C. Santhoshkumar

BINORMAL AND COMPLEX SYMMETRIC WEIGHTED COMPOSITION OPERATORS ON THE FOCK SPACE OVER $\mathbb C$

C. Santhoshkumar. Binormal and complex symmetric weighted composition operators on the Fock Space over \mathbb{C} , Mat. Stud. **59** (2023), 106–112.

For analytic functions $\psi, \phi: \mathbb{C} \to \mathbb{C}$, the weighted composition operator $C_{\psi,\phi}$ is the operator on the Fock space \mathcal{F}^2 defined as $C_{\psi,\phi}f = (\psi \cdot f) \circ \phi$ for all $f \in \mathcal{F}^2$ and the composition operator C_{ϕ} is the operator on the Fock space \mathcal{F}^2 defined as $C_{\phi}f = f \circ \phi$ for all $f \in \mathcal{F}^2$. A bounded operator T is on a separable Hilbert space \mathcal{H} is said to be complex symmetric if there exists a conjugation operator S such that $T^* = STS$ and T is said to be binormal if T^*T and TT^* commute (i.e) $T^*TTT^* = TT^*T^*T$. Let \mathcal{A} be a class of composition operators C_{ϕ} on \mathcal{F}^2 such that $C^*_{\phi}C_{\phi}$ and $C_{\phi} + C^*_{\phi}$ commute. The main results of this paper is presented in five Sections (3.1 - 3.5). In the first section, we prove that when C_{ϕ} is bounded and belong to \mathcal{A} then C_{ϕ} binormal (Section 3.1). Then we describe necessary and sufficient conditions for a binormal (or) complex symmetric composition operator to have the other property (Sections 3.2, 3.3). Finally, we investigate binormality and complex symmetry of weighted composition operator $C_{\psi,\phi}$ with the weight function as a kernel function (ie) $\psi(z) = cK_p z = ce^{z\overline{p}}$ (Sections 3.4, 3.5).

1. Introduction. The Fock space \mathcal{F}^2 is a space of all entire functions on \mathbb{C} which are square integrable with respect to Gaussian measure $d\mu(z) = \frac{1}{\pi}e^{-|z|^2}dA(z)$ where dA denotes the usual Lebesque measure on \mathbb{C} . It is known that \mathcal{F}^2 is a Hilbert space with inner product

$$\langle f,g\rangle = \int_{\mathbb{C}} f(z)\overline{g(z)}d\mu(z) = \frac{1}{\pi} \int_{\mathbb{C}} f(z)\overline{g(z)}e^{-|z|^2}dA(z)$$

for all $f, g \in \mathcal{F}^2$. It is well-known that \mathcal{F}^2 is a reproducing kernel Hilbert space with kernel functions of the form

 $K_w z = e^{\langle z, w \rangle} = e^{z\overline{w}}$

for all $z, w \in \mathbb{C}$.

We denote normalized kernel function at $w \in \mathbb{C}$ as $k_w z = \frac{K_w z}{||K_w||}$.

For analytic functions ψ, ϕ on \mathbb{C} , the weighted composition operator $C_{\psi,\phi}$ is defined as $C_{\psi,\phi}f = (\psi \cdot f) \circ \phi$ for all $f \in \mathcal{F}^2$ and the composition operators $C_{\phi}f = f \circ \phi$ for all $f \in \mathcal{F}^2$.

The study of composition operators on \mathcal{F}^2 has been carried by many authors and characterized many of its properties. In [5], B, J. Carswell et al. characterized boundedness and compactness of composition operators on the Fock space over \mathbb{C}^n .

In [10], L. Zhao characterized unitary weighted composition operators and their spectrum on the Fock space over \mathbb{C}^n . In [11, 12], L. Zhao respectively studied isometric weighted composition operators and bounded invertible weighted composition operators on the Fock space over \mathbb{C}^n . In [9], T. Le investigated boundedness and compactness of weighted composition operators on \mathcal{F}^2 using much simpler characterization than the one in [5]. In [7], S. Jung

²⁰¹⁰ Mathematics Subject Classification: 47B33, 47B91, 47B99.

 $[\]label{eq:keywords:composition operators; Fock space; binormal; complex symmetry. doi:10.30970/ms.59.1.106-112$

et al. derived the necessary and sufficient conditions for C_{ϕ} to be binormal on the Hardy space with the fixed symbol ϕ is a linear fractional self map on the unit disk in the complex plane where the reproducing kernel is of the form $K_w z = \frac{1}{1-\overline{w}z}$.

2. Preliminaries. An operator T on a separable Hilbert space \mathcal{H} is said to be *anti-linear* if $T(ax + by) = \overline{a}x + \overline{b}y, \forall x, y \in \mathcal{H}, \forall a, b \in \mathbb{C}.$

An anti-linear mapping S on \mathcal{H} is called *conjugation* if it is

(i) Involutive: $S^2 = I$, the identity operator.

