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The paper describes approximation properties of interpolation spectral subspaces of an
unbounded operator A with discrete spectrum σ(A) in a Banach space X, as well as ones
corresponding subspaces Eν

q,p(A) of analytic vectors relative to A. Some properties of subspaces
Eν
q,p(A) are established, including the possibility of their identification with the interpolation

subspaces obtained by the real method of interpolation. A relation between spectral subspaces
and subspaces Eν

q,p(A) of analytic vectors of A is also established.
We prove the inequalities that provide a sharp estimate of errors for the best approximations

by interpolation spectral subspaces, as well as the subspaces Eν
q,p(A). Such inequalities fully

characterize the subspace of elements from X in relation to rapidity of approximations. The
obtained estimates of spectral approximation errors are expressed in terms of the quasi-norms
of the approximation spaces Bs

q,p,τ (A) associated with the given operator A. In this regard,
the E-functional is used that plays a similar role as the module of smoothness in the function
theory.

We use the so-called normalization factor to write the constants in the estimates of spectral
approximation errors. This normalization factor is determined by the parameters τ and s of
the approximation spaces Bs

q,p,τ (A) and has a special form in the case τ(1 + s) = 2.
Applications to spectral approximations of the regular elliptic operators with variable

smooth coefficients in the space Lq(Ω) over an open bounded set Ω ⊂ Rn and some self-adjoint
ordinary elliptic differential operators in a bounded interval Ω = (a, b) are shown.

1. Introduction. Our purpose is to study the approximation properties of interpolation
spectral subspaces relative to a given unbounded operator A with discrete spectrum σ(A) in
a Banach space X. We associate the spectral subspaces with the invariant subspaces Eν

q,p(A)
of analytic vectors of A (see [4, 6]). Some necessary to us properties of these subspaces are
given in Theorem 1. The relation between Eν

q,p(A) and spectral subspaces (see Theorem 2)
is crucial to obtain a sharp error estimate for the best approximations in X.

To estimate the best approximation errors, we apply the approximation E-functional
(more details in [2, 16]) and the special scale of approximation spaces Bs

q,p,τ (A) associated
with A. We give the estimates of spectral approximation errors in terms of the quasi-norms
of Bs

q,p,τ (A).
The essential in our approach is that the approximation spaces Bs

q,p,τ (A) can be identified
with interpolation spaces obtained by the real method of interpolation.
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Suppose that (X0, | · |X0) and (X1, | · |X1) are quasi-normed spaces, that form a compatible
pair (X0,X1)(see e.g. [2, 15]). To explain the K-method, for every compatible pair (X0,X1)
we define the K-functional by

K(t, x;X0,X1) :=
{
inf

(
|x0|2X0

+ t2 |x1|2X1

)1/2
: x0 ∈ X0, x1 ∈ X1, x0 + x1 = x

}
for t > 0 and x ∈ X0+X1. This definition is the same as in [15]. More usual way is to replace
the 2-norm

(
|x0|2X0

+ t2 |x1|2X1

)1/2 by the 1-norm |x0|X0 + t |x1|X1 in this definition, e.g. [2].
But it leads to the same interpolation spaces and equivalent norms. We also consider the
functional K∞(t, x;X0,X1) = inf

x=x0+x1

max
(
|x0|X0 , t|x1|X1

)
.

Now let us define, for every compatible pair (X0,X1), and for 0 < θ < 1, 1 ≤ r ≤ ∞,

(X0,X1)θ,r =
{
x ∈ X0 + X1 : |x|(X0,X1)θ,r < ∞

}
,

this interpolation space with the quasi-norm

|x|(X0,X1)θ,r =

{(∫∞
0

[
t−θK(t, x;X0,X1)

]r
dt/t

)1/r
, 1 ≤ r < ∞,

supt>0 t
−θK(t, x;X0,X1), r = ∞.

Our preferred choice of the 2-norm will be, that is due to use of the so-called normalization
factor

Nθ,r :=

{(∫∞
0

tr(1−θ)−1(1 + t2)−r/2dt
)−1/r

, 1 ≤ r < ∞,

θ−θ/2(1− θ)−(1−θ)/2, r = ∞.

