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We study the problem of a special factorisation of an orthogonal projector P acting in
the Hilbert space L2(R) with dimkerP < ∞. In particular, we prove that the orthogonal
projector P admits a special factorisation in the form P = V V ∗, where V is an isometric
upper-triangular operator in the Banach algebra of all linear continuous operators in L2(R).
Moreover, we give an explicit formula for the operator V .

1. Introduction. Let H := L2(R) be a Hilbert space with the standard norm ∥ · ∥ and
the inner product (· | ·), and let B := B(H) be the Banach algebra of all linear continuous
operators in H. Let us fix in the algebra B the continuous chain of orthoprojectors E :=
{E(ξ)}ξ∈R, where E(ξ) is the multiplication operator on the characteristic function of the
interval (−∞, ξ).

An operator A ∈ B is called an upper-triangular operator with respect to the chain E if
for every E ∈ E the subspace EH is an invariant subspace of A, i,e.,

E⊥AE = 0, E ∈ E (E⊥ := I − E).

Similarly, an operator A ∈ B is called a lower-triangular operator with respect to the chain
E if for every E ∈ E the subspace E⊥H is an invariant subspace of A, i.e.,

EAE⊥ = 0, E ∈ E.

We set

B+ := {B ∈ B : ∀E ∈ E E⊥BE = 0},
B− := {B ∈ B : ∀E ∈ E EBE⊥ = 0}.

B+ and B− are closed subalgebras in the algebra B. It is easy to see that if A ∈ B+, then
the adjoint operator A∗ belongs to the algebra B−.

Definition 1. We say that an operator A ∈ B admits UL-factorisation if there exist A+ ∈
B+, A− ∈ B− such that A = A+A−.
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Definition 1 is wider than usually accepted in the mathematical literature since it does not
assume invertibility of A (see, e.g., [1]). We only know the paper [2], where the factorisation
problem was studied for nonnegative non-invertible operators.

In the case when A ∈ B is a nonnegative self-adjoint operator, we consider a special
factorisation.

Definition 2. Let A ∈ B and A ≥ 0. We say that A admits a special factorisation if there
exists A+ ∈ B+ such that A = A+A

∗
+.

In the present paper, we study the following problem.

Problem 1. Does every orthogonal projector P ∈ B with dimkerP < ∞ admit a special
factorisation in the form P = V V ∗, where V is an isometric operator in B+?

It follows from the results of Larson [3] that not every uniformly positive operator A ∈ B
admits a factorisation A = BB∗, where B ∈ B+. In the case when an operator is non-
invertible the problem of its special factorisation is much more difficult. In the mentioned
work [2], a special factorisation of an orthogonal projector P with dimkerP < ∞ was
considered in the Hilbert space L2(0, 1) with chain of orthoprojectors {Ẽ(ξ) | ξ ∈ [0, 1]},
where Ẽ(ξ) is the multiplication operator on the characteristic function of the interval [0, ξ).
In [2], it was proved that an orthogonal projector P with dimkerP < ∞ admits a special
factorisation if the additional condition

∀ξ ∈ [0, 1] dim Ẽ(ξ) kerP = dimkerP

holds.
The main result of this paper gives an explicit formula for an isometric operator V ∈ B+

such that V V ∗ = P for an orthogonal projector P ∈ B with dimkerP < ∞.

2. Factorisation of an orthogonal projector. Denote by G the Hilbert space Cn with
the standard inner product

(x | y)G :=
n∑

j=1

xj ȳj, x = (xj)
n
j=1, y = (yj)

n
j=1.

Let P be an orthogonal projector in B with dimkerP = n ∈ N, and let (φj)
n
j=1 be an

orthonormal basis in the space kerP .
Let us consider the function Φ: R → G′ (G′ is the dual space to G) that is defined by

the formula

Φ(t)c =
n∑

j=1

cjφj(t), t ∈ R, c = (cj)
n
j=1 ∈ G.

It is easy to see that Φ ∈ L2(R, G′) . Denote by Φ∗(t) the operator that is adjoint to Φ(t). It
acts from C into G by the formula

Φ∗(t)c = c(φ1(t), . . . , φn(t)), t ∈ R, c ∈ C.

We also define the function

A(x) :=

∫ x

−∞
Φ∗(t)Φ(t)dt, x ∈ R, (1)
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which plays an important role in the study. Clearly, this function is absolutely continuous,
and A′(x) = Φ∗(x)Φ(x) for almost every x ∈ R. Moreover, A∗(x) = A(x) for all x ∈ R, and

A(x1) ≤ A(x2) for x1 ≤ x2. (2)

Let us consider the subspaces

F (x) := kerA(x), G(x) := ranA(x), x ∈ R.

Since G(x)⊕ F (x) = G for all x ∈ R, it follows by (2) that

F (x1) ⊃ F (x2), G(x1) ⊂ G(x2) for x1 ≤ x2.

