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The manuscript is devoted to the study of mappings with finite distortion, which have been
actively studied recently. We consider mappings satisfying the inverse Poletsky inequality, which
can have branch points. Note that mappings with the reverse Poletsky inequality include the
classes of conformal, quasiconformal, and quasiregular mappings. The subject of this article is
the question of removability an isolated singularity of a mapping. The main result is as follows.
Suppose that f is an open discrete mapping between domains of a Euclidean n-dimensional
space satisfying the inverse Poletsky inequality with some integrable majorant Q. If the cluster
set of f at some isolated boundary point x0 is a subset of the boundary of the image of the
domain, and, in addition, the function Q is integrable, then f has a continuous extension to x0.
Moreover, if f is finite at x0, then f is logarithmic Hölder continuous at x0 with the exponent
1/n.

1. Introduction. In our joint paper [1], we obtained a continuous extension of homeomorphi-
sms, the inverses of which satisfy the weight Poletsky inequality, to an isolated boundary poi-
nt (see Theorem 5.1). The main purpose of this manuscript is to transfer the specified result
to mappings with branching. More precisely, we consider open discrete mappings between
two domains of the extended Euclidean space and assume that they satisfy some weight
estimate of the distortion of the modulus of families of paths with integrable majorant. Note
that the studies of this paper are in the context of studying mappings with bounded and fi-
nite distortion (see, e.g., [2]–[8]). The conditions concerning distortion of modulus of families
of paths are well known in the theory of quasiconformal mappings and their generalizations
(see, for example, [3, Theorem 3.2], [5, Theorem 8.5] and [7, Theorem 6.7.II]).

Let us turn to the definitions. Let y0 ∈ Rn, 0 < r1 < r2 <∞ and

A(y0, r1, r2) = {y ∈ Rn : r1 < |y − y0| < r2} ,
B(y0, r) = {y ∈ Rn : |y − y0| < r}, S(y0, r) = {y ∈ Rn : |y − y0| = r}.

Set Rn := Rn∪{∞}. Given sets E, F ⊂ Rn and a domain D ⊂ Rn denote by Γ(E,F,D) the
family of all paths γ : [a, b] → Rn such that γ(a) ∈ E, γ(b) ∈ F and γ(t) ∈ D for t ∈ [a, b].
Given a domain D ⊂ Rn, or D ⊂ Rn, a mapping f : D → Rn is an arbitrary continuous
transformation x = (x1, . . . , xn) 7→ f(x) = (f1(x), . . . , fn(x)). Let f : D → Rn, let y0 ∈ f(D)
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and let 0 < r1 < r2 < d0 = supy∈f(D) |y − y0|. Now, we denote by Γf (y0, r1, r2) the family
of all paths γ in D such that f(γ) ∈ Γ(S(y0, r1), S(y0, r2), A(y0, r1, r2)). Everywhere below,
M(Γ) denotes the modulus of a family Γ of paths γ in Rn, the definition and basic properties
of which we assume to be known (see, for example, [8, section 6]). Let Q : Rn → [0,∞] be a
Lebesgue measurable function such that Q(x) ≡ 0 for Rn \ D. We will say that f satisfies
the inverse Poletsky inequality at a point y0 ∈ f(D), if the relation

M(Γf (y0, r1, r2)) 6
∫

f(D)∩A(y0,r1,r2)

Q(y) · ηn(|y − y0|)dm(y) (1)

holds for any Lebesgue measurable function η : (r1, r2)→ [0,∞] such that

r2∫
r1

η(r)dr > 1. (2)

Note that the inequalities (1) are well known in the theory of quasiregular mappings and
hold for Q = N(f,D) ·K, where N(f,D) is the maximal multiplicity of f in D, and K > 1 is
some constant that may be calculated in the following way:K = ess supKO(x, f), KO(x, f) =
‖f ′(x)‖n/|J(x, f)| for J(x, f) 6= 0; KO(x, f) = 1 for f ′(x) = 0, and KO(x, f) = ∞ for
f ′(x) 6= 0, where J(x, f) = 0 (see, e.g., [3, Theorem 3.2] or [7, Theorem 6.7.II]). A mapping
f : D → Rn is called a discrete, if the pre-image {f−1 (y)} consists of isolated points for any
y ∈ Rn, and an open, if f(U) is open for any open set U ⊂ D. As usual, we put

C(x, f) := {y ∈ Rn : ∃xk ∈ D : xk → x, f(xk)→ y, k →∞}.

