C. SANTHOSHKUMAR

BINORMAL AND COMPLEX SYMMETRIC WEIGHTED COMPOSITION OPERATORS ON THE FOCK SPACE OVER \mathbb{C}

Abstract

C. Santhoshkumar. Binormal and complex symmetric weighted composition operators on the Fock Space over \mathbb{C}, Mat. Stud. 59 (2023), 106-112.

For analytic functions $\psi, \phi: \mathbb{C} \rightarrow \mathbb{C}$, the weighted composition operator $C_{\psi, \phi}$ is the operator on the Fock space \mathcal{F}^{2} defined as $C_{\psi, \phi} f=(\psi \cdot f) \circ \phi$ for all $f \in \mathcal{F}^{2}$ and the composition operator C_{ϕ} is the operator on the Fock space \mathcal{F}^{2} defined as $C_{\phi} f=f \circ \phi$ for all $f \in \mathcal{F}^{2}$. A bounded operator T is on a separable Hilbert space \mathcal{H} is said to be complex symmetric if there exists a conjugation operator S such that $T^{*}=S T S$ and T is said to be binormal if $T^{*} T$ and $T T^{*}$ commute (i.e) $T^{*} T T T^{*}=T T^{*} T^{*} T$. Let \mathcal{A} be a class of composition operators C_{ϕ} on \mathcal{F}^{2} such that $C_{\phi}^{*} C_{\phi}$ and $C_{\phi}+C_{\phi}^{*}$ commute. The main results of this paper is presented in five Sections (3.1-3.5). In the first section, we prove that when C_{ϕ} is bounded and belong to \mathcal{A} then C_{ϕ} binormal (Section 3.1). Then we describe necessary and sufficient conditions for a binormal (or) complex symmetric composition operator to have the other property (Sections 3.2, 3.3). Finally, we investigate binormality and complex symmetry of weighted composition operator $C_{\psi, \phi}$ with the weight function as a kernel function (ie) $\psi(z)=c K_{p} z=c e^{z \bar{p}}$ (Sections 3.4, 3.5).

1. Introduction. The Fock space \mathcal{F}^{2} is a space of all entire functions on \mathbb{C} which are square integrable with respect to Gaussian measure $d \mu(z)=\frac{1}{\pi} e^{-|z|^{2}} d A(z)$ where $d A$ denotes the usual Lebesque measure on \mathbb{C}. It is known that \mathcal{F}^{2} is a Hilbert space with inner product

$$
\langle f, g\rangle=\int_{\mathbb{C}} f(z) \overline{g(z)} d \mu(z)=\frac{1}{\pi} \int_{\mathbb{C}} f(z) \overline{g(z)} e^{-|z|^{2}} d A(z)
$$

for all $f, g \in \mathcal{F}^{2}$. It is well-known that \mathcal{F}^{2} is a reproducing kernel Hilbert space with kernel functions of the form

$$
K_{w} z=e^{\langle z, w\rangle}=e^{z \bar{w}}
$$

for all $z, w \in \mathbb{C}$.
We denote normalized kernel function at $w \in \mathbb{C}$ as $k_{w} z=\frac{K_{w} z}{\left\|\mid K_{w}\right\|}$.
For analytic functions ψ, ϕ on \mathbb{C}, the weighted composition operator $C_{\psi, \phi}$ is defined as $C_{\psi, \phi} f=(\psi \cdot f) \circ \phi$ for all $f \in \mathcal{F}^{2}$ and the composition operators $C_{\phi} f=f \circ \phi$ for all $f \in \mathcal{F}^{2}$.

The study of composition operators on \mathcal{F}^{2} has been carried by many authors and characterized many of its properties. In [5], B, J. Carswell et al. characterized boundedness and compactness of composition operators on the Fock space over \mathbb{C}^{n}.

In [10], L. Zhao characterized unitary weighted composition operators and their spectrum on the Fock space over \mathbb{C}^{n}. In $[11,12]$, L. Zhao respectively studied isometric weighted composition operators and bounded invertible weighted composition operators on the Fock space over \mathbb{C}^{n}. In [9], T. Le investigated boundedness and compactness of weighted composition operators on \mathcal{F}^{2} using much simpler characterization than the one in [5]. In [7], S. Jung

[^0]et al. derived the necessary and sufficient conditions for C_{ϕ} to be binormal on the Hardy space with the fixed symbol ϕ is a linear fractional self map on the unit disk in the complex plane where the reproducing kernel is of the form $K_{w} z=\frac{1}{1-\bar{w} z}$.
2. Preliminaries. An operator T on a separable Hilbert space \mathcal{H} is said to be anti-linear if $T(a x+b y)=\bar{a} x+\bar{b} y, \forall x, y \in \mathcal{H}, \forall a, b \in \mathbb{C}$.

An anti-linear mapping S on \mathcal{H} is called conjugation if it is
(i) Involutive: $S^{2}=I$, the identity operator.
(ii) Isometry: $\|S x\|=\|x\|, \forall x \in \mathcal{H}$.

An operator T on \mathcal{H} is said to be complex symmetric if there exists a conjugation S such that $S T S=T^{*}$.