This normalization is used in [3], with a focus on establishing when equivalence of norms is
in fact equality of norms in the results of the interpolation theory. We use the normalization
factor Nθ,r to write the constants in estimates of spectral approximation errors (Theorem 3).
The established inequalities fully characterize the subspace of elements from X in relation
to rapidity of approximations.

Note that exact estimates for approximation errors of spectral approximations for un-
bounded operators in Banach spaces, using the Besov-type quasi-norms and normalization
factor N ′

θ,r = [rθ(1−θ)]1/r for 1 ≤ r < ∞ and N ′
θ,∞ = 1, are given in [9]. Nθ,r is also used in [5]

to study the approximation problem by invariant subspaces of analytic vectors of positive
operators in Banach spaces. The calculated constants in estimates are asymptotically exact
in the sense that for a fixed θ (0 < θ < 1) the following limit lim

r→∞
(θr2)1/rθ[N ′

θ,r]
−1/θ = 1 is

valid. Actually, in this paper, we also have a view of the exact estimates in the same sense.
Note also that usage of Nθ,r permits to obtain the improved estimates for the spectral

approximation errors. In particular, we get the constant c1,∞ = 1/2 in the inequality (3)
from [5, Theorem 2], while c1,∞ = 1 in (1) from [9, Theorem 2].

The last section of this paper contains applications. Similarly to [9], we give new estimates
of the spectral approximations errors for a regular elliptic operator in Lq(Ω) over an open
bounded set Ω ⊂ Rn and for some self-adjoint ordinary differential boundary-value problems.

Finally, note that the applications of analytic vectors to approximation problems can be
found in [8, 10, 11, 14] and etc. As for exact constants in direct and inverse approximation
theorems of the functions theory, see also [1, 17].

2. Subspaces of analytic vectors and spectral subspaces. Let A : D1(A) → X be a
closed linear operator with a dense domain D1(A) in a Banach space (X, ∥ · ∥X). We assume
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that A has a discrete spectrum σ(A), i.e., its resolvent R(λ,A) = (λ− A)−1 has only isolated
eigenvalues {λj ∈ C : j ∈ N} of finite multiplicities, which are poles with the limit at infinity.
In particular, this guarantees the compactness of R(λ,A) (see e.g. [13, p. 187]).

For any ν > 0 and k ∈ Z+ we put xk,ν := (A/ν)kx, x ∈ D∞(A) :=
∩

k∈Z+
Dk(A). Let

{x∗
k,ν}k∈Z+ denotes the rearrangement of the elements by magnitude of the norms:

∥x∗
0,ν∥X ≥ ∥x∗

1,ν∥X ≥ . . . ≥ ∥x∗
k,ν∥X ≥ . . . .

For 1 < q < ∞ and 1 ≤ p ≤ ∞ the subspaces Eν
q,p(A) have the following form:

Eν
q,p(A) =

{
x ∈ X : ∥x∥Eν

q,p(A) < ∞
}
,

where

∥x∥Eν
q,p(A) =


(∑

k∈N ∥x∗
k−1,ν∥

p
Xk

p
q
−1
)1/p

, 1 ≤ p < ∞,

supk∈N ∥x∗
k−1,ν∥Xk

1
q , p = ∞.

If q = p then Eν
q,q(A) := Eν

q (A) and ∥x∥Eν
q (A) =

(∑
k∈Z+

∥xk,ν∥qX
)1/q

in the case 1 ≤ q < ∞
(specified also for q = ∞).

Theorem 1. (a) If 0 < θ < 1 and 1 ≤ r ≤ ∞ then

(Eν
1 (A), Eν

∞(A))θ,r = Eν
1/(1−θ),r(A). (1)

(b) The contractive inclusion Eν
q,p(A) # Eµ

q,p(A) with µ > ν holds.

(c) The restriction A|Eν
q,p(A) is a bounded operator in Eν

q,p(A).

(d) Every space Eν
q,p(A) is complete.

Proof. (a) As follows from [16, Remark 3.1],

K∞(t, x; Eν
1 (A), Eν

∞(A)) ≤ K(t, x; Eν
1 (A), Eν

∞(A)) ≤
√
2K∞(t, x; Eν

1 (A), Eν
∞(A)). (2)

Using [19, Theorem 1.18.3/1] and (2) for 1 ≤ r < ∞, we obtain

∥x∥r(Eν
1 (A),Eν

∞(A))
θ,r

∼
∞∑
s=1

s−θr−1

( s−1∑
k=1

∥x∗
k,ν∥X

)r

≥
∞∑
s=1

s(1−θ)r−1∥x∗
s−1,ν∥rX,

∞∑
s=1

s−θr−1

( s−1∑
k=1

∥x∗
k,ν∥X

)r

≤ c
∞∑
k=1

k(1−θ)r−1∥x∗
k−1,ν∥rX.