Hereinafter, the boundary ∂D and the closure D are understood in the topology of the
extended Euclidean space Rn. The following statement holds.

Theorem 1. Let D and D′ be domains in Rn, n > 2, x0 ∈ D, and let f be an open and
discrete mapping of D \ {x0} onto D′, such that the relation (1) holds at least one finite
point y0 ∈ C(x0, f). Let C(x0, f) ⊂ ∂D′. If Q ∈ L1(D′), then f has a continuous extension
f : D → D′. Moreover, if x0 6=∞ 6= f(x0), then

|f(x)− f(x0)| 6
Cn · (‖Q‖1)1/n

log1/n
(

1 + r0
|x−x0|

) (3)

for any 0 < 2r0 < dist(x0, ∂D) and every x ∈ B(x0, r0), where ‖Q‖1 is the norm of the
function Q in L1(D′).

2. Proof of Theorem 1. Without a loss of generality, we may assume that x0 6= ∞.
Everywhere further h(x, y) denotes the chordal distance between the points x, y ∈ Rn (see
e.g. [8, Definition 12.1]). Due to the discreteness of the mapping f, there is 0 < ε0 <
dist(x0, ∂D) such that∞ 6∈ f(S(x0, ε)) (if ∂D = ∅, we choose any ε0 > 0 with the condition
mentioned above). Put g := f |B(x0,ε0)\{x0}.

Suppose the opposite, namely, that the mapping f does not have a continuous boundary
extension to a point x0. Then in the same way the mapping g does not have a continuous
boundary extension to the same point. Since the space Rn is compact, C(x0, f) = C(x0, g) 6=
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∅. Then there are y1, y2 ∈ C(x0, f), y1 6= y2, and at least two sequences xm, x′m ∈ B(x0, ε0) \
{x0} such that xm, x′m → x0 as m → ∞, and zm := g(xm) → y1, z

′
m = g(x′m) → y2 as

m→∞. We may consider that y1 6=∞.
Let D∗ := f(B(x0, ε0) \ {x0}). We show that there exists ε1 > 0 such that

B(y1, ε1) ∩ f(S(x0, ε0)) = ∅. (4)

Observe that y1 ∈ ∂D∗. Indeed, if y1 is an inner point of D∗, then y1 is also inner for D′,
because D∗ ⊂ D′. The latter contradicts the condition C(x0, f) ⊂ ∂D′. Next, since S(x0, ε0)
is a compact set in D, then f(S(x0, ε0)) is compact in D′, therefore h(f(S(x0, ε0)), y1) > δ >
0, where h(A,B) = inf

x∈A,y∈B
h(x, y) is the chordal distance between sets A,B ⊂ Rn. Hence

dist(y1, f(S(x0, ε0))) > δ1 > 0, (5)

where dist(A,B) denotes the Euclidean distance between sets A and B in Rn. By (5), the
relation (4) holds for ε1 := δ1.

Now we will reason as follows. Let B∗(y2, ε2) = B(y2, ε2) for y2 6= ∞ and B∗(y2, ε2) =
{x ∈ Rn : h(x,∞) < ε2} for y2 = ∞. Arguing similarly to the proof of the relation (4), we
may show that there is ε2 > 0 such that B∗(y2, ε2) ∩ f(S(x0, ε0)) = ∅. Without loss of the

Figure 1: To the proof of Theorem 1

generality, we may assume that B(y1, ε1) ∩ B∗(y2, ε2) = ∅, in addition, zm ∈ B(y1, ε1) and
z′m ∈ B∗(y2, ε2) (see Figure 1).