(ii) Isometry: $||Sx|| = ||x||, \forall x \in \mathcal{H}.$

An operator T on \mathcal{H} is said to be *complex symmetric* if there exists a conjugation S such that $STS = T^*$.

A linear operator T is:

- normal if T and T^* commute $TT^* = T^*T$.
- binormal if T^*T and TT^* commute $T^*TTT^* = TT^*T^*T$.
- centered if the doubly infinite sequence $\{..., T^2(T^2)^*, TT^*, T^*T, (T^2)^*T^2, ...\}$ consists of mutually commuting operators.

Lemma 1. Let $\psi_1, \psi_2, ..., \psi_n$ be analytic functions on \mathbb{C} and $\phi_1, \phi_2, ..., \phi_n$ be an analytic selfmap on \mathbb{C} . If $C_{\psi_1,\phi_1}, C_{\psi_2,\phi_2}, ..., C_{\psi_n,\phi_n}$, are bounded operators on \mathcal{F}^2 , then

$$\psi_{1,\phi_{1}}C_{\psi_{2},\phi_{2}}...C_{\psi_{n},\phi_{n}} = C_{\psi_{1}(\psi_{2}\circ\phi_{1})....(\psi_{n}\circ\phi_{n-1}\circ...\circ\phi_{1}),\phi_{n}\circ\phi_{n-1}\circ...\circ\phi_{1}}.$$

Lemma 2. Let ψ, ϕ be holomorphic functions on \mathbb{C} such that $C_{\psi,\phi}$ is a bounded operator on \mathcal{F}^2 , then $C^*_{\psi,\phi}K_w = \overline{\psi(w)}K_{\phi(w)}$ for every $w \in \mathbb{C}$,

Theorem 1 ([5], Theorem 1). Suppose $\phi : \mathbb{C} \to \mathbb{C}$ is an analytic function and C_{ϕ} is bounded on \mathcal{F}^2 then $\phi(z) = az + b$, where $a, b \in \mathbb{C}$, $|a| \leq 1$ and if |a| = 1 then b = 0.

Theorem 2 ([9], Theorem 2.2). Suppose ψ, ϕ be analytic functions on \mathbb{C} such that ψ is not identically zero. Then $C_{\psi,\phi}$ is bounded if and only if ψ belongs to \mathcal{F}^2 , $\phi(z) = az + \phi(0)$ with $|a| \leq 1$ and $M(\psi, \phi) := \sup\{|\psi(z)|^2 exp(|\phi(z)|^2 - |z|^2) : z \in \mathbb{C}\} < \infty$.

Theorem 3 ([9], Theorem 3.3). Let ψ, ϕ be entire functions such that ψ is not identically zero. Then $C_{\psi,\phi}$ is a bounded normal operator on \mathcal{F}^2 if and only if one of the following two cases occurs:

- (i) $\phi(z) = az + b$ with |a| = 1 and $\psi = \psi(0) K_{-\overline{a}b}$. In this case, $C_{\psi,\phi}$ is a constant multiple of a unitary operator.
- (ii) $\phi(z) = az + b$ with |a| < 1 and $\psi = \psi(0)K_c$, where $c = b\frac{1-\overline{a}}{1-a}$. In this case, $C_{\psi,\phi}$ is unitarily equivalent to $\psi(0)C_{az}$.

3. Main Results.

3.1. Binormal composition operators. In [1–4], S. L. Campbell studied properties of bounded linear operator T on a separable Hilbert space such that T^*T and $T+T^*$ commute. In [8], S, Jung et al. characterized the composition operators C_{ϕ} such that $C^*_{\phi}C_{\phi}$ and $C_{\phi}+C^*_{\phi}$ commute on Hardy space, a space of analytic functions on the unit disk in the complex plane.

Motivated by these papers, in this first section, we establish relation between binormality of composition operator C_{ϕ} and C_{ϕ} belongs to a class of composition operators such that $C_{\phi}^*C_{\phi}$ and $C_{\phi} + C_{\phi}^*$ commute.

Let \mathcal{A} be a class of composition operators C_{ϕ} on \mathcal{F}^2 such that $C_{\phi}^*C_{\phi}$ and $C_{\phi}+C_{\phi}^*$ commute.

Theorem 4. Let ϕ be an entire function on \mathbb{C} such that C_{ϕ} is bounded on \mathcal{F}^2 . If $C_{\phi} \in \mathcal{A}$ then C_{ϕ} is binormal.