Consequently, we get (1) for 1 ≤ r < ∞. In the case r = ∞, one obtains

∥x∥(Eν
1 (A),Eν

∞(A))
θ,∞

∼ sup
s

s−θ

s−1∑
k=0

∥x∗
k,ν∥X ∼ sup

s
s1−θ∥x∗

s−1,ν∥X.

(b) For any µ > ν, we have

∥x∥Eµ
q,p(A) ≤ ∥x∥Eν

q,p(A), x ∈ Eν
q,p(A),
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that yields the contractive inclusion Eν
q,p(A) # Eµ

q,p(A).
(c) If x ∈ Eν

q,p(A) and 1 ≤ p < ∞, then

∥Ax∥pEν
q,p(A) = νp

∑
k∈Z+

(k + 1)
p
q
−1
∥∥ (A/ν)k x∥∥p

X
≤ νp∥x∥pEν

q,p(A),

with the modification when p = ∞,

∥Ax∥Eν
q,∞(A) = ν sup

k∈Z+

(k + 1)1/q
∥∥ (A/ν)k x∥∥

X
≤ ν∥x∥Eν

q,∞(A).

It follows that the invariance and boundedness of A|Eν
q,p(A) in Eν

q,p(A).
(d) By [7, Theorem 1(iv)] we have the completeness of Eν

q (A) for q = 1,∞. Then the
space Eν

q,p(A) is complete as an interpolation space according to (1).

Let Rλj
(A) = {x ∈ D∞(A) : (λj − A)rjx = 0} be a spectral subspace, corresponding to

the eigenvalue λj of multiplicity rj and Rν(A) be the linear span in X of all spectral subspaces
Rλj

(A) such that |λj| < ν. Next, let Sλj
(A) = {x ∈ D∞(A) : (λj − A)x = 0} be a subspace

of eigenvectors, corresponding to λj ∈ σ(A) and Sν(A) be the linear span of all Sλj
(A) such

that |λj| = ν, λj ∈ σ(A). Denote Qν(A) = Rν(A) ⊕ Sν(A) and let us show the relation
between the subspaces of analytic vectors and spectral subspaces.

Theorem 2. The following equalities hold

Eν
q (A) = Rν(A), Eν

∞(A) = Qν(A), (3)

where 1 ≤ q < ∞. If 1 < q < ∞ and 1 ≤ p ≤ ∞ then

Eν
q,p(A) = (Rν(A),Qν(A))1−1/q,p . (4)

Proof. Each spectral subspace Rν(A) coincides with the range of Riesz projector Pν =
(2πi)−1 ∫

γ
(λ − A)−1dλ, where γ is a closed contour, spanning all eigenvalues λj of A such

that |λj| < ν [12, Theorem 5.14.3]. The spectral radius of APν = A|Rν(A) is less than ν, i.e.
limk→+∞ ∥(APν)

k∥1/k < ν. So,

∥x∥qEν
q (A) =

∑
k∈Z+

∥∥(A/ν)kx∥∥q

X
≤ ∥x∥qX

∑
k∈Z+

∥APν∥kq/νkq < ∞

for all x ∈ Rν(A). Thus, Rν(A) ⊂ Eν
q (A) for any 1 ≤ q < ∞.

On the other hand, for each x ∈ Eν
q (A), we have ∥(λ−A)−1x∥Eν

q (A) ≤ ∥(λ−A)−1∥∥x∥Eν
q (A)

and (λ−A)−1(λ−A)x = (λ−A)(λ−A)−1x = x for all λ located on the resolvent set ρ(A)
of A. Hence, (λ − A|Eν

q (A))
−1 is the resolvent of A|Eν

q (A) and ρ(A) ⊂ ρ(A|Eν
q (A)). So, the unit

operator I|Eν
q (A) on Eν

q (A) can be represented as I|Eν
q (A) = (2πi)−1 ∫

γ
(λ − A|Eν

q (A))
−1dλ. It

follows that I|Eν
q (A) = Pν |Eν

q (A) and the inclusion Eν
q (A) ⊂ Rν(A) holds for any 1 ≤ q < ∞.