A linear operator T is:

- normal if T and T^{*} commute $T T^{*}=T^{*} T$.
- binormal if $T^{*} T$ and $T T^{*}$ commute $T^{*} T T T^{*}=T T^{*} T^{*} T$.
- centered if the doubly infinite sequence $\left\{\ldots, T^{2}\left(T^{2}\right)^{*}, T T^{*}, T^{*} T,\left(T^{2}\right)^{*} T^{2}, \ldots\right\}$ consists of mutually commuting operators.

Lemma 1. Let $\psi_{1}, \psi_{2}, \ldots \psi_{n}$ be analytic functions on \mathbb{C} and $\phi_{1}, \phi_{2}, \ldots \phi_{n}$ be an analytic selfmap on \mathbb{C}. If $C_{\psi_{1}, \phi_{1}}, C_{\psi_{2}, \phi_{2}}, \ldots C_{\psi_{n}, \phi_{n}}$, are bounded operators on \mathcal{F}^{2}, then

$$
C_{\psi_{1}, \phi_{1}} C_{\psi_{2}, \phi_{2}} \ldots C_{\psi_{n}, \phi_{n}}=C_{\psi_{1}\left(\psi_{2} \circ \phi_{1}\right) \ldots\left(\psi_{n} \circ \phi_{n-1} \circ \ldots \circ \phi_{1}\right), \phi_{n} \circ \phi_{n-1} \circ \ldots \circ \phi_{1} .} .
$$

Lemma 2. Let ψ, ϕ be holomorphic functions on \mathbb{C} such that $C_{\psi, \phi}$ is a bounded operator on \mathcal{F}^{2}, then $C_{\psi, \phi}^{*} K_{w}=\overline{\psi(w)} K_{\phi(w)}$ for every $w \in \mathbb{C}$,
Theorem 1 ([5], Theorem 1). Suppose $\phi: \mathbb{C} \rightarrow \mathbb{C}$ is an analytic function and C_{ϕ} is bounded on \mathcal{F}^{2} then $\phi(z)=a z+b$, where $a, b \in \mathbb{C},|a| \leq 1$ and if $|a|=1$ then $b=0$.

Theorem 2 ([9], Theorem 2.2). Suppose ψ, ϕ be analytic functions on \mathbb{C} such that ψ is not identically zero. Then $C_{\psi, \phi}$ is bounded if and only if ψ belongs to $\mathcal{F}^{2}, \phi(z)=a z+\phi(0)$ with $|a| \leq 1$ and $M(\psi, \phi):=\sup \left\{|\psi(z)|^{2} \exp \left(|\phi(z)|^{2}-|z|^{2}\right): z \in \mathbb{C}\right\}<\infty$.
Theorem 3 ([9], Theorem 3.3). Let ψ, ϕ be entire functions such that ψ is not identically zero. Then $C_{\psi, \phi}$ is a bounded normal operator on \mathcal{F}^{2} if and only if one of the following two cases occurs:
(i) $\phi(z)=a z+b$ with $|a|=1$ and $\psi=\psi(0) K_{-\bar{a} b}$. In this case, $C_{\psi, \phi}$ is a constant multiple of a unitary operator.
(ii) $\phi(z)=a z+b$ with $|a|<1$ and $\psi=\psi(0) K_{c}$, where $c=b \frac{1-\bar{a}}{1-a}$. In this case, $C_{\psi, \phi}$ is unitarily equvalent to $\psi(0) C_{a z}$.

3. Main Results.

3.1. Binormal composition operators. In [1-4], S. L. Campbell studied properties of bounded linear operator T on a separable Hilbert space such that $T^{*} T$ and $T+T^{*}$ commute. In [8], S, Jung et al. characterized the composition operators C_{ϕ} such that $C_{\phi}^{*} C_{\phi}$ and $C_{\phi}+C_{\phi}^{*}$ commute on Hardy space, a space of analytic functions on the unit disk in the complex plane.

Motivated by these papers, in this first section, we establish relation between binormality of composition operator C_{ϕ} and C_{ϕ} belongs to a class of composition operators such that $C_{\phi}^{*} C_{\phi}$ and $C_{\phi}+C_{\phi}^{*}$ commute.

Let \mathcal{A} be a class of composition operators C_{ϕ} on \mathcal{F}^{2} such that $C_{\phi}^{*} C_{\phi}$ and $C_{\phi}+C_{\phi}^{*}$ commute.

Theorem 4. Let ϕ be an entire function on \mathbb{C} such that C_{ϕ} is bounded on \mathcal{F}^{2}. If $C_{\phi} \in \mathcal{A}$ then C_{ϕ} is binormal.