It is easy to check that the function

ρ(x) := dimF (x), x ∈ R,

is nonincreasing, left-continuous, and piecewise-constant. We denote by (ξk)
m
k=1 a strictly

increasing sequence of all points of discontinuity of the function ρ, and let

∆s :=


(−∞, ξ1), if s = 1;
(ξs−1, ξs), if 1 < s ≤ m;
(ξm,+∞), if s = m+ 1.

Put Fk := F (ξk), Gk := G(ξk), k = 1, . . . ,m. It follows from the above that

F (x) = Fk, G(x) = Gk, x ∈ ∆k, k = 1, . . . ,m,

and, moreover, F (x) = {0} =: Fm+1, G(x) = G =: Gm+1, x ∈ ∆m+1. Thus the equalities

ranA(x) = Gk, x ∈ ∆k, k = 1, . . . ,m+ 1, (3)

hold.

Lemma 1. For an arbitrary x ∈ ∆k (k = 1, . . . ,m+ 1) the operator

Ak(x) := A(x)|Gk

is invertible in Gk. Moreover, the function x 7→ A−1
k (x) is continuous on ∆k.

Proof. Let x ∈ ∆k. Since the operator A(x) is self-adjoint, it follows from (3) that A maps
Gk onto itself. Hence the operator Ak(x) is invertible. As already mentioned, the function
x → A(x) is continuous. Thus the function ∆k ∋ x → Ak(x) is continuous, too. Taking
into account that the operators Ak(x), x ∈ ∆k, are invertible, we obtain that the functions
x 7→ A−1

k (x) are continuous on ∆k.

Definition 3. Denote by A♭ : R → B(G) the function acting by the formula

A♭(x) := A−1
k (x)⊕Ok, x ∈ ∆k, k = 1, . . . ,m+ 1, (4)

where Ok is a null-operator in Fk.
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Remark 1. It follows from Lemma 1 that the function x 7→ A♭(x) is continuous on every
interval ∆j, and its points of discontinuity can only be points ξj, j = 1, . . . ,m. Moreover, in
view of Lemma 1 and (1), we have for almost every x ∈ ∆k (k = 1, . . . ,m+ 1) the equality

A(x)A♭(x)Φ∗(x) = Φ∗(x).

The main result of this paper is:

Theorem 1. The formula

(V f)(x) := f(x)−
∫ ∞

x

Φ(x)A♭(t)Φ∗(t)f(t)dt, x ∈ R, f ∈ H, (5)

defines an isometric upper-triangular operator such that V V ∗ = P.

The proof of Theorem 1 will be divided into parts presented below as lemmas. Denote
by C0 the set of all continuous functions f : R → C with compact support not intersecting
the set {ξj}mj=1. Note that the set C0 is everywhere dense in H.

Lemma 2. Assume that the operator V is introduced by the formula (5) and U = I − V .
For an arbitrary f ∈ C0 the equality

∥Uf∥2 = (Uf | f) + (f | Uf)

holds.

Proof. Let f ∈ C0 . Taking into account Remark 1, we conclude that the vector-valued
function

h(t) := A♭(t)Φ∗(t)f(t), t ∈ R,
is square integrable and has a compact support; as a result, it is integrable on R. Hence the
function

x →
∫ ∞

x

h(t)dt

is continuous and bounded on the whole line. Thus, since the function x 7→ ∥Φ(x)∥ belongs
to H, we obtain that Uf ∈ H and

(Uf)(x) =

∫ ∞

x

Φ(x)h(t)dt, x ∈ R.

It follows from the last formula that

|(Uf)(x)|2 =
∫ ∞

x

∫ ∞

x

(Φ∗(x)Φ(x)h(t) | h(ξ))Gdtdξ.

Let us calculate the integral

J :=

∫
R
|(Uf)(x)|2dx =

∫ ∞

−∞

∫ ∞

x

∫ ∞

x

(Φ∗(x)Φ(x)h(t) | h(ξ))Gdtdξdx.

We see that J = J1 + J2, where

J1 :=

∫∫∫
x≤t≤ξ

(Φ∗(x)Φ(x)h(t) | h(ξ))Gdxdtdξ,

J2 :=

∫∫∫
x≤ξ≤t

(Φ∗(x)Φ(x)h(t) | h(ξ))Gdxdtdξ.
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Integrating over the variable x the integrals J1 and J2, and taking into account the definition
of the operator A(x), we get that

J1 =

∫∫
t≤ξ

(A(t)h(t) | h(ξ))Gdtdξ,

J2 =

∫∫
ξ≤t

(A(ξ)h(t) | h(ξ))Gdtdξ =

∫∫
ξ≤t

(h(t) | A(ξ)h(ξ))Gdtdξ.

Note that, for almost every t ∈ R,

A(t)h(t) = A(t)A♭(t)Φ∗(t)f(t) = Φ∗(t)f(t).

Thus

J1 =

∫∫
t≤ξ

(Φ∗(t)f(t) | h(ξ))Gdtdξ =

∫∫
t≤ξ

(f(t) | Φ(t)h(ξ))Gdtdξ = (f | Uf).

