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We consider an infinite system of ordinary differential equations that describes the dynamics
of an infinite system of linearly coupled nonlinear oscillators on a two dimensional integer-valued
lattice. It is assumed that each oscillator interacts linearly with its four nearest neighbors and
the oscillators are at the rest at infinity. We study the initial value problem (the Cauchy
problem) for such system. This system naturally can be considered as an operator-differential
equation in the Hilbert, or even Banach, spaces of sequences. We note that l2 is the simplest
choice of such spaces. With this choice of the configuration space, the phase space is l2× l2, and
the equation can be written in the Hamiltonian form with the Hamiltonian H. Recall that from
a physical point of view the Hamiltonian represents the full energy of the system, i.e., the sum
of kinetic and potential energy. Note that the Hamiltonian H is a conserved quantity, i.e., for
any solution of equation the Hamiltonian is constant. For this space, there are some results on
the global solvability of the corresponding Cauchy problem. In the present paper, results on the
l2-well-posedness are extended to weighted l2-spaces l2Θ. We suppose that the weight Θ satisfies
some regularity assumption. Under some assumptions for nonlinearity and coefficients of the
equation, we prove that every solution of the Cauchy problem from C2

(
(−T, T ); l2

)
belongs

to C2
(
(−T, T ); l2Θ

)
. And we obtain the results on existence of a unique global solutions of

the Cauchy problem for system of oscillators on a two-dimensional lattice in a wide class of
weighted l2-spaces. These results can be applied to discrete sine-Gordon type equations and
discrete Klein-Gordon type equations on a two-dimensional lattice. In particular, the Cauchy
problems for these equations are globally well-posed in every weighted l2-space with a regular
weight.

1. Introduction. Recently, considerable attention has been paid to models that are discrete
in the spatial variables. Among the equations that describe such models, the most famous are
the equations of chains of oscillators, the discrete sine–Gordon type equations, the Fermi–
Pasta–Ulam type systems and the discrete nonlinear Shrödinger type equations. Equations
of such type are of interest in view of numerous applications in physics [1, 16, 17].

Among the solutions of such equations, traveling waves deserve special attention. In
papers [3, 15, 19, 20] traveling waves for infinite systems of linearly and nonlinearly coupled
oscillators on 2D–lattice are studied. Papers [2, 6, 8] are devoted to the existence of homocli-
nic and heteroclinic traveling waves for the discrete sine–Gordon equations on 2D–lattice.
The existence of solitary traveling waves in Fermi–Pasta–Ulam system on 2D–lattice is studi-
ed in [10, 12]. A comprehensive presentation of existing results on traveling waves for 1D
Fermi-Pasta-Ulam lattices is given in [22].
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Papers [1, 4, 21, 26] deal with periodic in time solutions for such systems.
Another important class of solutions is standing waves. The existence of standing waves

in discrete nonlinear Shrödinger type equations is studied in [11, 23, 24, 25].
In the present paper we study equations that describe the dynamics of an infinite system

of linearly coupled nonlinear oscillators on a two dimensional lattice. Let qn,m = qn,m(t) be a
generalized coordinate of the (n,m)-th oscillator at time t. It is assumed that each oscillator
interacts linearly with its four nearest neighbors. The equations of motion of the system are
of the form

q̈n,m = an−1,mqn−1,m + an,mqn+1,m + bn,m−1qn,m−1 + bn,mqn,m+1 + cn,mqn,m−

−V ′n,m(qn,m), (n,m) ∈ Z2, (1)

where qn,m is a sequence of real functions, the coefficients an,m, bn,m, cn,m are sequences of
real numbers, and the nonlinearity Vn,m ∈ C1(R;R) is the on-site potential. Equations (1)
form an infinite system of ordinary differential equations.