Proof. Since C_{ϕ} is bounded on \mathcal{F}^{2}, by Theorem 1, one has $\phi(z)=a z+b$ with $|a| \leq 1$. Therefore, we successively have

$$
\begin{gather*}
C_{\phi}^{*} C_{\phi} C_{\phi}^{*} K_{w} z=C_{\phi}^{*} C_{\phi} K_{\phi(w)} z=C_{\phi}^{*} C_{\phi} K_{(a w+b)} z=C_{\phi}^{*} K_{(a w+b)} \phi(z)=C_{\phi}^{*} e^{(a z+b) \overline{(a w+b)}}= \\
=e^{\bar{a} b \bar{w}+|b|^{2}} C_{\phi}^{*} K_{\left(|a|^{2} w+\bar{a} b\right)} z=e^{\bar{a} b \bar{w}+|b|^{2}} K_{\phi\left(|a|^{2} w+\bar{a} b\right)} z= \\
=e^{\bar{a} \bar{b}+|b|^{2}} K_{a\left(|a|^{2} w+\bar{a} b\right)+b} z=e^{\bar{a} b \bar{w}+|b|^{2}+z\left(\bar{a}|a|^{2} \bar{w}+|a|^{2} \bar{b}\right)}, \tag{1}\\
C_{\phi}^{*} C_{\phi} C_{\phi} K_{w} z=C_{\phi}^{*} C_{\phi} K_{w} \phi(z)=C_{\phi}^{*} C_{\phi} e^{(a z+b) \bar{w}}=e^{b \bar{w}} C_{\phi}^{*} C_{\phi} K_{\bar{a} w} z=e^{b \bar{w}} C_{\phi}^{*} K_{\bar{a} w} \phi(z)= \\
=e^{b \bar{w}} C_{\phi}^{*} e^{(a z+b) a \bar{w}}=e^{b \bar{w}(1+a)} C_{\phi}^{*} K_{\left(\bar{a}^{2} w\right)} z=e^{b \bar{w}(1+a)} K_{\phi\left(\bar{a}^{2} w\right)} z= \\
=e^{b \bar{w}(1+a)} K_{a\left(\bar{a}^{2} w\right)+b} z=e^{b \bar{w}(1+a)+z\left(a|a|^{2} \bar{w}+\bar{b}\right)}, \tag{2}\\
C_{\phi}^{*} C_{\phi}^{*} C_{\phi} K_{w} z=C_{\phi}^{*} C_{\phi}^{*} K_{w} \phi(z)=C_{\phi}^{*} C_{\phi}^{*} e^{(a z+b) \bar{w}}=e^{b \bar{w}} C_{\phi}^{*} C_{\phi}^{*} K_{\bar{a} w} z= \\
=e^{b \bar{w}} K_{\phi(\phi(\bar{a} w))} z=e^{b \bar{w}+z\left(\bar{a}|a|^{2} \bar{w}+\bar{b}(1+\bar{a})\right)}, \tag{3}
\end{gather*}
$$

and also

$$
\begin{gather*}
C_{\phi} C_{\phi}^{*} C_{\phi} K_{w} z=C_{\phi} C_{\phi}^{*} K_{w} \phi(z)=C_{\phi} C_{\phi}^{*} e^{(a z+b) \bar{w}}=e^{b \bar{w}} C_{\phi} C_{\phi}^{*} K_{\bar{a} w} z=e^{b \bar{w}} C_{\phi} K_{\phi(\bar{a} w)} z= \\
=e^{b \bar{w}} K_{\left(|a|^{2} w+b\right)} \phi(z)=e^{b \bar{w}} e^{(a z+b)\left(|a|^{2} \bar{w}+\bar{b}\right)}=e^{b \bar{w}\left(1+|a|^{2}\right)+|b|^{2}+z\left(a|a|^{2} \bar{w}+a \bar{b}\right)} \tag{4}
\end{gather*}
$$

Suppose that $C_{\phi} \in \mathcal{A}$, then

$$
C_{\phi}^{*} C_{\phi}\left(C_{\phi}+C_{\phi}^{*}\right) K_{w} z=\left(C_{\phi}+C_{\phi}^{*}\right) C_{\phi}^{*} C_{\phi} K_{w} z
$$

for all $z, w \in \mathbb{C}$. Therefore, from equalities (1), (2), (3) and (4), we get

$$
\begin{gather*}
e^{\bar{a} b \bar{w}+|b|^{2}+z\left(\bar{a}|a|^{2} \bar{w}+|a|^{2} \bar{b}\right)}+e^{b \bar{w}(1+a)+z\left(a|a|^{2} \bar{w}+\bar{b}\right)}= \\
=e^{b \bar{w}+z\left(\bar{a}|a|^{2} \bar{w}+\bar{b}(1+\bar{a})\right)}+e^{b \bar{w}\left(1+|a|^{2}\right)+|b|^{2}+z\left(a|a|^{2} \bar{w}+a \bar{b}\right)} . \tag{5}
\end{gather*}
$$

Taking $w=0$ in (5), one has

$$
\begin{equation*}
e^{z \bar{b}(\bar{a}+1)}+e^{z a \bar{b}+|b|^{2}}-e^{z \bar{b}}=e^{z|a|^{2} \bar{b}+|b|^{2}} \tag{6}
\end{equation*}
$$

for all $z \in \mathbb{C}$.
Similarly, substituting $z=0$ in (5) and taking conjugation on both sides of (5), we get

$$
\begin{equation*}
e^{w \bar{b}(\bar{a}+1)}+e^{w a \bar{b}+|b|^{2}}-e^{w \bar{b}}=e^{w\left(|a|^{2} \bar{b}+\bar{b}\right)+|b|^{2}} \tag{7}
\end{equation*}
$$

for all $w \in \mathbb{C}$.
Since (6) and (7) are true for all $z, w \in \mathbb{C}$, then for $z=w=\zeta$, we have

$$
\begin{equation*}
e^{\zeta|a|^{2} \bar{b}+|b|^{2}}=e^{\zeta\left(|a|^{\bar{b}}+\bar{b}\right)+|b|^{2}} \tag{8}
\end{equation*}
$$

for all $\zeta \in \mathbb{C}$. Equating powers of (8), we conclude $b=0$. This implies $\phi(z)=a z$ for all $z \in \mathbb{C}$. In this case, we know C_{ϕ} is normal. Hence C_{ϕ} is binormal on \mathcal{F}^{2}.
3.2. When are binormal composition operators complex symmetric? In this second section, we study when are binormal composition operators complex symmetric on \mathcal{F}^{2}.

