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In this paper, we study the value distribution of the differential polynomial ϕf2f (k) − 1,
where f(z) is a transcendental meromorphic function, ϕ(z) (6≡ 0) is a small function of f(z) and
k (≥ 2) is a positive integer. We obtain an inequality concerning the Nevanlinna characteristic
function T (r, f) estimated by reduced counting function only. Our result extends the result
due to J.F. Xu and H.X. Yi [J. Math. Inequal., 10 (2016), 971-976].

1. Introduction, definitions and results. In this paper, by meromorphic function we
shall always mean meromorphic function in the complex plane. We shall use the standard
notations of the Nevanlinna theory of meromorphic functions as explained in [3], [5], [11]
and [12]. For a nonconstant meromorphic function f(z), we denote by T (r, f) the Nevanlinna
characteristic function of f(z) and by S(r, f) any quantity satisfying S(r, f) = o{T (r, f)}
for all r outside a possible exceptional set of finite logarithmic measure. The meromorphic
function ϕ(z) is called a small function of f(z), if T (r, ϕ) = S(r, f).

In this research work, we need the following definitions.

Definition 1 ( [12]). Let f(z) be a nonconstant meromorphic function and p be a posi-
tive integer or infinity. For a ∈ C ∪ {∞}, we denote by Np)(r,

1
f−a) the counting function

of those zeros of f(z) − a (counted with proper multiplicities) whose multiplicities are not
greater than p and by Np)(r,

1
f−a) the corresponding reduced counting function. We denote

by N(p+1(r,
1

f−a) the counting function of those zeros of f(z)− a (counted with proper mul-
tiplicities) whose multiplicities are greater than p and by N (p+1(r,

1
f−a) the corresponding

reduced counting function. Also we denote by Np(r,
1

f−a) the counting function of zeros of
f(z)− a with multiplicity exactly p.

Furthermore, we denote by N6=p(r,
1

f−a) the counting function of all zeros of f(z) − a

(counted with proper multiplicities) except the zeros whose multiplicities are exactly p and by
N 6=p(r,

1
f−a) the corresponding reduced counting function.

Definition 2 ([12]). Suppose that f(z) is a nonconstant meromorphic function in the com-
plex plane C, and α(z) is a small function of f(z). Let n0, n1, . . . , nk be non-negative integers.
We call M(f) = αfn0(f

′
)n1 · . . . · (f (k))nk a differential monomial in f and n =

∑k
j=0 nj,

the degree of M(f). Also let M1(f), M2(f), . . . , Mk(f) be differential monomials in f of
degrees m1,m2, . . . ,mk, respectively. Then P (f) =

∑k
j=1Mj(f) is said to be a differential

polynomial in f and m = max{m1,m2, . . . ,mk}, the degree of P (f).
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Many research works have been done on the value distribution of differential polynomials
of meromorphic functions by many mathematicians worldwide (see [2], [4], [7], [9]). In
1979, E. Mues [6] first proved a qualitative result of value distribution for a transcendental
meromorphic function f(z) in the complex plane. The result is as follows:

Theorem A. Let f(z) be a transcendental meromorphic function in the complex plane.
Then f 2f ′ − 1 has infinitely many zeros.

Naturally, one may ask the following question.

Question 1. What is the quantitative result of Theorem A?

In 1992, Q. D. Zhang ( [13]) find out a quantitative result of Theorem A which is as
follows.

Theorem B. Let f(z) be a transcendental meromorphic function in the complex plane.
Then

T (r, f) < 6N
(
r,

1

f 2f ′ − 1

)
+ S(r, f).

In 2011, J. F. Xu, H. X. Yi and Z. L. Zhang ([10]) improved Theorem B by estimating
the reduced counting function and proved the following result.

Theorem C. Let f(z) be a transcendental meromorphic function in the complex plane.
Then

T (r, f) ≤ 6N
(
r,

1

f 2f ′ − 1

)
+ S(r, f).

Regarding Theorems B and C , one more question arises.

Question 2. What happens if we use a small function instead of a constant in the counting
function in Theorems B and C?

In 1992, Q. D. Zhang ([14]) studied the value distribution related to small functions used
in counting function and proved the following result.

