(
r,

1

M [f ]

)
+ S(r, f) ≤

≤ N(r, 0; fµ) + T (r,M [f ])−N(r, 0;M [f ]) + S(r, f). (3)

Now, by Nevanlinna’s three small functions theorem ([2], pp. 47), we have

T (r,M [f ]) ≤ N(r, 0;M [f ]) +N(r,∞;M [f ]) +N(r, φ;M [f ]) + S(r,M [f ]). (4)

Let z0 be a zero of f with multiplicity q(≥ 1).
Case-I If q ≤ k, then z0 is a zero of M [f ] of order at least qq0 + (q− 1)q1 + (q− 2)q2 + . . .+
2qq−2 + qq−1 + t (where t = 0 if a(z) has no zero or pole at z0; t = s if a(z) has zero of order
s at z0, and t = −s if a(z) has pole of order s at z0). Now

µq + 1− (qq0 + (q − 1)q1 + (q − 2)q2 + . . .+ 2qq−2 + qq−1)− t =
= 1 + {q1 + 2q2 + . . .+ (q − 2)qq−2 + (q − 1)qq−1}+ (qqq + qqq+1 + . . .+ qqk)− t.

Case-II If q ≥ k + 1, then z0 is a zero of M [f ] of order qµ− µ∗ + t (where t = 0 if a(z) has
no zero or pole at z0; t = s if a(z) has zero of order s at z0, and t = −s if a(z) has pole of
order s at z0). Now

µq + 1− (qµ− µ∗)− t = 1 + q1 + 2q2 + . . .+ kqk − t.
Thus from the above discussion, we have

N(r, 0; fµ) +N(r, 0;M [f ])−N(r, 0;M [f ]) ≤ N(r, 0; f) +
k∑

i=1

qiNi(r, 0; f) + S(r, f). (5)

Combining (3),(4) and (5), we have

µT (r, f) ≤ N(r, 0; fµ) + T (r,M [f ])−N(r, 0;M [f ]) + S(r, f) ≤
≤ N(r, 0; fµ) +N(r, 0;M [f ]) +N(r,∞;M [f ]) +N(r, φ;M [f ])−N(r, 0;M [f ]) + S(r, f) ≤

≤ N(r,∞; f) +N(r, 0; f) +
k∑

i=1

qiNi(r, 0; f) +N(r, φ;M [f ]) + S(r, f). (6)

This completes the proof.

Proof of Theorem 2. Let us define b = b(z) =: 1
φ(z)

. Now by Lemma 3, it is clear that
b(z)M [f ] is non-constant. Again

1

fµ
=
bM [f ]

fµ
− (bM [f ])′

fµ
· (bM [f ]− 1)

(bM [f ])′
.
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Thus in view of Lemmas 1 and 2, the first fundamental theorem and lemma of logarithmic
derivative, we have

µm

(
r,

1

f

)
≤ m

(
r,
bM [f ]

fµ

)
+m

(
r,
(bM [f ])′

fµ

)
+m

(
r,
bM [f ]− 1

(bM [f ])′

)
+O(1) ≤

≤ 2m

(
r,
bM [f ]

fµ

)
+m

(
r,
(bM [f ])′

bM [f ]

)
+m

(
r,
bM [f ]− 1

(bM [f ])′

)
+O(1) ≤

≤ T

(
r,

(bM [f ])′

bM [f ]− 1

)
−N

(
r,
bM [f ]− 1

(bM [f ])′

)
+ S(r, f) ≤

≤ N(r,∞; f) +N

(
r,

1

bM [f ]− 1

)
−N (r, 0; (bM [f ])′) + S(r, f) ≤

≤ 1

l
N(r,∞; f) +N

(
r,

1

M [f ]− φ

)
− (q0 − 1)N (r, 0; f) + S(r, f). (7)

Now, using the first fundamental theorem and (7), we obtain

(µ− q0 + 1)m

(
r,

1

f

)
+ (q0 − 1)T (r, f) ≤ N

(
r,

1

M [f ]− φ(z)

)
+

1

l
N(r,∞; f) + S(r, f).

(8)

As q0 > 1 + 1
l
, then from (8), we have

T (r, f) ≤ 1

q0 − 1− 1
l

N

(
r,

1

M [f ]− φ(z)

)
+ S(r, f).

This completes the proof.

Proof of Theorem 3. Since normality is a local property, we may assume that D = ∆. If
possible, suppose that F is not normal on ∆, then by Lemma 4, there exist {fn} ⊂ F ,
zn ∈ ∆ and positive numbers ρn with ρn → 0 such that

gn(ζ) = ρ−α
n fn(zn + ρnζ) → g(ζ)

locally, uniformly in spherical metric, where we choose α = µ∗
µ

. Now, by Lemma 4, g(ζ) is
a non-constant meromorphic function, moreover, by Hurwitz’s theorem, all zeros of g(ζ) are
of multiplicity at least k. Next, we define

Hn(ζ) = (gn(ζ))
q0(g

′

n(ζ))
q1 . . . (g(k)n (ζ))qk , H(ζ) = (g(ζ))q0(g

′
(ζ))q1 . . . (g(k)(ζ))qk .

Thus H(ζ) ̸≡ 0, otherwise, g(ζ) will become a polynomial of degree at most k − 1, which is
impossible. Also

Hn(ζ) = ρµ∗−αµ
n (fn(zn + ρnζ))

q0(f
′

n(zn + ρnζ))
q1 . . . (f (k)

n (zn + ρnζ))
qk =

= (fn(zn + ρnζ))
q0(f

′

n(zn + ρnζ))
q1 . . . (f (k)

n (zn + ρnζ))
qk → H(ζ)

locally, uniformly in spherical metric. Since, Hn(ζ) ̸= 1, thus by the Hurwitz’s Theorem,
H(ζ) ̸= 1. Thus by Corollary 2, g(ζ) must be non-constant rational function, otherwise,
H(ζ)− 1 has infinitely many solution, which is not possible.

Since F is a family of analytic functions, so gn(ζ) is analytic. Since, gn(ζ) → g(ζ) locally,
uniformly in spherical metric, so either g(ζ) ≡ ∞, or, g(ζ) is an analytic function. But, since
g(ζ) is non-constant, so, g(ζ) must be a polynomial, say, g(ζ) = c0 + c1ζ + . . .+ clζ

l.
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If l ≥ k, then H(ζ) becomes a non-constant polynomial, which contradicts that H(ζ) ̸= 1.
Thus l < k, which, in view of Hurwitz’s Theorem, contradicts our assumptions on zeros of
f ∈ F . Thus our assumption is wrong. So F is normal. This completes the proof.
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