Similarly, we obtain that

J2 =

∫∫
ξ≤t

(h(t) | Φ∗(ξ)f(ξ))Gdtdξ =

∫∫
ξ≤t

(Φ(ξ)h(t) | f(ξ))Gdtdξ = (Uf | f).

Therefore, J = (Uf | f) + (f | Uf) as claimed.

Corollary 1. The operator V that is defined by the formula (5) is an isometric upper-
triangular operator.

Proof. According to Lemma 2, we get that for an arbitrary f ∈ C0

∥V f∥2 = (f − Uf | f − Uf) = ∥f∥2 + ∥Uf∥2 − (Uf | f)− (f | Uf) = ∥f∥2.

Since the set C0 is everywhere dense in H, we have that the operator V is continuously
extended to an isometric operator on the whole space H. Obviously, the extended operator
acts by the formula (5) and it is upper-triangular.

Lemma 3. For every g ∈ C0 the equality

∥U∗g∥2 = (U∗g | g) + (g | U∗g)− ∥P⊥g∥2 (P⊥ := I − P )

holds.

Proof. Using elementary calculations, we get that the adjoint to U operator acts on functions
g ∈ C0 by the formula

(U∗g)(x) =

∫ x

−∞
Φ(x)A♭(x)Φ∗(t)g(t)dt, x ∈ R.

Thus for an arbitrary g ∈ C0

|(U∗g)(x)|2 =
∣∣∣∣∫ x

−∞
Φ(x)A♭(x)Φ∗(t)g(t)dt

∣∣∣∣2 = (A♭(x)Φ∗(x)Φ(x)A♭(x)r(x) | r(x))G,



186 N. S. SUSHCHYK, V. M. DEGNERYS

where
r(x) :=

∫ x

−∞
Φ∗(t)g(t)dt, x ∈ R.

Taking into account (4), it is easy to check that for almost every x ∈ R

(A♭(x))′ = −A♭(x)A′(x)A♭(x) = −A♭(x)Φ∗(x)Φ(x)A♭(x).

Thus

|(U∗g)(x)|2 = −((A♭(x))′r(x) | r(x))G = −
∫ x

−∞

∫ x

−∞
((A♭(x))′Φ∗(t)g(t) | Φ∗(ξ)g(ξ))Gdtdξ.

Using this fact, we get

∥U∗g∥2 = J := −
∫ ∞

−∞

∫ x

−∞

∫ x

−∞
((A♭(x))′Φ∗(t)g(t) | Φ∗(ξ)g(ξ))Gdtdξdx.

Similarly to the proof of Lemma 2, we rewrite the integral J as a sum of the integrals

J1 := −
∫∫∫
ξ≤t≤x

(A♭(x))′Φ∗(t)g(t) | Φ∗(ξ)g(ξ))Gdtdξdx,

J2 := −
∫∫∫
t≤ξ≤x

(A♭(x))′Φ∗(t)g(t) | Φ∗(ξ)g(ξ))Gdtdξdx.

Integrating over the variable x in both integrals and using that∫ +∞

t

(A♭(x))′dx = A♭(+∞)− A♭(t) = IG − A♭(t),

(IG is the identity operator in G), we obtain that

J1 =

∫∫
ξ≤t

(A♭(t)Φ∗(t)g(t) | Φ∗(ξ)g(ξ))Gdtdξ −
∫∫
ξ≤t

(Φ∗(t)g(t) | Φ∗(ξ)g(ξ))Gdtdξ =

= (Ug | g)−
∫∫
ξ≤t

(Φ∗(t)g(t) | Φ∗(ξ)g(ξ))Gdtdξ;

J2 =

∫∫
t≤ξ

(A♭(ξ)Φ∗(t)g(t) | Φ∗(ξ)g(ξ))Gdtdξ −
∫∫
t≤ξ

(Φ∗(t)g(t) | Φ∗(ξ)g(ξ))Gdtdξ =

= (U∗g | g)−
∫∫
t≤ξ

(Φ∗(t)g(t) | Φ∗(ξ)g(ξ))Gdtdξ.

It thus follows that

J = J1 + J2 = (g | U∗g) + (U∗g | g)−
∫
R

∫
R
(Φ∗(t)g(t) | Φ∗(ξ)g(ξ))Gdtdξ.

Since ∫
R

∫
R
(Φ∗(t)g(t) | Φ∗(ξ)g(ξ))Gdtdξ =

n∑
j=1

|(g | φj)|2 = ∥P⊥g∥2,

we have J = (g | U∗g) + (U∗g | g)− ∥P⊥g∥2.
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Proof of Theorem 1. It follows from Lemma 3 that for an arbitrary g ∈ C0

∥V ∗g∥2 = ((I − U)∗g | (I − U)∗g) = ∥g∥2 + ∥U∗g∥2 − (U∗g | g)− (g | U∗g) =

= ∥g∥2 − ∥P⊥g∥2 = ∥Pg∥2,

i.e., (V V ∗g | g) = (Pg | g). Therefore, we get the equality V V ∗ = P . In view of Corollary 1,
the operator V is isometric and upper-triangular. The theorem is proved.
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