We study the initial value problem (the Cauchy problem) for system (1) with initial
conditions

qn,m(0) = q(0)
n,m, q̇n,m(0) = q(1)

n,m, (n,m) ∈ Z2, (2)

where {q(0)
n,m} and {q(1)

n,m} are given real sequences. System (1) naturally can be considered
as an operator-differential equation, namelly

q̈ = Aq −B(q), (3)

where
(Aq)n,m = an−1,mqn−1,m + an,mqn+1,m + bn,m−1qn,m−1 + bn,mqn,m+1 + cn,mqn,m

and the nonlinear operator B is defined by
(B(q))n,m = V ′n,m(qn,m),

in the Hilbert, or even Banach, space E of sequences. Within this framework, initial condi-
tions (2) become

q(0) = q(0), q̇(0) = q(1), (4)

where q(0) and q(1) are given elements of the space E.
By definition, a solution of equation (3) is a twice continuously differentiable function of t

with values in E, that satisfies this equation. If for given initial data the solution of problem
(3), (4) is defined on the whole number line, then it is called a global solution. Otherwise, it
is called a local solution.

We note that the simplest choice of E is the Hilbert space l2 = l2(Z2) of real two-sided
square summable sequences q = {qn,m} with the scalar product

(q(1), q(2)) =
∑

(n,m)∈Z2

q(1)
n,mq

(2)
n,m

and with the corresponding norm ‖q‖ = (q, q)
1
2 . In particular, papers [5, 7, 9] are devoted to

the well-posedness of initial value problem for infinite systems of linearly coupled nonlinear
oscillators on 2D–lattice, while [13] and [14] are devoted to the well-posedness of initial value
problem for such systems on 1D–lattice in l2.
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2. Existence and uniqueness of global solutions in l2. Throughout the paper we impose
the following assumptions:

(i) {an,m}, {bn,m} and {cn,m} are bounded;

(ii) Vn,m ∈ C1(R), Vn,m(0) = V ′n,m(0) = 0, (n,m) ∈ Z2, and V ′n,m is locally Lipschitz
continuous uniformly with respect to (n,m) ∈ Z2, i.e., for any R > 0 there exists a
constant C = C(R) > 0 such that for all (n,m) ∈ Z2

|V ′n,m(r1)− V ′n,m(r2)| ≤ C|r1 − r2|, |r1|, |r2| ≤ R. (5)

Sometimes we use the following stronger than (ii) assumption

(ii′) assumption (ii) is satisfied with the constant C > 0 independent of R, i.e., V ′n,m is
globally Lipschitz continuous uniformly with respect to (n,m) ∈ Z2.

Assumption (i) guaranties that the operator A is bounded self-adjoint operator in l2.
With this choice of the configuration space, the phase space of equation (3) is l2 × l2, and
the equation can be written in the Hamiltonian form{

ṗ = −H ′q(p, q),
q̇ = H ′p(p, q),

with the Hamiltonian

H(p, q) =
1

2
(‖p‖2 − (Aq, q)) +

∑
(n,m)∈Z2

Vn,m(qn,m),

where p = q̇. The Hamiltonian H is a conserved quantity (see [7]), i.e., for any solution q(t)
of equation (3)

H (q̇(t), q(t)) = H (q̇(0), q(0)) = H
(
q(1), q(0)

)
= Const.

Now we reproduce some results from [5, 7, 9]. The first one is a simple straightforward
consequence of classical theorem on existence and uniqueness of global solutions for operator
differential equations in Banach spaces.

Proposition 1 ([9], Theorem 4). Assume (i) and (ii′). Then for every q(0) ∈ l2 and q(1) ∈ l2
problem (3), (4) has a unique global solution.

The proof of the next proposition makes use of Proposition 1, the Hamiltonian structure
of the equation and cutt-off argument.

Proposition 2 ([7], Theorem 3). Assume (i) and (ii). Suppose that the operator A is non-
positive, i.e., (Aq, q) ≤ 0 for all q ∈ l2. Suppose also that one of the following two conditions
holds:

(a) Vn,m(r) ≥ 0 for all (n,m) ∈ Z2 and r ∈ R;

(b) there exists a nondecreasing function h(ξ), ξ ≥ 0, such that lim
ξ→+∞

h(ξ) = +∞ and

Vn,m(r) ≥ h(|r|) for all (n,m) ∈ Z2 and r ∈ R.

Then for every q(0) ∈ l2 and q(1) ∈ l2 problem (3), (4) has a unique global solution.