Proposition 1. Let ϕ be an analytic function on \mathbb{C} such that C_{ϕ} is bounded on \mathcal{F}^{2}. Then C_{ϕ} is binormal if and only if C_{ϕ} is normal on \mathcal{F}^{2}.

Proof. Since C_{ϕ} is bounded, using Theorem 1, we have $\phi(z)=a z+b$ with $|a| \leq 1$.

$$
\begin{align*}
& \quad C_{\phi} C_{\phi}^{*} C_{\phi}^{*} C_{\phi} K_{w} z=C_{\phi} C_{\phi}^{*} C_{\phi}^{*} K_{w} \phi(z)=C_{\phi} C_{\phi}^{*} C_{\phi}^{*} e^{(a z+b) \bar{w}}=e^{b \bar{w}} C_{\phi} C_{\phi}^{*} C_{\phi}^{*} K_{\bar{a} w} z= \\
& =e^{b \bar{w}} C_{\phi} C_{\phi}^{*} K_{\phi(\bar{a} w)} z=e^{b \bar{w}} C_{\phi} C_{\phi}^{*} K_{\left(|a|{ }^{2} w+b\right)^{z}=e^{b \bar{w}} C_{\phi} K_{\phi\left(|a|^{2} w+b\right)} z=e^{b \bar{w}} C_{\phi} K_{\left(a|a|^{2} w+a b+b\right)} z=}^{=e^{b \bar{w}} K_{\left(a|a|^{2} w+a b+b\right) \phi} \phi(z)=e^{b \bar{w}} e^{(a z+b)\left(a|a|^{2} w+a b+b\right)}=e^{\left.|b|\right|^{2}(\bar{a}+1)+b \bar{w}\left(\bar{a}|a|^{2}+1\right)+z\left(|a|^{4} \bar{w}+|a|^{2} \bar{b}+a \bar{b}\right)} .}
\end{align*}
$$

Next consider,

$$
\begin{gather*}
C_{\phi}^{*} C_{\phi} C_{\phi} C_{\phi}^{*} K_{w} z=C_{\phi}^{*} C_{\phi} C_{\phi} K_{\phi(w)} z=C_{\phi}^{*} C_{\phi} C_{\phi} K_{(a w+b)} z=C_{\phi}^{*} C_{\phi} K_{(a w+b)} \phi(z)= \\
=C_{\phi}^{*} C_{\phi} e^{(a z+b)(a w+b)}=e^{|b|^{2}+\bar{a} b \bar{w}} C_{\phi}^{*} C_{\phi} K_{\left(|a|{ }^{2} w+\bar{a} b\right)} z=e^{|b|^{2}+\overline{a b} \bar{w}} C_{\phi}^{*} K_{\left(|a|^{2} w+\bar{a} b\right)} \phi(z)= \\
=e^{|b|^{2}+\bar{a} b \bar{w}} C_{\phi}^{*} e^{(a z+b)\left(|a|^{2} w+\overline{a b}\right)}=e^{|b|^{2}(a+1)+b \bar{w}\left(|a|^{2}+\bar{a}\right)} C_{\phi}^{*} K_{\left(\bar{a}|a|^{2} w+\bar{a}^{2} b\right)} z= \\
=e^{|b|^{2}(a+1)+b \bar{w}\left(|a|^{2}+\bar{a}\right)} K_{\phi\left(\bar{a}|a|^{2} w+\bar{a}^{2} b\right)} z= \\
=e^{|b|^{2}(a+1)+b \bar{w}\left(|a|^{2}+\bar{a}\right)} e^{\left.z a\left(\bar{a}|a|^{2} w+\bar{a}^{2} b\right)\right)+b}=e^{|b|^{2}(a+1)+b \bar{w}\left(|a|^{2}+\bar{a}\right)} e^{z\left(|a|^{4} w+\bar{a}|a|^{2} \bar{b}+\bar{b}\right)} . \tag{10}
\end{gather*}
$$

Suppose that C_{ϕ} is binormal, then by equating (9) and (10), we get

$$
\begin{equation*}
e^{|b|^{2}(\bar{a}+1)+b \bar{w}\left(\bar{a}|a|^{2}+1\right)+z\left(|a|^{4} \bar{w}+|a|^{2} \bar{b}+a \bar{b}\right)}=e^{|b|^{2}(a+1)+b \bar{w}\left(|a|^{2}+\bar{a}\right)} e^{z\left(|a|^{4} w+\bar{a}|a|^{2} \bar{b}+\bar{b}\right)} \tag{11}
\end{equation*}
$$

for $z, w \in \mathbb{C}$. Taking $z=w=0$ in (11), we get

$$
\begin{equation*}
|b|^{2}(\bar{a}-a)=0 \tag{12}
\end{equation*}
$$

Suppose that $b \neq 0$, then we have $\bar{a}=a$. Substituting this along with $w=0$ in (11), we get

$$
\bar{b}(a-1)\left(a^{2}-1\right)=0
$$

This implies $|a|=1$. Then by Theorem $1, b=0$ which is a contradiction. Therefore $\phi(z)=a z$ for $z \in \mathbb{C}$. This implies C_{ϕ} is normal on \mathcal{F}^{2}.