So, the first equality (3) is valid.
Using [18, Lemma 1], we have Eν

∞(A) ⊂
⊕

j:|λj |≤ν

Rλj
(A). Then it is sufficient to prove the

equality
Sλj

(A) = Eν
∞(A) ∩Rλj

(A) (5)
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for indices j with |λj| = ν. Assume that (5) is not true. Then there exist root vectors
x0, . . . , xr, corresponding to λj, such that |λj| = ν and xr ∈ Eν

∞(A), r ≥ 1. From the equality

Akxr =
r∑

i=0

(
k

i

)
λk−i
j xr−i, k ≥ r,

it follows that

lim
k→∞

∥Akxr∥X(
k
r

)
νk

= ν−r∥x0∥X.

Since x0 ̸= 0, one has ν−r∥x0∥X ̸= 0 and xr /∈ Eν
∞(A). So, the equality (5) holds for all j such

that |λj| = ν, as well as the second equality (3) is valid.
The equality (4) directly follows from (1) and (3).

3. Estimates of spectral approximation errors. We study in this section the case of
spectral approximation, where the operator A has a discrete spectrum in a Banach space X.

Following [6], on the union Eq,p(A) =
∪

ν>0 Eν
q,p(A) we define the quasi-norm

|x|Eq,p(A) = ∥x∥X + inf
{
ν > 0: x ∈ Eν

q,p(A)
}
,

so that |x+ y|Eq,p(A) ≤ |x|Eq,p(A) + |y|Eq,p(A) for all x, y ∈ Eq,p(A).
For a pair indices {0 < s < ∞, 0 < τ ≤ ∞} or {0 ≤ s < ∞, τ = ∞}, we assign the appro-

ximation spaces Bs
q,p,τ (A) = {x ∈ X : |x|Bs

q,p,τ (A) < ∞}, where

|x|Bs
q,p,τ (A) =

{(∫∞
0

[
tsE(t, x; Eq,p(A),X)

]τ
dt/t

)1/τ
, 0 < τ < ∞,

supt>0 t
sE(t, x; Eq,p(A),X), τ = ∞,

and E(t, x; Eq,p(A),X) = inf
{
∥x− x0∥X : x0 ∈ Eq,p(A), |x0|Eq,p(A) ≤ t

}
for all x ∈ X.

If q = p then Eq,q(A) := Eq(A) and we obtain the approximation spaces Bs
q,q,τ (A) =:

Bs
q,τ (A), which were considered in [7, 9].

Now let us define, for any x ∈ X and ν > 0,

Dν
q,p(x,A) = inf

{
∥x− x0∥X : x0 ∈ (Rν(A),Qν(A))1−1/q,p

}
this is a best approximation of element x by root vectors of interpolation spectral subspace
(Rν(A),Qν(A))1−1/q,p relative to A.

Theorem 3. The following estimate of spectral approximation errors holds

Dν
q,p(x,A) ≤ cs,τν

−s|x|Bs
q,p,τ (A), x ∈ Bs

q,p,τ (A), (6)

with cs,τ = 2(1+s)/2(τ 2(1 + s))−1/τN
(1+s)
1/(1+s),τ(1+s) if 0 < τ < ∞ and cs,∞ = 1.

In addition, if τ = 2/(1 + s) then

Dν
q,p(x,A) ≤ csν

−s|x|Bs
q,p,2/(1+s)

(A), x ∈ Bs
q,p,2/(1+s)(A), (7)

is achieved for cs = [((1 + s)/π) sin(π/(1 + s))](1+s)/2.
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Proof. Integrating by parts, we similarly to [9] get∫ ∞

0

(v−θK∞(v, x; Eq,p(A),X))rdv/v = − 1

θr

∫ ∞

0

K∞(v, x; Eq,p(A),X)rdv−θr =

=
1

θr

∫ ∞

0

v−θrdK∞(v, x; Eq,p(A),X)r =
1

θr

∫ ∞

0

(t/E(t, x; Eq,p(A),X))−θrdtr =

=
1

θr2

∫ ∞

0

(tsE(t, x; Eq,p(A),X))θrdt/t with s = 1/θ − 1.