Proof. Since C_{ϕ} is bounded on \mathcal{F}^2 , by Theorem 1, one has $\phi(z) = az + b$ with $|a| \leq 1$. Therefore, we successively have

$$C_{\phi}^{*}C_{\phi}C_{\phi}^{*}K_{w}z = C_{\phi}^{*}C_{\phi}K_{\phi(w)}z = C_{\phi}^{*}C_{\phi}K_{(aw+b)}z = C_{\phi}^{*}K_{(aw+b)}\phi(z) = C_{\phi}^{*}e^{(az+b)(aw+b)} = \\ = e^{\overline{a}b\overline{w}+|b|^{2}}C_{\phi}^{*}K_{(|a|^{2}w+\overline{a}b)}z = e^{\overline{a}b\overline{w}+|b|^{2}}K_{\phi(|a|^{2}w+\overline{a}b)}z = \\ = e^{\overline{a}b\overline{w}+|b|^{2}}K_{a(|a|^{2}w+\overline{a}b)+b}z = e^{\overline{a}b\overline{w}+|b|^{2}+z(\overline{a}|a|^{2}\overline{w}+|a|^{2}\overline{b})},$$
(1)
$$C_{\phi}^{*}C_{\phi}C_{\phi}K_{w}z = C_{\phi}^{*}C_{\phi}K_{w}\phi(z) = C_{\phi}^{*}C_{\phi}e^{(az+b)\overline{w}} = e^{b\overline{w}}C_{\phi}^{*}C_{\phi}K_{\overline{a}w}z = e^{b\overline{w}}C_{\phi}^{*}K_{\overline{a}w}\phi(z) = \\ = e^{b\overline{w}}C_{\phi}^{*}e^{(az+b)a\overline{w}} = e^{b\overline{w}(1+a)}C_{\phi}^{*}K_{(\overline{a}^{2}w)}z = e^{b\overline{w}(1+a)}K_{\phi(\overline{a}^{2}w)}z = \\ = e^{b\overline{w}(1+a)}K_{a(\overline{a}^{2}w)+b}z = e^{b\overline{w}(1+a)+z(a|a|^{2}\overline{w}+\overline{b})},$$
(2)
$$C_{\phi}^{*}C_{\phi}C_{\phi}K_{w}z = C_{\phi}^{*}C_{\phi}K_{w}\phi(z) = C_{\phi}^{*}C_{\phi}e^{(az+b)\overline{w}} = e^{b\overline{w}}C_{\phi}^{*}C_{\phi}K_{\overline{w}}z = z = \\ e^{b\overline{w}(1+a)}K_{a(\overline{a}^{2}w)+b}z = e^{b\overline{w}(1+a)+z(a|a|^{2}\overline{w}+\overline{b})},$$
(2)

$$C^*_{\phi}C^*_{\phi}C_{\phi}K_wz = C^*_{\phi}C^*_{\phi}K_w\phi(z) = C^*_{\phi}C^*_{\phi}e^{(az+b)\overline{w}} = e^{b\overline{w}}C^*_{\phi}C^*_{\phi}K_{\overline{a}w}z =$$
$$= e^{b\overline{w}}K_{\phi(\phi(\overline{a}w))}z = e^{b\overline{w}+z(\overline{a}|a|^2\overline{w}+\overline{b}(1+\overline{a}))},$$
(3)

and also

$$C_{\phi}C_{\phi}^{*}C_{\phi}K_{w}z = C_{\phi}C_{\phi}^{*}K_{w}\phi(z) = C_{\phi}C_{\phi}^{*}e^{(az+b)\overline{w}} = e^{b\overline{w}}C_{\phi}C_{\phi}^{*}K_{\overline{a}w}z = e^{b\overline{w}}C_{\phi}K_{\phi(\overline{a}w)}z = e^{b\overline{w}}K_{(|a|^{2}w+b)}\phi(z) = e^{b\overline{w}}e^{(az+b)(|a|^{2}\overline{w}+\overline{b})} = e^{b\overline{w}(1+|a|^{2})+|b|^{2}+z(a|a|^{2}\overline{w}+a\overline{b})}$$
(4)

Suppose that $C_{\phi} \in \mathcal{A}$, then

$$C_{\phi}^{*}C_{\phi}(C_{\phi} + C_{\phi}^{*})K_{w}z = (C_{\phi} + C_{\phi}^{*})C_{\phi}^{*}C_{\phi}K_{w}z$$

for all $z, w \in \mathbb{C}$. Therefore, from equalities (1), (2), (3) and (4), we get

$$e^{\overline{a}b\overline{w}+|b|^2+z(\overline{a}|a|^2\overline{w}+|a|^2\overline{b})} + e^{b\overline{w}(1+a)+z(a|a|^2\overline{w}+\overline{b})} =$$
$$= e^{b\overline{w}+z(\overline{a}|a|^2\overline{w}+\overline{b}(1+\overline{a}))} + e^{b\overline{w}(1+|a|^2)+|b|^2+z(a|a|^2\overline{w}+a\overline{b})}.$$
(5)

Taking w = 0 in (5), one has

$$e^{z\bar{b}(\bar{a}+1)} + e^{za\bar{b}+|b|^2} - e^{z\bar{b}} = e^{z|a|^2\bar{b}+|b|^2}$$
(6)

for all $z \in \mathbb{C}$.