A completely different type of nonlinearities is considered in the following proposition.
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Proposition 3 ([5], Corollary 3.1). Suppose that condition (i) is satisfied, Vn,m(r) = gn,m

p
rp,

p > 2, where {gn,m} is a bounded sequence, and the operator A is negative definite, i.e.,
(Aq, q) ≤ −α‖q‖2, where α > 0. Then there exists δ > 0 such that for any q(0), q(1) ∈ l2 with
‖q(0)‖ ≤ δ and ‖q(1)‖ ≤ δ, problem (3), (4) has a unique global solution.

3. Existence and uniqueness of global solutions in weighted spaces. The aim of the
present paper is to extend the l2-well-posedness results to weighted l2-spaces and, hence,
provide a refined information about problem (1), (2).

Let Θ = {θn,m} be a sequence of positive numbers (weight). We denote by l2Θ the space
of all two-sided sequences q = {qn,m} of real numbers such that the norm

‖q‖Θ =
( ∑

(n,m)∈Z2

θn,m|qn,m|2
) 1

2

is finite. This is a Hilbert space with the scalar product
(q(1), q(2))Θ =

∑
(n,m)∈Z2

θn,mq
(1)
n,mq

(2)
n,m.

We suppose that the weight Θ = {θn,m} satisfies the following assumption:

(iii) the weight Θ is a regular, i.e., the sequence {θn,m} is bounded below by a positive
constant and there exists a constant c0 > 0 such that

c−1
0 ≤

θn+1,m

θn,m
,
θn,m+1

θn,m
≤ c0

for all (n,m) ∈ Z2.

Under this assumption weighted space l2Θ is densely and continuously embedded into l2,
and

‖q‖ ≤ C1‖q‖Θ, q ∈ l2Θ,

with some C1 > 0. Therefore, all these spaces are densely and continuously embedded into
the space l∞ of bounded sequences with norm

‖q‖l∞ = sup
(n,m)∈Z2

|qn,m|.

And if θn,m ≡ 1, then l2Θ = l2.
From the point of view of functional analysis assumption (iii) is quite natural. It means

that the space l2Θ is translation invariant. More precisely, let T (i)
+ and T (i)

− (i = 1, 2) be the
operators of right and left shifts, respectively, defined by

(T
(1)
+ q)n,m = qn−1,m, (T

(1)
− q)n,m = qn+1,m,

(T
(2)
+ q)n,m = qn,m−1, (T

(2)
− q)n,m = qn,m+1.

Lemma 1. Assumption (iii) holds if and only if all operators T (k)
± (k = 1, 2) are bounded

in l2Θ.

Proof. Indeed, we have that

‖T (1)
+ q‖2

Θ =
∑

(n,m)∈Z2

θn,m|qn−1,m|2 =
∑

(n,m)∈Z2

θn+1,m|qn,m|2 =
∑

(n,m)∈Z2

θn,m
θn+1,m

θn,m
|qn,m|2,
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which means that T (1)
+ is bounded in l2Θ if and only if θn+1,m

θn,m
is bounded.

Similarly, T (1)
− , T (2)

+ , T (2)
− are bounded in l2Θ if and only if θn−1,m

θn,m
, θn,m+1

θn,m
, θn,m−1

θn,m
are bounded.

The most important examples of weights satisfying assumption (iii) are power and
exponential weights:

θn,m = (1 + |n|+ |m|)α, α > 0,

and
θn,m = exp (α(|n|+ |m|)) , α > 0.

Lemma 2. Assume (i) and (iii). Then the operator A is bounded in l2Θ.

Proof. The operator A can be represented in the form

A = a ◦ T (1)
− + T

(1)
+ ◦ a+ b ◦ T (2)

− + T
(2)
+ ◦ b+ c,

where a, b and c are the operators of multiplication by the sequences {an,m}, {bn,m} and
{cn,m} respectively, and ◦ stands for the composition of operators. Since the operators T (i)

− ,
T (i)+ (i = 1, 2), a, b and c are bounded operators in l2Θ by Lemma 1 and assumption (i)
respectively, we conclude that A is bounded in l2Θ.