Theorem D. Let f(z) be a transcendental meromorphic function in the complex plane and
ϕ(z) (6≡ 0) be a small function of f(z). Then

T (r, f) ≤ 6N
(
r,

1

ϕf 2f ′ − 1

)
+ S(r, f).

In 2016, J. F. Xu and H. X. Yi ([8]) improved Theorem D by considering the reduced
counting function and proved the following result.

Theorem E. Let f(z) be a transcendental meromorphic function in the complex plane and
ϕ(z) (6≡ 0) be a small function of f(z). Then

T (r, f) ≤ 6N
(
r,

1

ϕf 2f ′ − 1

)
+ S(r, f).

Note 1. In [8,14] the authors had assumed that the set of zeros and poles of f(z) and that
of ϕ(z) are disjoint, though they did not mention it in the statement of their main results.

Now it is natural to ask the following question which motivated us to write this paper.
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Question 3. What will be the result if we replace the differential polynomial ϕf 2f ′ − 1 by
ϕf 2f (k) − 1, where k (≥ 2) is an integer?

In this paper we investigate to find out the possible answer to the above question and
obtain the following theorem.

Theorem 1. Let f(z) be a transcendental meromorphic function in the complex plane,
k (≥ 2) be an integer and ϕ(z) (6≡ 0) be a small function of f(z) such that the set of zeros
and poles of f(z) and that of ϕ(z) are disjoint and ϕ(z) has no zeros of multiplicity 2. Then

T (r, f) ≤ 6N
(
r,

1

ϕf 2f (k) − 1

)
+ S(r, f).

2. Lemmas. We now state some lemmas which will be needed in the sequel.

Lemma 1 ([3,5,12]). Let f(z) be a transcendental meromorphic function and k be a positive
integer. Then

m
(
r,
f (k)

f

)
= S(r, f).

Lemma 2. Let f(z) be a transcendental meromorphic function, k (≥ 2) be a positive integer
and ϕ(z) (6≡ 0) be a small function of f(z). Then ϕf 2f (k) is not equivalently constant.

Proof. To prove this lemma we follow [8]. Suppose that ϕf 2f (k) ≡ C, where C is a constant.
Obviously, C 6= 0. Hence we have

1

f 3
≡ ϕ

C

f (k)

f
,

1

f 2f (k)
≡ ϕ

C
.

Therefore, using Lemma 1 we get

m
(
r,

1

f

)
≤ 1

3
m
(
r,
ϕ

C

f (k)

f

)
≤ 1

3
m
(
r,
ϕ

C

)
+

1

3
m
(
r,
f (k)

f

)
+O(1) = S(r, f),

N
(
r,

1

f

)
≤ N

(
r,

1

f 2f (k)

)
≤ N

(
r,
ϕ

C

)
= S(r, f).

Therefore, we obtain T (r, f) = S(r, f), a contradiction. Hence ϕf 2f (k) is not equivalently
constant.

Lemma 3. Let f(z) be a transcendental meromorphic function, k (≥ 2) be a positive integer
and ϕ(z) (6≡ 0) be a small function of f(z). Then

3T (r, f) ≤ N(r, f) +N
(
r,

1

f

)
+Nk)

(
r,

1

f

)
+ kN (k+1

(
r,

1

f

)
+

+N
(
r,

1

ϕf 2f (k) − 1

)
−N0

(
r,

1

(ϕf 2f (k))′

)
+ S(r, f), (1)

{N(r, f)−N(r, f)}+
{
N
(
r,

1

f

)
−N

(
r,

1

f

)}
+
{
N(k+1

(
r,

1

f

)
− kN (k+1

(
r,

1

f

)}
+

+m(r, f) + 2m
(
r,

1

f

)
≤ N

(
r,

1

ϕf 2f (k) − 1

)
−N0

(
r,

1

(ϕf 2f (k))′

)
+ S(r, f), (2)

where N0(r,
1

(ϕf2f (k))′
) denotes the counting function of those zeros of (ϕf 2f (k))′ which are

not the zeros of f(ϕf 2f (k) − 1).
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Proof. To prove this we follow [8,10]. From Lemma 2, we get ϕf 2f (k)− 1 is not equivalently
constant. Set

1

f 3
=
ϕf (k)

f
− (ϕf 2f (k))′

f 3

(ϕf 2f (k) − 1)

(ϕf 2f (k))′
.