Similarly, substituting z = 0 in (5) and taking conjugation on both sides of (5), we get

$$e^{w\bar{b}(\bar{a}+1)} + e^{wa\bar{b}+|b|^2} - e^{w\bar{b}} = e^{w(|a|^2\bar{b}+\bar{b})+|b|^2}$$
(7)

for all $w \in \mathbb{C}$. Since (6) and (7) are true for all $z, w \in \mathbb{C}$, then for $z = w = \zeta$, we have

$$e^{\zeta |a|^2 \bar{b} + |b|^2} = e^{\zeta (|a|^2 \bar{b} + \bar{b}) + |b|^2} \tag{8}$$

for all $\zeta \in \mathbb{C}$. Equating powers of (8), we conclude b = 0. This implies $\phi(z) = az$ for all $z \in \mathbb{C}$. In this case, we know C_{ϕ} is normal. Hence C_{ϕ} is binormal on \mathcal{F}^2 .

3.2. When are binormal composition operators complex symmetric? In this second section, we study when are binormal composition operators complex symmetric on \mathcal{F}^2 .

Proposition 1. Let ϕ be an analytic function on \mathbb{C} such that C_{ϕ} is bounded on \mathcal{F}^2 . Then C_{ϕ} is binormal if and only if C_{ϕ} is normal on \mathcal{F}^2 .

Proof. Since C_{ϕ} is bounded, using Theorem 1, we have $\phi(z) = az + b$ with $|a| \leq 1$.

$$C_{\phi}C_{\phi}^{*}C_{\phi}C_{\phi}K_{w}z = C_{\phi}C_{\phi}^{*}C_{\phi}K_{w}\phi(z) = C_{\phi}C_{\phi}^{*}C_{\phi}^{*}e^{(az+b)\overline{w}} = e^{b\overline{w}}C_{\phi}C_{\phi}^{*}C_{\phi}K_{\overline{a}w}z =$$

$$= e^{b\overline{w}}C_{\phi}C_{\phi}^{*}K_{\phi(\overline{a}w)}z = e^{b\overline{w}}C_{\phi}C_{\phi}^{*}K_{(|a|^{2}w+b)}z = e^{b\overline{w}}C_{\phi}K_{\phi(|a|^{2}w+b)}z = e^{b\overline{w}}C_{\phi}K_{(a|a|^{2}w+ab+b)}z =$$

$$= e^{b\overline{w}}K_{(a|a|^{2}w+ab+b)}\phi(z) = e^{b\overline{w}}e^{(az+b)\overline{(a|a|^{2}w+ab+b)}} = e^{|b|^{2}(\overline{a}+1)+b\overline{w}(\overline{a}|a|^{2}+1)+z(|a|^{4}\overline{w}+|a|^{2}\overline{b}+a\overline{b})}.$$
(9)

Next consider,

$$C_{\phi}^{*}C_{\phi}C_{\phi}C_{\phi}^{*}K_{w}z = C_{\phi}^{*}C_{\phi}C_{\phi}K_{\phi(w)}z = C_{\phi}^{*}C_{\phi}C_{\phi}K_{(aw+b)}z = C_{\phi}^{*}C_{\phi}K_{(aw+b)}\phi(z) =$$

$$= C_{\phi}^{*}C_{\phi}e^{(az+b)\overline{(aw+b)}} = e^{|b|^{2}+\overline{a}b\overline{w}}C_{\phi}^{*}C_{\phi}K_{(|a|^{2}w+\overline{a}b)}z = e^{|b|^{2}+\overline{a}b\overline{w}}C_{\phi}^{*}K_{(|a|^{2}w+\overline{a}b)}\phi(z) =$$

$$= e^{|b|^{2}+\overline{a}b\overline{w}}C_{\phi}^{*}e^{(az+b)\overline{(|a|^{2}w+\overline{a}b)}} = e^{|b|^{2}(a+1)+b\overline{w}(|a|^{2}+\overline{a})}C_{\phi}^{*}K_{(\overline{a}|a|^{2}w+\overline{a}^{2}b)}z =$$

$$= e^{|b|^{2}(a+1)+b\overline{w}(|a|^{2}+\overline{a})}e^{z\overline{a(\overline{a}|a|^{2}w+\overline{a}^{2}b)+b}} = e^{|b|^{2}(a+1)+b\overline{w}(|a|^{2}+\overline{a})}e^{z(|a|^{4}w+\overline{a}|a|^{2}\overline{b}+\overline{b})}.$$
(10)

Suppose that C_{ϕ} is binormal, then by equating (9) and (10), we get

$$e^{|b|^{2}(\bar{a}+1)+b\overline{w}(\bar{a}|a|^{2}+1)+z(|a|^{4}\overline{w}+|a|^{2}\overline{b}+a\overline{b})} = e^{|b|^{2}(a+1)+b\overline{w}(|a|^{2}+\overline{a})}e^{z(|a|^{4}w+\overline{a}|a|^{2}\overline{b}+\overline{b})}$$
(11)

for $z, w \in \mathbb{C}$. Taking z = w = 0 in (11), we get

$$|b|^{2}(\bar{a}-a) = 0.$$
(12)

Suppose that $b \neq 0$, then we have $\overline{a} = a$. Substituting this along with w = 0 in (11), we get $\overline{b}(a-1)(a^2-1) = 0$.