Theorem 5. Let ϕ be an analytic function on \mathbb{C} such that C_{ϕ} is bounded on \mathcal{F}^{2}. If C_{ϕ} is binormal then C_{ϕ} is complex symmetric.

Proof. Suppose that C_{ϕ} is binormal on \mathcal{F}^{2}. Then by Proposition 1, C_{ϕ} is normal. Since every normal operator is complex symmetric, C_{ϕ} is complex symmetric on \mathcal{F}^{2}.

Corollary 1. Let ϕ be an entire function on \mathbb{C} such that C_{ϕ} is bounded on \mathcal{F}^{2}. If C_{ϕ} is binormal then C_{ϕ} is centered.

Proof. By Proposition 1, C_{ϕ} is binormal implies C_{ϕ} is normal. Since every normal operator is centered, C_{ϕ} is centered.
3.3. When are complex symmetric composition operators binormal? In this section, we study when are complex symmetric composition operators binormal on \mathcal{F}^{2}.

Proposition 2. Let $\phi(z)$ be an analytic function on \mathbb{C} such that C_{ϕ} is bounded on \mathcal{F}^{2}. Then C_{ϕ} is normal if and only if $\phi(z)=a z$ with $|a| \leq 1$.

Proof. Since C_{ϕ} is bounded on \mathcal{F}^{2}, by Theorem 1, we have $\phi(z)=a z+b$ with $|a| \leq 1$. Therefore,

$$
C_{\phi} K_{w} z=K_{w} \phi(z)=e^{(a z+b) \bar{w}}, \quad C_{\phi}^{*} K_{w} z=K_{\phi(w)} z=e^{z(\overline{a w+b)}}
$$

Suppose that C_{ϕ} is normal, then $e^{(a z+b) \bar{w}}=e^{z(a w+b)}$ Taking $w=0$, we get $\bar{b} z=0$ for all $z \in \mathbb{C}$. This implies $b=0$.

Conversely, suppose that $\phi(z)=a z$ with $|a| \leq 1$. Then

$$
\begin{gather*}
C_{\phi}^{*} C_{\phi} K_{w} z=C_{\phi}^{*} K_{w} \phi(z)=C_{\phi}^{*} K_{(\bar{a} w)} z=K_{\phi(\bar{a} w)} z=K_{\left(|a|^{2} w\right)} z \tag{13}\\
C_{\phi} C_{\phi}^{*} K_{w} z=C_{\phi} K_{\phi(w)} z=C_{\phi} K_{(a w)} z=K_{(a w)} \phi(z)=K_{(a w)}(a z)=K_{\left(|a|^{2} w\right)} z \tag{14}
\end{gather*}
$$

Comparing (13) and (14), we conclude that C_{ϕ} is normal on \mathcal{F}^{2}.
Proposition 3. Let ϕ be an analytic function on \mathbb{C} such that C_{ϕ} is bounded on \mathcal{F}^{2}. If C_{ϕ} is complex symmetric with conjugation S of the form $S(f(z))=\overline{f(\bar{z})}$ for all $f \in \mathcal{F}^{2}$, then $\phi(z)=a z$ with $|a| \leq 1$.

Proof. We know by ([6], Lemma 3.5), the operator S defined as $S(f(z))=\overline{f(\bar{z})}$ is a conjugation on \mathcal{F}^{2}. Since C_{ϕ} is bounded, by Theorem 1, we have $\phi(z)=a z+b$ with $|a| \leq 1$.

$$
S C_{\phi} K_{w} z=S K_{w} \phi(z)=S\left(e^{(a z+b) \bar{w}}=e^{(a \bar{z}+b) \bar{w}}=e^{(\bar{a} z+\bar{b}) w}\right.
$$

Next consider

$$
C_{\phi}^{*} S K_{w} z=C_{\phi}^{*} S\left(e^{z \bar{w}}\right)=C_{\phi}^{*} K_{\bar{w}} z=K_{\phi(\bar{w})} z=e^{z(\bar{a} w+\bar{b})}
$$

Suppose that C_{ϕ} is complex symmetric, then $e^{(\bar{a} z+\bar{b}) w}=e^{z(\bar{a} w+\bar{b})}$ Taking $w=0$, we get $\bar{b} z=0$ for all $z \in \mathbb{C}$. Hence $b=0$.

Theorem 6. Let ϕ be an analytic function such that C_{ϕ} is bounded on \mathcal{F}^{2}. If C_{ϕ} is complex symmetric with conjugation S of the form $S(f(z))=\overline{f(\bar{z})}$ then C_{ϕ} binormal on \mathcal{F}^{2}.