By [16, Remark 3.1], one obtains that

K∞(t, x; Eq,p(A),X) ≤ K(t, x; Eq,p(A),X) ≤
√
2K∞(t, x; Eq,p(A),X). (8)

Using (8), we get

1

θr2
|x|θrBs

q,p,τ (A) =
1

θr2

∫ ∞

0

(tsE(t, x; Eq,p(A),X))θrdt/t =
∫ ∞

0

(v−θK∞(v, x; Eq,p(A),X))rdv/v ≤

≤
∫ ∞

0

(v−θK(v, x; Eq,p(A),X))rdv/v = |x|r(Eq,p(A),X)θ,r
.

From the right inequality (8) it follows that

|x|r(Eq,p(A),X)θ,r
≤ 2r/2

∫ ∞

0

(v−θK∞(v, x; Eq,p(A),X))rdv/v =

= 2r/2
1

θr2

∫ ∞

0

(tsE(t, x; Eq,p(A),X))θrdt/t = 2r/2
1

θr2
|x|θrBs

q,p,τ (A).

As a result, from the previous inequalities, we get

|x|r(Eq,p(A),X)θ,r
≤ 2r/2(θr2)−1|x|θrBs

q,p,τ (A) ≤ 2r/2|x|r(Eq,p(A),X)θ,r
with τ = θr. (9)

Let us define the function g(v/t) = (v/t)(1+ (v/t)2)−1/2, t, v > 0. By integration of both
sides of g(v/t)K(t, x; Eq,p(A),X) ≤ K(v, x; Eq,p(A),X), we get(∫ ∞

0

(
v−θg(v/t)

)r dv
v

)1/r

K(t, x; Eq,p(A),X) ≤

≤
(∫ ∞

0

(
v−θK(v, x; Eq,p(A),X)

)r dv
v

)1/r

= |x|(Eq,p(A),X)θ,r
,

∫ ∞

0

(
v−θg(v/t)

)r dv
v

= (tθNθ,r)
−r.

It follows that
K(t, x; Eq,p(A),X) ≤ tθNθ,r|x|(Eq,p(A),X)θ,r

. (10)

We choose t > 0 according to [2, Lemma 7.1.2], so that

tsE(t, x; Eq,p(A),X))θ ≤ v−θK∞(v, x; Eq,p(A),X). (11)

Taking into account (8), (10) and (11), we have

v1−θE(v, x; Eq,p(A),X)θ ≤ t−θK∞(t, x; Eq,p(A),X) ≤ Nθ,r|x|(Eq,p(A),X)θ,r
.

Applying (9), we obtain v1−θE(v, x; Eq,p(A),X)θ ≤
√
2(θr2)−1/rNθ,r|x|θBs

q,p,τ (A).
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So, if 1 ≤ r < ∞, τ = θr and s = 1/θ − 1, one obtains that

E(t, x; Eq,p(A),X) ≤ cs,τ t
−s |x|Bs

q,p,τ (A), x ∈ Bs
q,p,τ (A), (12)

with cs,τ = 2(1+s)/2(τ 2(1 + s))−1/τN
(1+s)
1/(1+s),τ(1+s).

If r = ∞ then

E(t, x; Eq,p(A),X) ≤ t−s|x|Bs
q,p,∞(A), x ∈ Bs

q,p,∞(A). (13)

Let us r(x0) = inf
{
ν > 0: x0 ∈ Eν

q,p(A)
}
. If |x0|Eq,p(A) = r(x0) + ∥x0∥X < µ then r(x0) <

µ− ∥x0∥X. Therefore, x0 ∈ Eν
q,p(A) for all ν > 0 such that r(x0) < ν < µ− ∥x0∥X.