This implies |a| = 1. Then by Theorem 1, b = 0 which is a contradiction. Therefore $\phi(z) = az$ for $z \in \mathbb{C}$. This implies C_{ϕ} is normal on \mathcal{F}^2 .

Theorem 5. Let ϕ be an analytic function on \mathbb{C} such that C_{ϕ} is bounded on \mathcal{F}^2 . If C_{ϕ} is binormal then C_{ϕ} is complex symmetric.

Proof. Suppose that C_{ϕ} is binormal on \mathcal{F}^2 . Then by Proposition 1, C_{ϕ} is normal. Since every normal operator is complex symmetric, C_{ϕ} is complex symmetric on \mathcal{F}^2 .

Corollary 1. Let ϕ be an entire function on \mathbb{C} such that C_{ϕ} is bounded on \mathcal{F}^2 . If C_{ϕ} is binormal then C_{ϕ} is centered.

Proof. By Proposition 1, C_{ϕ} is binormal implies C_{ϕ} is normal. Since every normal operator is centered, C_{ϕ} is centered.

3.3. When are complex symmetric composition operators binormal? In this section, we study when are complex symmetric composition operators binormal on \mathcal{F}^2 .

Proposition 2. Let $\phi(z)$ be an analytic function on \mathbb{C} such that C_{ϕ} is bounded on \mathcal{F}^2 . Then C_{ϕ} is normal if and only if $\phi(z) = az$ with $|a| \leq 1$.

Proof. Since C_{ϕ} is bounded on \mathcal{F}^2 , by Theorem 1, we have $\phi(z) = az + b$ with $|a| \leq 1$. Therefore,

$$C_{\phi}K_{w}z = K_{w}\phi(z) = e^{(az+b)\overline{w}}, \quad C_{\phi}^{*}K_{w}z = K_{\phi(w)}z = e^{z\overline{(aw+b)}}$$

Suppose that C_{ϕ} is normal, then $e^{(az+b)\overline{w}} = e^{\overline{z(aw+b)}}$ Taking w = 0, we get $\overline{b}z = 0$ for all $z \in \mathbb{C}$. This implies b = 0.

Conversely, suppose that $\phi(z) = az$ with $|a| \leq 1$. Then

$$C_{\phi}^{*}C_{\phi}K_{w}z = C_{\phi}^{*}K_{w}\phi(z) = C_{\phi}^{*}K_{(\bar{a}w)}z = K_{\phi(\bar{a}w)}z = K_{(|a|^{2}w)}z,$$
(13)

$$C_{\phi}C_{\phi}^{*}K_{w}z = C_{\phi}K_{\phi(w)}z = C_{\phi}K_{(aw)}z = K_{(aw)}\phi(z) = K_{(aw)}(az) = K_{(|a|^{2}w)}z.$$
 (14)

Comparing (13) and (14), we conclude that C_{ϕ} is normal on \mathcal{F}^2 .

Proposition 3. Let ϕ be an analytic function on \mathbb{C} such that C_{ϕ} is bounded on \mathcal{F}^2 . If C_{ϕ} is complex symmetric with conjugation S of the form $S(f(z)) = \overline{f(\overline{z})}$ for all $f \in \mathcal{F}^2$, then $\phi(z) = az$ with $|a| \leq 1$.

Proof. We know by ([6], Lemma 3.5), the operator S defined as $S(f(z)) = \overline{f(\overline{z})}$ is a conjugation on \mathcal{F}^2 . Since C_{ϕ} is bounded, by Theorem 1, we have $\phi(z) = az + b$ with $|a| \leq 1$.

$$SC_{\phi}K_wz = SK_w\phi(z) = S(e^{(az+b)\overline{w}} = e^{\overline{(a\overline{z}+b)\overline{w}}} = e^{(\overline{a}\overline{z}+\overline{b})w}$$

Next consider

$$C^*_{\phi}SK_wz = C^*_{\phi}S(e^{z\overline{w}}) = C^*_{\phi}K_{\overline{w}}z = K_{\phi(\overline{w})}z = e^{z(\overline{a}w + \overline{b})}$$

Suppose that C_{ϕ} is complex symmetric, then $e^{(\bar{a}z+b)w} = e^{z(\bar{a}w+b)}$ Taking w = 0, we get $\bar{b}z = 0$ for all $z \in \mathbb{C}$. Hence b = 0.

Theorem 6. Let ϕ be an analytic function such that C_{ϕ} is bounded on \mathcal{F}^2 . If C_{ϕ} is complex symmetric with conjugation S of the form $S(f(z)) = \overline{f(\overline{z})}$ then C_{ϕ} binormal on \mathcal{F}^2 .