Proof. Suppose that C_{ϕ} is complex symmetric with conjugation S of the form $S(f(z))=$ $\overline{f(\bar{z})}$. Then by Proposition $3, \phi(z)=a z$ with $|a| \leq 1$. Hence C_{ϕ} is normal by Proposition 2 . Since every normal operator is binormal. C_{ϕ} is binormal on \mathcal{F}^{2}.
3.4. Binormal weighted composition operators. In this section, we study binormal weighted composition operators $C_{\psi, \phi}$ on \mathcal{F}^{2} with $\phi(z)=a z+b$ and $\psi(z)=c K_{p} z$ for some nonzero $p \in \mathbb{C}$ and constant c.

Theorem 7. Let ϕ, ψ be analytic functions on \mathbb{C} such that $\phi(z)=a z+b$ and $\psi(z)=c K_{p} z$ for some nonzero $p \in \mathbb{C}$. Then $C_{\psi, \phi}$ is binormal then one of the following conditions hold: (1) $|a|=1$, (2) a is real and $p=\phi(0)$.

Proof. By a simple calculation, we successively have

$$
\begin{gathered}
C_{\psi, \phi}^{*} C_{\psi, \phi} C_{\psi, \phi} C_{\psi, \phi}^{*} K_{w} z=C_{\psi, \phi}^{*} C_{\psi, \phi} C_{\psi, \phi} \overline{\psi(w)} K_{\phi(w)} z=\bar{c} e^{\bar{w} p} C_{\psi, \phi}^{*} C_{\psi, \phi} C_{\psi, \phi} K_{(a w+b)} z= \\
=\bar{c} e^{\bar{w} p} C_{\psi, \phi}^{*} C_{\psi, \phi} \psi(z) K_{(a w+b) \phi} \phi(z)=|c|^{2} e^{\bar{w}(\bar{a} b+p)+|b|^{2}} C_{\psi, \phi}^{*} C_{\psi, \phi} K_{\left(|a|^{2} w+\bar{a} b+p\right)} z= \\
=|c|^{2} e^{\bar{w}(\bar{a} b+p)+|b|^{2}} C_{\psi, \phi}^{*} \psi(z) K_{\left(|a|^{2} w+\bar{a} b+p\right)} \phi(z)=
\end{gathered}
$$

$$
\begin{gather*}
=c|c|^{2} e^{\bar{w}\left(|a|^{2} b+\bar{a} b+p\right)+|b|^{2}(a+1)+b \bar{p}} C_{\psi, \phi}^{*} K_{\left(\bar{a}|a|^{2} w+\bar{a}^{2} b+\bar{a} p+p\right)} z= \\
=c|c|^{2} e^{\bar{w}\left(|a|^{2} b+\bar{a} b+p\right)+|b|^{2}(a+1)+b \bar{p}} \overline{\psi\left(\bar{a}|a|^{2} w+\bar{a}^{2} b+\bar{a} p+p\right)} K_{\phi\left(\bar{a}|a|^{2} w+\bar{a}^{2} b+\bar{a} p+p\right)} z= \\
=|c|^{4} e^{\bar{w}\left(a|a|^{2} p+|a|^{2} b+\bar{a} b+p\right)+|b|^{2}(a+1)+b \bar{p}+a^{2} \bar{b} p+|p|^{2}(a+1)+z\left(\left.|a|\right|^{4} \bar{w}+|a|^{2}(a \bar{b}+\bar{p})+\bar{p}(\bar{a}+1)\right)} \tag{15}
\end{gather*}
$$

Next consider

$$
\begin{gather*}
C_{\psi, \phi} C_{\psi, \phi}^{*} C_{\psi, \phi}^{*} C_{\psi, \phi} K_{w} z=C_{\psi, \phi} C_{\psi, \phi}^{*} C_{\psi, \phi}^{*} \psi(z) K_{w} \phi(z)=c e^{\bar{w} b} C_{\psi, \phi} C_{\psi, \phi}^{*} C_{\psi, \phi}^{*} K_{(\bar{a} w+p)} z= \\
=c e^{\bar{w} b} C_{\psi, \phi} C_{\psi, \phi}^{*} \overline{\psi(\bar{a} w+p)} K_{\phi(\bar{a} w+p)} z=|c|^{2} e^{\bar{w}(a p+b)+|p|^{2}} C_{\psi, \phi} C_{\psi, \phi}^{*} K_{\left(|a|^{2} w+a p+b\right)} z= \\
=|c|^{2} e^{\bar{w}(a p+b)+|p|^{2}} C_{\psi, \phi} \overline{\psi\left(|a|^{2} w+a p+b\right)} K_{\phi\left(|a|^{2} w+a p+b\right)} z= \\
=\bar{c} e^{\bar{w}\left(|a|^{2} p+a p+b\right)+|p|^{2}(\bar{a}+1)+\bar{b} p} C_{\psi, \phi} K_{\left(a|a|^{2} w+a^{2} p+a b+b\right)} z= \\
=\bar{c} e^{\bar{w}\left(|a|^{2} p+a p+b\right)+|p|^{2}(\bar{a}+1)+\bar{b} p} \psi(z) K_{\left(a|a|^{2} w+a^{2} p+a b+b\right)} \phi(z)= \\
=|c|^{4} e^{\bar{w}\left(\bar{a}|a|^{2} b+|a|^{2} p+a p+b\right)+\bar{a}^{2} \bar{p} b+\bar{b} p+\left(\left|\left|\left.\right|^{2}+\left||b|^{2}\right)(\bar{a}+1)+z\left(|a|^{4} \bar{w}+|a|^{2}(\overline{a p+b})+a \bar{b}+\bar{p}\right)\right.\right.\right.} . \tag{16}
\end{gather*}
$$