By Theorem 1(b), we have Eν
q,p(A) ⊂ Eµ

q,p(A). It yields x0 ∈ Eµ
q,p(A). Hence, for any µ > 0,

the following inequality holds

inf
{
∥x− x0∥X : x0 ∈ Eµ

q,p(A)
}
≤ E(µ, x; Eq,p(A),X), x ∈ X. (14)

By (12), (13) and (14), it follows that

inf
{
∥x− x0∥X : x0 ∈ Eν

q,p(A)
}
≤ cs,τν

−s|x|Bs
q,p,τ (A), x ∈ Bs

q,p,τ (A), (15)

with cs,τ = 2(1+s)/2(τ 2(1 + s))−1/τN
(1+s)
1/(1+s),τ(1+s) if 0 < τ < ∞ and cs,∞ = 1. Now, taking into

account (4), from (15) we obtain (6).
By [15, Exercise B.5], we have Nθ,2 = ((2/π) sin(πθ))1/2. So, if τ = 2/(1+ s) the estimate

(6) yields (7).

Remark 1. In the case q = p, we get the estimate

inf {∥x− x0∥X : x0 ∈ Rν(A)} ≤ cs,τν
−s|x|Bs

q,τ (A), x ∈ Bs
q,τ (A),

with cs,τ = 2(1+s)/2(τ 2(1 + s))−1/τN
(1+s)
1/(1+s),τ(1+s) if 0 < τ < ∞ and cs,∞ = 1.

If q = p and τ = 2/(1 + s) then

inf {∥x− x0∥X : x0 ∈ Rν(A)} ≤ csν
−s|x|Bs

q,2/(1+s)
(A), x ∈ Bs

q,2/(1+s)(A),

with cs = [((1 + s)/π) sin(π/(1 + s))](1+s)/2.

4. Applications. In this section, we give the estimates of spectral approximation errors for
some classes of elliptic differential operators.

Regular elliptic differential operators.
In the space Lq(Ω) (1 < q < ∞) over an open bounded set Ω ⊂ Rn with infinitely

smooth boundary ∂Ω, we consider the closed linear operator A with the domain W 2m
q,A(Ω) ={

u ∈ W 2m
q (Ω): bju |∂Ω= 0, j = 1, . . . ,m

}
via the regular elliptic system [19, Def. 5.2.1/4]

(Au)(ξ) =
∑

|α|≤2m

aα(ξ)D
αu(ξ), aα ∈ C∞(Ω̄), Ω̄ = Ω ∪ ∂Ω,

(bju)(ξ) =
∑

|α|≤mj

bj,α(ξ)D
αu(ξ), bj,α ∈ C∞(∂Ω), j = 1, . . . ,m.
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We assume that 0 ∈ ρ(A) for simplicity. It follows that A has a compact resolvent R(λ,A)
for any λ ∈ ρ(A), as well as the spectrum σ(A) is discrete and is independent on q [19,
Sec. 5.4.4].

For 0 < s < ∞, 1 < q < ∞, 1 ≤ τ ≤ ∞, we consider the subspace of the Besov space
Bs

q,τ (Ω), which is associated with A (see [19, Def. 4.2.1/1]),

Bs
q,τ,A(Ω) =

{
u ∈ Bs

q,τ (Ω) : bjA
ku |∂Ω= 0, j = 1, . . . ,m, k ∈ Z+

}
.

Theorem 4. The following inequality holds,

Dν
q,p(u,A) ≤ cs,τν

−s|u|Bs
q,τ (Ω), u ∈ Bs

q,τ,A(Ω), (16)

with cs,τ = 2(1+s)/2(τ 2(1 + s))−1/τN
(1+s)
1/(1+s),τ(1+s) if 0 < τ < ∞ and cs,∞ = 1.

If τ = 2/(1 + s), then

Dν
q,p(u,A) ≤ csν

−s|u|Bs
q,2/(1+s)

(Ω), u ∈ Bs
q,2/(1+s),A(Ω), (17)

with cs = [((1 + s)/π) sin(π/(1 + s))](1+s)/2.

Proof. Using (15) from [9, Theorem 3] and (1), one obtains for every p (1 ≤ p ≤ ∞) that

Bs
q,p,τ (A) = Bs

q,τ,A(Ω).

Thus, the inequalities (16) and (17) follow directly from (6) and (7).