Note that, B(y1, ε1) is convex, and B∗(y2, ε2) is linearly path connected. In this case, the
points z1 and y1 may be joined by the segment I(t) = z1 + t(y1 − z1), t ∈ (0, 1), which lies
entirely in B(y1, ε1). Similarly, points z′1 and y2 may be joined by a path J = J(t), t ∈ [0, 1],
which lies in the ”ball” B∗(y2, ε2).

Observe that, by the construction, |I| ∩ ∂D∗ 6= ∅ 6= |J | ∩ ∂D∗.
Set t∗ := sup{t : t ∈ [0, 1], I(t) ∈ D∗}, p∗ := sup{t : t ∈ [0, 1], J(t) ∈ D∗}.
Let C1 := I[0,t∗), C2 := J[0,p∗).

By [4, Lemma 3.12], C1 and C2 have maximal f -liftings C∗1 : [0, c1) → B(x0, ε0) \ {x0}
and C∗2 : [0, c2) → B(x0, ε0) \ {x0} starting at the points x1 and x′1, respectively. Note that
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the case C1(t)→ z0 as t→ c1 − 0, where z0 ∈ B(x0, ε0) \ {x0}, is impossible. Indeed, by [4,
Lemma 3.12], c1 = t∗ and I(t) → f(z0) ∈ D∗, that contradicts the definition of t∗. Now,
by [4, Lemma 3.12]

h(C∗1(t), ∂(B(x0, ε0) \ {x0}))→ 0, t→ c1 − 0. (6)

We show that the case h(C∗1(t), S(x0, ε0)) → 0 as t → c1 − 0 is also impossible. Indeed,
otherwise h(C∗1(tk), S(x0, ε0)) → 0 as k → ∞ for some sequence tk → c − 0. Due to the
compactness of the sphere S(x0, ε0) there is a sequence wk ∈ S(x0, ε0) such that

h(C∗1(tk), S(x0, ε0)) = h(C∗1(tk), wk).
Again, since the sphere S(x0, ε0) is compact, we may assume that wk → w0 as k →∞. Then
C∗1(tk)→ w0 as k →∞. By the continuity of f in D we obtain that

f(C∗1(tk)) = C1(tk)→ f(w0) ∈ f(S(x0, ε0)) as k →∞.
The latter contradicts the condition (4), because simultaneously f(w0) ∈ f(S(x0, ε0)) and
f(w0) ∈ |I| ⊂ B(y1, ε1). Then, it follows from (6) that,

h(C∗1(t), x0)→ 0, t→ c1 − 0. (7)

Applying similar considerations to the path C∗2(t), we may show that

h(C∗2(t), x0)→ 0, t→ c2 − 0. (8)

By (7) and (8), and by [8, Theorem 10.12] we obtain that

M(Γ(|C∗1(t)|, |C∗2(t)|, B(x0, ε0) \ {x0})) =∞. (9)

We show that (9) contradicts the condition (1) at the point y0 = y1. Since B(y1, ε1) ∩
B∗(y2, ε2) = ∅, we may found ε∗1 > ε1, for which we still have B(y1, ε∗1)∩B∗(y2, ε2) = ∅. Let
Γ∗ = Γ(|C1|, |C2|, D∗). Observe that

Γ∗ > Γ(S(y1, ε
∗
1), S(y1, ε1), A(y1, ε1, ε

∗
1)). (10)

Indeed, let γ ∈ Γ∗, γ : [a, b] → Rn. Since γ(a) ∈ |C1| ⊂ B(y1, ε1) and γ(b) ∈ |C2| ⊂
Rn\B(y1, ε1), by [9, Theorem 1.I.5.46] there is t1 ∈ (a, b) such that γ(t1) ∈ S(y1, ε1).Without
loss of generality, we may assume that |γ(t)− y1| > ε1 for t > t1. Since γ(t1) ∈ B(y1, ε

∗
1) and

γ(b) ∈ |C2| ⊂ Rn \ B(y1, ε
∗
1), by [9, Theorem 1.I.5.46] there is t2 ∈ (t1, b) such that γ(t2) ∈

S(y1, ε
∗
1). Without loss of generality, we may assume that |γ(t) − y1| < ε∗1 for t1 < t < t2.