Since $C_{\psi, \phi}$ is binormal, equating (15) and (16) we get

$$
\begin{align*}
& |c|^{4} e^{\bar{w}\left(a|a|^{2} p+|a|^{2} b+\bar{a} b+p\right)+|b|^{2}(a+1)+b \bar{p}+a^{2} \bar{b} p+|p|^{2}(a+1)+z\left(|a|^{4} \bar{w}+|a|^{2}(a \bar{b}+\bar{p})+\bar{p}(\bar{a}+1)\right)}= \\
& =|c|^{4} e^{\bar{w}\left(\bar{a}|a|^{2} b+|a|^{2} p+a p+b\right)+\bar{a}^{2} \bar{p} b+\bar{b} p+\left(|p|^{2}+|b|^{2}\right)(\bar{a}+1)+z\left(|a|^{4} \bar{w}+|a|^{2}(\overline{a p}+\bar{b})+a \bar{b}+\bar{p}\right)} \tag{17}
\end{align*}
$$

for all $z, w \in \mathbb{C}$. Substituting $w=0$ in (17) and equating coefficient of z, we get

$$
\begin{equation*}
\left(|a|^{2}-1\right)(\overline{a p}-a \bar{b})=0 \tag{18}
\end{equation*}
$$

Next, taking $z=0$ in (17) and equating coefficient of w, we get

$$
\begin{equation*}
\left(|a|^{2}-1\right)(p(a-1)-b(\bar{a}-1))=0 \tag{19}
\end{equation*}
$$

From (18), we have either $|a|=1$ or $a p=\bar{a} b$.
Suppose $|a| \neq 1$, then substituting $a p=\bar{a} b$ in (19), we get $p=b$. Since p is nonzero, from (18), we have $a=\bar{a}$. Hence, a is real.
3.5. Complex symmetric weighted composition operators. In this section, we investigate when the complex symmetric weighted composition operators on \mathcal{F}^{2} is binormal.

Theorem 8. Let ϕ, ψ be entire functions on \mathbb{C} such that $\phi(z)=a z+b$ with $|a|=1$. If $C_{\psi, \phi}$ is bounded complex symmetric with conjugation S of the form $S(f(z))=\overline{f(\bar{z})}$ then $C_{\psi, \phi}$ is binormal on \mathcal{F}^{2}.

Proof. We know by ([6], Lemma 3.5), the operator S defined as $S(f(z))=\overline{f(\bar{z})}$ is a conjugation on \mathcal{F}^{2}. Since $C_{\psi, \phi}$ is bounded and complex symmetric on \mathcal{F}^{2}, by ([6], Theorem 3.15), we have $\psi(z)=c e^{b z}$ for some nonzero $c \in \mathbb{C}$ with $b+a \bar{b}=0$. Using $|a|=1$ and $a \bar{b}+b=0$, we simplify

$$
\begin{gathered}
C_{\psi, \phi}^{*} C_{\psi, \phi} C_{\psi, \phi} C_{\psi, \phi}^{*} K_{w} z=C_{\psi, \phi}^{*} C_{\psi, \phi} C_{\psi, \phi} \overline{\psi(w)} K_{\phi(w)} z=C_{\psi, \phi}^{*} C_{\psi, \phi} C_{\psi, \phi} \overline{\bar{b} e^{b w}} K_{(a w+b)} z= \\
=\bar{c} e^{\bar{b}} C_{\psi, \phi}^{*} C_{\psi, \phi} C_{\psi, \phi} K_{(a w+b)} z=\bar{c} e^{\bar{b} \bar{w}} C_{\psi, \phi}^{*} C_{\psi, \phi} \psi(z) K_{(a w+b)} \phi(z)= \\
=\bar{c} e^{\bar{b} \bar{w}} C_{\psi, \phi}^{*} C_{\psi, \phi} c e^{b z} K_{(a w+b)}(a z+b)=|c|^{2} e^{|b|^{2}} C_{\psi, \phi}^{*} C_{\psi, \phi} K_{w} z=|c|^{2} e^{|b|^{2}} C_{\psi, \phi}^{*} \psi(z) K_{w} \phi(z)=
\end{gathered}
$$

$$
\begin{gather*}
=|c|^{2} e^{|b|^{2}} C_{\psi, \phi}^{*} c e^{b z} K_{w}(a z+b)=c|c|^{2} e^{b \bar{w}+|b|^{2}} C_{\psi, \phi}^{*} K_{(\bar{a} w+\bar{b})} z= \\
=c|c|^{2} e^{b \bar{w}+|b|^{2}} \overline{\psi(\bar{a} w+\bar{b})} K_{\phi(\bar{a} w+\bar{b})} z=c|c|^{2} e^{b \bar{w}+|b|^{2}} \overline{c e^{b(\bar{a} w+\bar{b})}} K_{(a(\bar{a} w+\bar{b})+b)} z=|c|^{4} e^{2|b|^{2}} K_{w} z \tag{20}
\end{gather*}
$$