Proof. Suppose that C_{ϕ} is complex symmetric with conjugation S of the form $S(f(z)) = \overline{f(\overline{z})}$. Then by Proposition 3, $\phi(z) = az$ with $|a| \leq 1$. Hence C_{ϕ} is normal by Proposition 2. Since every normal operator is binormal. C_{ϕ} is binormal on \mathcal{F}^2 .

3.4. Binormal weighted composition operators. In this section, we study binormal weighted composition operators $C_{\psi,\phi}$ on \mathcal{F}^2 with $\phi(z) = az + b$ and $\psi(z) = cK_p z$ for some nonzero $p \in \mathbb{C}$ and constant c.

Theorem 7. Let ϕ, ψ be analytic functions on \mathbb{C} such that $\phi(z) = az + b$ and $\psi(z) = cK_p z$ for some nonzero $p \in \mathbb{C}$. Then $C_{\psi,\phi}$ is binormal then one of the following conditions hold: (1) |a| = 1, (2) a is real and $p = \phi(0)$.

Proof. By a simple calculation, we successively have

$$C_{\psi,\phi}^{*}C_{\psi,\phi}C_{\psi,\phi}C_{\psi,\phi}^{*}K_{w}z = C_{\psi,\phi}^{*}C_{\psi,\phi}C_{\psi,\phi}\overline{\psi(w)}K_{\phi(w)}z = \bar{c}e^{\bar{w}p}C_{\psi,\phi}^{*}C_{\psi,\phi}C_{\psi,\phi}K_{(aw+b)}z = \\ = \bar{c}e^{\bar{w}p}C_{\psi,\phi}^{*}C_{\psi,\phi}\psi(z)K_{(aw+b)}\phi(z) = |c|^{2}e^{\bar{w}(\bar{a}b+p)+|b|^{2}}C_{\psi,\phi}^{*}C_{\psi,\phi}C_{\psi,\phi}K_{(|a|^{2}w+\bar{a}b+p)}z = \\ = |c|^{2}e^{\bar{w}(\bar{a}b+p)+|b|^{2}}C_{\psi,\phi}^{*}\psi(z)K_{(|a|^{2}w+\bar{a}b+p)}\phi(z) =$$

$$= c|c|^{2}e^{\overline{w}(|a|^{2}b+\overline{a}b+p)+|b|^{2}(a+1)+b\overline{p}}C_{\psi,\phi}^{*}K_{(\overline{a}|a|^{2}w+\overline{a}^{2}b+\overline{a}p+p)}z =$$

$$= c|c|^{2}e^{\overline{w}(|a|^{2}b+\overline{a}b+p)+|b|^{2}(a+1)+b\overline{p}}\overline{\psi(\overline{a}|a|^{2}w+\overline{a}^{2}b+\overline{a}p+p)}K_{\phi(\overline{a}|a|^{2}w+\overline{a}^{2}b+\overline{a}p+p)}z =$$

$$= |c|^{4}e^{\overline{w}(a|a|^{2}p+|a|^{2}b+\overline{a}b+p)+|b|^{2}(a+1)+b\overline{p}+a^{2}\overline{b}p+|p|^{2}(a+1)+z(|a|^{4}\overline{w}+|a|^{2}(a\overline{b}+\overline{p})+\overline{p}(\overline{a}+1))}$$
(15)

Next consider

$$C_{\psi,\phi}C_{\psi,\phi}^{*}C_{\psi,\phi}^{*}C_{\psi,\phi}K_{w}z = C_{\psi,\phi}C_{\psi,\phi}^{*}C_{\psi,\phi}^{*}\psi(z)K_{w}\phi(z) = ce^{\overline{w}b}C_{\psi,\phi}C_{\psi,\phi}^{*}C_{\psi,\phi}^{*}K_{(\overline{a}w+p)}z =$$

$$= ce^{\overline{w}b}C_{\psi,\phi}C_{\psi,\phi}^{*}\overline{\psi(\overline{a}w+p)}K_{\phi(\overline{a}w+p)}z = |c|^{2}e^{\overline{w}(ap+b)+|p|^{2}}C_{\psi,\phi}C_{\psi,\phi}^{*}K_{(|a|^{2}w+ap+b)}z =$$

$$= |c|^{2}e^{\overline{w}(ap+b)+|p|^{2}}C_{\psi,\phi}\overline{\psi(|a|^{2}w+ap+b)}K_{\phi(|a|^{2}w+ap+b)}z =$$

$$= \overline{c}e^{\overline{w}(|a|^{2}p+ap+b)+|p|^{2}(\overline{a}+1)+\overline{b}p}C_{\psi,\phi}K_{(a|a|^{2}w+a^{2}p+ab+b)}z =$$

$$= \overline{c}e^{\overline{w}(|a|^{2}p+ap+b)+|p|^{2}(\overline{a}+1)+\overline{b}p}\psi(z)K_{(a|a|^{2}w+a^{2}p+ab+b)}\phi(z) =$$

$$= |c|^{4}e^{\overline{w}(\overline{a}|a|^{2}b+|a|^{2}p+ap+b)+\overline{a}^{2}\overline{p}b+\overline{b}p+(|p|^{2}+|b|^{2})(\overline{a}+1)+z(|a|^{4}\overline{w}+|a|^{2}(\overline{a}\overline{p}+\overline{b})+a\overline{b}+\overline{p})}.$$
(16)