Lemma 3. Under assumption (ii), the nonlinear operator B is a locally Lipschitz continuous
operator in the space l2Θ, i.e., for any R > 0 there exists a constant C = C(R) > 0 such that

‖B(q(1))−B(q(2))‖Θ ≤ C‖q(1) − q(2)‖Θ (6)

for all q(i) ∈ l2Θ with ‖q(i)‖Θ ≤ R (i = 1, 2). If assumption (ii′) is satisfied, then the operator
B is globally Lipschitz continuous operator in the space l2Θ, i.e., the constant C in inequality
(6) can be chosen independent of R.

Proof. Let assumption (ii) be satisfied, q ∈ l2Θ and ‖q‖l2Θ ≤ R. Since

‖q‖l∞ ≤ ‖q‖ ≤ C1‖q‖Θ ≤ C1R = R1,

inequality (5) and condition V ′n,m(0) = 0 mean that |V ′n,m(qn,m)| ≤ C|qn,m| and

‖B(q)‖Θ =
( ∑

(n,m)∈Z2

θn,m|V ′n,m(qn,m)|2
) 1

2 ≤ C
( ∑

(n,m)∈Z2

θn,m|qn,m|2
) 1

2
= C‖q‖Θ.

Thus, B(q) ∈ l2Θ and ‖B(q)‖Θ ≤ C‖q‖Θ.

Now let q(i) = {q(i)
n,m} ∈ l2Θ and ‖q(i)‖Θ ≤ R (i = 1, 2). Then ‖q(i)‖l∞ ≤ R1 and (5) implies

that
|V ′n,m(q(1)

n,m)− V ′n,m(q(2)
n,m)| ≤ C|q(1)

n,m − q(2)
n,m|.

Similarly to the previous one, we obtain

‖B(q(1))−B(q(2))‖Θ =
( ∑

(n,m)∈Z2

θn,m|V ′n,m(q(1)
n,m)− V ′n,m(q(2)

n,m)|2
) 1

2 ≤

≤ C
( ∑

(n,m)∈Z2

θn,m|q(1)
n,m − q(2)

n,m|2
) 1

2
= C‖q(1) − q(2)‖Θ.

Hence, B is a locally Lipschitz continuous operator in the space l2Θ.
The proof in the case (ii′) is similar.
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Lemma 4. Assume (i), (ii) and (iii). Suppose that q ∈ C2 ((−T, T ); l2) is a solution of
problem (1), (2) with q(0) = {q(0)

n,m} ∈ l2Θ and q(1) = {q(1)
n,m} ∈ l2Θ. Then q ∈ C2 ((−T, T ); l2Θ).

Proof. Let q ∈ C2 ((−T, T ); l2) be a solution of problem (1), (2) with q(0) = {q(0)
n,m} ∈ l2Θ and

q(1) = {q(1)
n,m} ∈ l2Θ. Fix any τ ∈ (0, T ) and set Rτ = sup

t∈[−τ,τ ]

‖q(t)‖. Let

Ṽ ′n,m(r) =


V ′n,m(r) if |r| ≤ Rτ + 1,

Ṽ ′n,m(r) = V ′n,m(Rτ + 1) if r > Rτ + 1,

V ′n,m(−Rτ − 1) if r < −Rτ − 1.

Then on [−τ, τ ] the function q(t) obviously solves the system

q̈n,m = an−1,mqn−1,m + an,mqn+1,m + bn,m−1qn,m−1 + bn,mqn,m+1 + cn,mqn,m−

−Ṽ ′n,m(qn,m), (n,m) ∈ Z2, (7)

with the same initial data.
Obviously, the functions Ṽ ′n,m satisfy assumption (ii′), and, by Lemma 3, the correspondi-

ng operator B̃ is globally Lipschitz continuous operator in the space l2Θ. By Lemma 2, the
linear operator A is a bounded operator in the space l2Θ. By the classical result ([18], Chapter
6, Theorem 1.2), problem (7), (2) has a unique solution

q̃ ∈ C2
(
(−T, T ); l2Θ

)
⊂ C2

(
(−T, T ); l2

)
.