Similarly,

$$
\begin{gather*}
C_{\psi, \phi} C_{\psi, \phi}^{*} C_{\psi, \phi}^{*} C_{\psi, \phi} K_{w} z=C_{\psi, \phi} C_{\psi, \phi}^{*} C_{\psi, \phi}^{*} \psi(z) K_{w} \phi(z)=C_{\psi, \phi} C_{\psi, \phi}^{*} C_{\psi, \phi}^{*} c e^{b z} K_{w}(a z+b)= \\
=c e^{b \bar{w}} C_{\psi, \phi} C_{\psi, \phi}^{*} C_{\psi, \phi}^{*} K_{(\bar{a} w+\bar{b})} z=c e^{b \bar{w}} C_{\psi, \phi} C_{\psi, \phi}^{*} \psi(\bar{a} w+\bar{b}) K_{\phi(\bar{a} w+\bar{b})} z= \\
=c e^{b \bar{w}} C_{\psi, \phi} C_{\psi, \phi}^{*} \overline{c e^{b(\bar{a} w+\bar{b})}} K_{a(\bar{a} w+\bar{b})+b} z=|c|^{2} e^{|b|^{2}} C_{\psi, \phi} C_{\psi, \phi}^{*} K_{w} z=|c|^{2} e^{\left.|b|\right|^{2}} C_{\psi, \phi} \overline{\psi(w)} K_{\phi(w)} z= \\
=|c|^{2} e^{|b|^{2}} C_{\psi, \phi} \bar{c} c e^{b w} K_{(a w+b)} z=\bar{c}|c|^{2} e^{\bar{b} \bar{w}+|b|^{2}} C_{\psi, \phi} K_{(a w+b)} z=\bar{c}|c|^{2} e^{\bar{b} \bar{w}+|b|^{2}} \psi(z) K_{(a w+b)} \phi(z)= \\
=\bar{c}|c|^{2} e^{\bar{b} \bar{w}+|b|^{2}} c e^{b z} K_{(a w+b)}(a z+b)=|c|^{4} e^{2|b|^{2}} K_{w} z . \tag{21}
\end{gather*}
$$

From (20) and (21), we conclude $C_{\psi, \phi}$ is binormal on \mathcal{F}^{2}.

REFERENCES

1. S.L. Campbell, Linear operators for which $T^{*} T$ and $T+T^{*}$ commute, Pacific Journal of Mathematics, 61 (1975) №1.
2. S.L. Campbell, Linear operator for which $T^{*} T$ and $T+T^{*}$ commute II, Transactions of the American Mathematical Society, 226, (1977).
3. S.L. Campbell, Linear operator for which $T^{*} T$ and $T+T^{*}$ commute III, Pacific Journal of Mathematics, 76 (1978), №1.
4. S.L. Campbell, R. Gellar, Spectral properties of linear operators for which $T^{*} T$ and $T+T^{*}$ commute, Proceedings of the American Mathematical Society, 60 (1976).
5. B. Carswell, B.D. MacCluer, A. Schuster, Composition operators on the Fock space, Acta Scientiarum Mathematicarum (Szeged), 69 (2003) №3-4, 871-887.
6. P.V. Hai, L.H. Khoi, Complex symmetry of weighted composition operators on the Fock sapce, Journal of Mathematical Analysis and Applications, 433 (2016), 1757-1771.
7. S. Jung, Y. Kim, E. Ko, Characterizations of binormal composition operators with linear fraction symbols on \mathcal{H}^{2}, Applied Mathematics and Computations, 261, (2015), Issue C, 252-263.
8. S. Jung, Y. Kim, E. Ko, Composition operators for which $C_{\phi}^{*} C_{\phi}$ and $C_{\phi}+C_{\phi}^{*}$ commute, Complex Variables and Elliptic Equations, 59 (2014), №12, 1608-1625.
9. T. Le, Normal and isometric weighted composition operators on the Fock space, Bull. Lond. Math. Soc., 46 (2014), №4, 847-856.
10. L. Zhao, Unitary weighted composition operators on the Fock space of \mathbb{C}^{n}, Complex. Anal. Oper. Theory, 8 (2014), №2, 581-590.
11. L. Zhao, Isometric weighted composition operators on the Fock space of \mathbb{C}^{n}, Bull. Korean Math. Soc., 53 (2016), №6, 1785-1794.
12. L. Zhao, Invertible weighted composition operators on the Fock space of \mathbb{C}^{n}, Hindawi Publicating Corporation, Journal of Function Spaces, (2015), Article ID 250358.

Corporate and Industry Relation, Amrita Vishwa Vidyapeetham
Coimbatore, Tamilnadu, India 641112
santhosh_csk@yahoo.com

[^0]: 2010 Mathematics Subject Classification: 47B33, 47B91, 47B99.
 Keywords: composition operators; weighted composition operators; Fock space; binormal; complex symmetry. doi:10.30970/ms.59.1.106-112