Since $C_{\psi,\phi}$ is binormal, equating (15) and (16) we get

$$|c|^{4}e^{\overline{w}(a|a|^{2}p+|a|^{2}b+\overline{a}b+p)+|b|^{2}(a+1)+b\overline{p}+a^{2}\overline{b}p+|p|^{2}(a+1)+z(|a|^{4}\overline{w}+|a|^{2}(a\overline{b}+\overline{p})+\overline{p}(\overline{a}+1))} = \\ = |c|^{4}e^{\overline{w}(\overline{a}|a|^{2}b+|a|^{2}p+ap+b)+\overline{a}^{2}\overline{p}b+\overline{b}p+(|p|^{2}+|b|^{2})(\overline{a}+1)+z(|a|^{4}\overline{w}+|a|^{2}(\overline{a}\overline{p}+\overline{b})+a\overline{b}+\overline{p})}$$
(17)

for all $z, w \in \mathbb{C}$. Substituting w = 0 in (17) and equating coefficient of z, we get

$$(|a|^2 - 1)(\overline{ap} - a\overline{b}) = 0 \tag{18}$$

Next, taking z = 0 in (17) and equating coefficient of w, we get

$$(|a|^2 - 1)(p(a - 1) - b(\overline{a} - 1)) = 0.$$
⁽¹⁹⁾

From (18), we have either |a| = 1 or $ap = \overline{a}b$.

Suppose $|a| \neq 1$, then substituting $ap = \overline{a}b$ in (19), we get p = b. Since p is nonzero, from (18), we have $a = \overline{a}$. Hence, a is real.

3.5. Complex symmetric weighted composition operators. In this section, we investigate when the complex symmetric weighted composition operators on \mathcal{F}^2 is binormal.

Theorem 8. Let ϕ, ψ be entire functions on \mathbb{C} such that $\phi(z) = az + b$ with |a| = 1. If $C_{\psi,\phi}$ is bounded complex symmetric with conjugation S of the form $S(f(z)) = \overline{f(\overline{z})}$ then $C_{\psi,\phi}$ is binormal on \mathcal{F}^2 .

Proof. We know by ([6], Lemma 3.5), the operator S defined as $S(f(z)) = \overline{f(\overline{z})}$ is a conjugation on \mathcal{F}^2 . Since $C_{\psi,\phi}$ is bounded and complex symmetric on \mathcal{F}^2 , by ([6], Theorem 3.15), we have $\psi(z) = ce^{bz}$ for some nonzero $c \in \mathbb{C}$ with $b + a\overline{b} = 0$. Using |a| = 1 and $a\overline{b} + b = 0$, we simplify

$$C_{\psi,\phi}^* C_{\psi,\phi} C_{\psi,\phi} C_{\psi,\phi} K_w z = C_{\psi,\phi}^* C_{\psi,\phi} C_{\psi,\phi} \overline{\psi(w)} K_{\phi(w)} z = C_{\psi,\phi}^* C_{\psi,\phi} C_{\psi,\phi} \overline{ce^{bw}} K_{(aw+b)} z = \overline{c} e^{\overline{bw}} C_{\psi,\phi}^* C_{\psi,\phi} C_{\psi,\phi} C_{\psi,\phi} K_{(aw+b)} z = \overline{c} e^{\overline{bw}} C_{\psi,\phi}^* C_{\psi,\phi} \psi(z) K_{(aw+b)} \phi(z) = \overline{c} e^{\overline{bw}} C_{\psi,\phi}^* C_{\psi,\phi} C_{\psi,\phi} C_{\psi,\phi} C_{\psi,\phi} C_{\psi,\phi} C_{\psi,\phi} \psi(z) K_{(aw+b)} \phi(z) = \overline{c} e^{\overline{bw}} C_{\psi,\phi}^* C_{\psi,\phi} C_{\psi,\phi} C_{\psi,\phi} C_{\psi,\phi} C_{\psi,\phi} \psi(z) K_w \phi(z) = C_{\psi,\phi}^* C_{\psi,\phi} C_{\psi$$

$$= |c|^{2} e^{|b|^{2}} C_{\psi,\phi}^{*} c e^{bz} K_{w}(az+b) = c|c|^{2} e^{b\overline{w}+|b|^{2}} C_{\psi,\phi}^{*} K_{(\overline{a}w+\overline{b})} z =$$

$$= c|c|^{2} e^{b\overline{w}+|b|^{2}} \overline{\psi(\overline{a}w+\overline{b})} K_{\phi(\overline{a}w+\overline{b})} z = c|c|^{2} e^{b\overline{w}+|b|^{2}} \overline{ce^{b(\overline{a}w+\overline{b})}} K_{(a(\overline{a}w+\overline{b})+b)} z = |c|^{4} e^{2|b|^{2}} K_{w} z.$$
(20)