Therefore, γ|[t1,t2] is a subpath of γ, which belongs to Γ(S(y1, ε
∗
1), S(y1, ε1), A(y1, ε1, ε

∗
1)).

Thus, the relation (10) is proved.
Let us prove that

Γ(|C∗1(t)|, |C∗2(t)|, B(x0, ε0) \ {x0}) > Γf (y1, ε1, ε
∗
1). (11)

Indeed, if γ : [a, b]→ B(x0, ε0)\{x0} belongs to Γ(|C∗1(t)|, |C∗2(t)|, B(x0, ε0)\{x0}), then f(γ)
belongs toD∗, in addition, f(γ(a)) ∈ |C1| and f(γ(b)) ∈ |C2|, i.e., f(γ) ∈ Γ∗. Then, according
to the above and by (10), f(γ) has a subpath f(γ)∗ := f(γ)|[t1,t2], a 6 t1 < t2 6 b, belonging
to Γ(S(y1, ε

∗
1), S(y1, ε1), A(y1, ε1, ε

∗
1)). Then γ∗ := γ|[t1,t2] is a subpath of γ and it belongs

to Γf (y1, ε1, ε
∗
1), which was required to prove. Put η(t) =

{
1/(ε∗1 − ε1), t ∈ [ε1, ε

∗
1],

0, t ∈ R \ [ε1, ε
∗
1].
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Observe that η satisfies (2) for r1 = ε1 and r2 = ε∗1. Applying (1) at y1, and taking into
account the relation (11), we obtain that

M(Γ(|C∗1(t)|, |C∗2(t)|, B(x0, ε0) \ {x0})) 6M(Γf (y1, ε1, ε
∗
1)) 6 ‖Q‖1/(ε∗1 − ε1)n <∞,

where ‖Q‖1 denotes L1-norm of Q in D′. This relation and relation (9) contradict each other,
which refutes the assumption of the existence of different y1 and y2 in C(x0, f).

Finally, if x0 6= ∞, we consider a domain D1 := D \ {f−1(∞)}. Note that, due to the
discreteness of the mapping f, the set {f−1(∞)} is at most countable. Thus, D1 is a domain,
and the point x0 is its inner point. Arguing similarly to the second part of the proof of [10,
Theorem 6.4], one can show that the mapping f : D1 → Rn is also open and discrete. In this
case, the relation (3) holds by [11, Theorem 1.1].
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8. J. Väisälä, Lectures on n-dimensional quasiconformal mappings, Lecture Notes in Math., 229, Springer–

Verlag, Berlin etc., 1971.
9. K. Kuratowski, Topology, V.2, Academic Press, New York–London, 1968.
10. E. Sevost’yanov, Towards a theory of removable singularities for maps with unbounded characteristic of

quasi-conformity, Izv. Math., 74 (2010), №1, 151–165.
11. E. Sevost’yanov, S. Skvortsov, O. Dovhopiatyi, On nonhomeomorphic mappings with the inverse Poletsky

inequality, Ukr. Mat. Visnyk, 17 (2020), №3, 414–436. (in Ukrainian)

Zhytomyr Ivan Franko State University
Zhytomyr, Ukraine
Institute of Applied Mathematics and Mechanics of NAS of Ukraine
Slovyansk, Ukraine
esevostyanov2009@gmail.com

Received 03.01.2021