By uniqueness for the initial value problem in the space l2, we have that q̃ = q on [−τ, τ ].
Since τ ∈ (0, T ) is an arbitrary point, we obtain that q ∈ C2 ((−T, T ); l2Θ).

Combining Lemma 4 with Propositions 1—3, we obtain the following results.

Theorem 1. Assume (i), (ii′) and (iii). Then for every q(0) ∈ l2Θ and q(1) ∈ l2Θ problem (1),
(2) has a unique global solution q ∈ C2 (R; l2Θ).

Theorem 2. Assume (i), (ii) and (iii). Suppose that the operator A is non-positive, i.e.,
(Aq, q) ≤ 0 for all q ∈ l2. Suppose also that one of the following two conditions holds:

(a) Vn,m(r) ≥ 0 for all (n,m) ∈ Z2 and r ∈ R;

(b) there exists a nondecreasing function h(ξ), ξ ≥ 0, such that lim
ξ→+∞

h(ξ) = +∞ and

Vn,m(r) ≥ h(|r|) for all (n,m) ∈ Z2 and r ∈ R.

Then for every q(0) ∈ l2Θ and q(1) ∈ l2Θ problem (1), (2) has a unique global solution q ∈
C2 (R; l2Θ).

Theorem 3. Assume (i) and (iii). Suppose that Vn,m(r) = gn,m

p
rp, p > 2, where {gn,m} is

a bounded sequence, and the operator A is negative definite in l2. Then there exists δ > 0
such that for any q(0) ∈ l2Θ and q(1) ∈ l2Θ with ‖q(0)‖ ≤ δ and ‖q(1)‖ ≤ δ, problem (1), (2) has
a unique global solution q ∈ C2 (R; l2Θ).

Let us highlight that in Theorem 3 the smallness of the initial data with respect to
l2-norm, not in the space l2Θ.

Now we present some examples that often appear in applications.
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Example 1. Taking

(Aq)n,m = a(qn+1,m + qn−1,m + qn,m+1 + qn,m−1 − 4qn,m)

and
Vn,m(r) = 1− cos r,

one obtains the discrete sine-Gordon equation on a 2-dimensional lattice:

q̈n,m = a(∆q)n,m − sin qn,m, (n,m) ∈ Z2, (8)

where a > 0 and

(∆q)n,m := qn+1,m + qn−1,m + qn,m+1 + qn,m−1 − 4qn,m

is the 2-dimensional discrete Laplacian.
In this case the nonlinearity satisfies (ii′). Hence, Theorem 1 shows that the Cauchy

problem (8), (2) is globally well-posed in every space l2Θ with a regular weight Θ.

Example 2. When
(Aq)n,m = a(∆q)n,m − k2qn,m, a > 0,

and

Vn,m(r) = −θ
4
r4, θ = ±1,

we obtain the discrete nonlinear Klein-Gordon equation on a 2-dimensional lattice in the
case when k2 > 0:

q̈n,m = a(∆q)n,m − k2qn,m + θq3
n,m, (n,m) ∈ Z2, (9)

and discrete nonlinear wave equation on a 2-dimensional lattice in the case when k2 = 0:

q̈n,m = a(∆q)n,m + θq3
n,m, (n,m) ∈ Z2, (10)

It is easy to verify that

(∆q, q) = −
∑

(n,m)∈Z2

(
(qn,m − qn−1,m)2 + (qn,m − qn,m−1)2

)
and, hence, the operator ∆ is non-positive.

By Theorem 2, in the case when θ = 1, the potential Vn,m = r4

4
≥ 0 and the Cauchy

problems (9), (2) and (10), (2) are globally well-posed in every space l2Θ with a regular
weight Θ.

On the other hand, in the case when θ = −1, the potential Vn,m = − r4

4
≤ 0 and the

operator a∆ − k2 is negative definite, and Theorem 3 guaranties the existence of unique
global solution of the problem (9), (2) for all initial data in l2Θ that have sufficiently small
l2-norm, provided the weight Θ is regular. The case of the problem (10), (2) remains open.
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