Similarly,

$$C_{\psi,\phi}C_{\psi,\phi}^{*}C_{\psi,\phi}^{*}C_{\psi,\phi}K_{w}z = C_{\psi,\phi}C_{\psi,\phi}^{*}C_{\psi,\phi}^{*}\psi(z)K_{w}\phi(z) = C_{\psi,\phi}C_{\psi,\phi}^{*}C_{\psi,\phi}^{*}ce^{bz}K_{w}(az+b) = \\ = ce^{b\overline{w}}C_{\psi,\phi}C_{\psi,\phi}^{*}C_{\psi,\phi}^{*}K_{(\overline{a}w+\overline{b})}z = ce^{b\overline{w}}C_{\psi,\phi}C_{\psi,\phi}^{*}\overline{\psi(\overline{a}w+\overline{b})}K_{\phi(\overline{a}w+\overline{b})}z = \\ = ce^{b\overline{w}}C_{\psi,\phi}C_{\psi,\phi}^{*}\overline{ce^{b(\overline{a}w+\overline{b})}}K_{a(\overline{a}w+\overline{b})+b}z = |c|^{2}e^{|b|^{2}}C_{\psi,\phi}C_{\psi,\phi}^{*}K_{w}z = |c|^{2}e^{|b|^{2}}C_{\psi,\phi}\overline{\psi(w)}K_{\phi(w)}z = \\ = |c|^{2}e^{|b|^{2}}C_{\psi,\phi}\overline{ce^{bw}}K_{(aw+b)}z = \overline{c}|c|^{2}e^{\overline{b}\overline{w}+|b|^{2}}C_{\psi,\phi}K_{(aw+b)}z = \overline{c}|c|^{2}e^{\overline{b}\overline{w}+|b|^{2}}\psi(z)K_{(aw+b)}\phi(z) = \\ = \overline{c}|c|^{2}e^{\overline{b}\overline{w}+|b|^{2}}ce^{bz}K_{(aw+b)}(az+b) = |c|^{4}e^{2|b|^{2}}K_{w}z.$$

$$(21)$$

From (20) and (21), we conclude $C_{\psi,\phi}$ is binormal on \mathcal{F}^2 .

REFERENCES

- 1. S.L. Campbell, Linear operators for which T^*T and $T + T^*$ commute, Pacific Journal of Mathematics, **61** (1975) No1.
- 2. S.L. Campbell, Linear operator for which T^*T and $T + T^*$ commute II, Transactions of the American Mathematical Society, **226**, (1977).
- 3. S.L. Campbell, Linear operator for which T^*T and $T + T^*$ commute III, Pacific Journal of Mathematics, **76** (1978), Nº1.
- 4. S.L. Campbell, R. Gellar, Spectral properties of linear operators for which T^*T and $T + T^*$ commute, Proceedings of the American Mathematical Society, **60** (1976).
- B. Carswell, B.D. MacCluer, A. Schuster, Composition operators on the Fock space, Acta Scientiarum Mathematicarum (Szeged), 69 (2003) №3–4, 871–887.
- P.V. Hai, L.H. Khoi, Complex symmetry of weighted composition operators on the Fock sapce, Journal of Mathematical Analysis and Applications, 433 (2016), 1757–1771.
- S. Jung, Y. Kim, E. Ko, Characterizations of binormal composition operators with linear fraction symbols on H², Applied Mathematics and Computations, 261, (2015), Issue C, 252–263.
- 8. S. Jung, Y. Kim, E. Ko, Composition operators for which $C^*_{\phi}C_{\phi}$ and $C_{\phi}+C^*_{\phi}$ commute, Complex Variables and Elliptic Equations, **59** (2014), Nº12, 1608–1625.
- T. Le, Normal and isometric weighted composition operators on the Fock space, Bull. Lond. Math. Soc., 46 (2014), №4, 847–856.
- L. Zhao, Unitary weighted composition operators on the Fock space of Cⁿ, Complex. Anal. Oper. Theory, 8 (2014), №2, 581–590.
- L. Zhao, Isometric weighted composition operators on the Fock space of Cⁿ, Bull. Korean Math. Soc., 53 (2016), №6, 1785–1794.
- 12. L. Zhao, Invertible weighted composition operators on the Fock space of \mathbb{C}^n , Hindawi Publicating Corporation, Journal of Function Spaces, (2015), Article ID 250358.

Corporate and Industry Relation, Amrita Vishwa Vidyapeetham Coimbatore, Tamilnadu, India 641112 santhosh csk@yahoo.com