Legendre differential operators.
In the space L2(Ω), where Ω = (a, b), −∞ < a < b < ∞, we consider the Legendre

differential operators

Am,lu = (−1)m
dm

dξm

(
pl(ξ)

dmu

dξm

)
, l = 0, 1, . . . ,m, m = 1, 2, . . .

with D(Am,l) =
{
u ∈ C∞(Ω̄) : u(j)(a) = u(j)(b) = 0, j = 0, . . . ,m − l − 1

}
for all indices

l = 0, 1, . . . , m− 1, and D(Am,m) = C∞(Ω̄) (see [19, Def. 7.2.1]).
By [19, Theorem 7.4.1], Am,l has a closure Ām,l in L2(Ω) with the domain D(Ām,l) ={

u ∈ W 2m
2 (Ω; p2l) : u(j)(a) = u(j)(b) = 0, j = 0, . . . ,m − l − 1

}
for l = 0, 1, . . . , m− 1, and

D(Ām,m) = W 2m
2 (Ω; p2m). In addition, Ām,l is the operator with discrete spectrum.

Theorem 5. The following inequality holds

Dν
q,p(u, Ām,l) ≤ cs,τν

−s|u|Bs
2,τ (Ω), u ∈ Bs

2,p,τ (Ām,l), (18)

with cs,τ = 2(1+s)/2(τ 2(1 + s))−1/τN
(1+s)
1/(1+s),τ(1+s) if 0 < τ < ∞ and cs,∞ = 1.

If τ = 2/(1 + s) then

Dν
q,p(u, Ām,l) ≤ csν

−s|u|Bs
2,2/(1+s)

(Ω), u ∈ Bs
2,p,2/(1+s)(Ām,l), (19)

with cs = [((1 + s)/π) sin(π/(1 + s))](1+s)/2.

Proof. Using (17), (18) from [9, Theorem 4] and (1), one obtains for every p (1 ≤ p ≤ ∞)
that

Bs
2,p,τ (Ām,l) =

{
u ∈ Bs

2,τ (Ω): (Ā
k
m,lu)

(j)(a) = (Āk
m,lu)

(j)(b) = 0,

j = 0, . . . ,m− l − 1, k ∈ Z+

}
for l = 0, 1, . . . , m− 1, and Bs

2,p,τ (Ām,m) = Bs
2,τ (Ω). It remains to apply Theorem 3.
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2. J. Bergh, J. Löfström, Interpolation spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1976.
3. S. Chandler-Wilde, D. Hewett, A. Moiola, Interpolation of Hilbert and Sobolev spaces: Quantitative

estimates and counterexamples, Mathematika, 61 (2015), №2, 414–443. doi: 10.1112/S0025579314000278
4. M. Dmytryshyn, Besov-Lorentz-type spaces and best approximations by exponential type vectors, Int. J.

Math. Anal., 9 (2015), 779–786. doi:10.12988/ijma.2015.5233
5. M. Dmytryshyn, Approximation of positive operators by analytic vectors, Carpathian Math. Publ., 12

(2020), №2, 412–418. doi: 10.15330/cmp.12.2.412-418
6. M. Dmytryshyn, O. Lopushansky, Lorentz type spaces of ultrasmooth vectors of closed operators,

Carpathian Math. Publ., 1 (2009), №1, 8–14. (in Ukrainian)
7. M. Dmytryshyn, O. Lopushansky, Bernstein-Jackson-type inequalities and Besov spaces associated with

unbounded operators, J. Inequal. Appl., 2014 (2014), №105, 1–12. doi: 10.1186/1029-242X-2014-105
8. M. Dmytryshyn, O. Lopushansky, Spectral approximations of strongly degenerate elliptic differential

operators, Carpathian Math. Publ., 11 (2019), №1, 48–53. doi: 10.15330/cmp.11.1.48-53
9. M. Dmytryshyn, O. Lopushansky, On Spectral approximations of unbounded operators, Complex Anal.

Oper. Theory, 13 (2019), №8, 3659–3673. doi: 10.1007/s11785-019-00923-0
10. S. Giulini, Bernstein and Jackson theorems for the Heisenberg group, J. Austral. Math. Soc., 38 (1985),

241–254. doi: 10.1017/S1446788700023107
11. M.L. Gorbachuk, Ya.I. Hrushka, S.M. Torba, Direct and inverse theorems in the theory of approximation

by the Ritz method, Ukrainian Math. J., 57 (2005), №5, 751–764. doi: 10.1007/s11253-005-0225-4
12. E. Hille, R.S. Phillips, Functional analysis and semigroups, Providence, Rhode Island: American

Mathematical Society, Colloquium Publications, V.31, 1957.
13. T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin-Heidelberg-New York, 1980.
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