Hence, applying the inequalities m(r, f + g) ≤ m(r, f) + m(r, g) + log 2 and m(r, fg) ≤
m(r, f) +m(r, g) as explained in [3, p.5], we have from above and Lemma 1

3m
(
r,

1

f

)
= m

(
r,

1

f 3

)
≤ m

(
r,
ϕf (k)

f

)
+m

(
r,

(ϕf 2f (k))′

f 3

)
+m

(
r,
ϕf 2f (k) − 1

(ϕf 2f (k))′

)
+O(1) ≤

≤ m
(
r,
ϕf 2f (k) − 1

(ϕf 2f (k))′

)
+ S(r, f)

Using the first fundamental theorem of Nevanlinna one has

m(r, f/f ′) = T (r, f/f ′)−N(r, f/f ′) ≤ T (r, f ′/f)−N(r, f/f ′) +O(1) ≤
≤ N(r, f ′/f)−N(r, f/f ′) + S(r, f).

Hence by Lemma 1

3m
(
r,

1

f

)
≤ N

(
r,

(ϕf 2f (k))′

ϕf 2f (k) − 1

)
−N

(
r,
ϕf 2f (k) − 1

(ϕf 2f (k))′

)
+ S(r, f) = N(r, (ϕf 2f (k))′)+

+N
(
r,

1

ϕf 2f (k) − 1

)
−N(r, (ϕf 2f (k) − 1))−N

(
r,

1

(ϕf 2f (k))′

)
+ S(r, f),

because zeros and poles come from both of (ϕf 2f (k))′ and ϕf 2f (k) − 1 letting equal sign
particularly of the formula N(r, fg) ≤ N(r, f) +N(r, g) as explained in [3, p.5].

By routine observation we see that at a pole of ϕf 2f (k) − 1 of order l, (ϕf 2f (k))′ has a
pole of order l + 1. Such poles come from the poles of f(z) and the poles of ϕ(z) only. So

N(r, (ϕf 2f (k))′)−N(r, (ϕf 2f (k) − 1)) ≤ N(r, ϕf 2f (k) − 1) ≤
≤ N(r, f) +N(r, ϕ) ≤ N(r, f) + S(r, f).

Therefore we have

3m
(
r,

1

f

)
≤ N(r, f) +N

(
r,

1

ϕf 2f (k) − 1

)
−N

(
r,

1

(ϕf 2f (k))′

)
+ S(r, f).

Hence

3T (r, f) = 3m
(
r,

1

f

)
+ 3N

(
r,

1

f

)
+O(1) ≤ N(r, f) + 3N

(
r,

1

f

)
+

+N
(
r,

1

ϕf 2f (k) − 1

)
−N

(
r,

1

(ϕf 2f (k))′

)
+ S(r, f). (3)

Let

N
(
r,

1

(ϕf 2f (k))′

)
= N000

(
r,

1

(ϕf 2f (k))′

)
+N00

(
r,

1

(ϕf 2f (k))′

)
+

+N0

(
r,

1

(ϕf 2f (k))′

)
+ S(r, f), (4)
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where N000(r,
1

(ϕf2f (k))′
) denotes the counting function of those zeros of (ϕf 2f (k))′ which come

from the zeros of (ϕf 2f (k) − 1) and N00(r,
1

(ϕf2f (k))′
) denotes the counting function of those

zeros of (ϕf 2f (k))′ which come from the zeros of f(z). Hence we have

N(r,
1

ϕf 2f (k) − 1
)−N000

(
r,

1

(ϕf 2f (k))′

)
= N

(
r,

1

ϕf 2f (k) − 1

)
. (5)

Let z0 be a zero of f(z) with multiplicity p and pole of ϕ(z) with multiplicity t. We consider
the following two cases: Case 1 and Case 2.
Case 1. Let p ≤ k. If t ≤ 2p − 1, then z0 is a zero of (ϕf 2f (k))′ with multiplicity at least
2p − t − 1. If t ≥ 2p, then z0 is not the zero of (ϕf 2f (k))′. Hence in this case the zeros
of (ϕf 2f (k))′ come only from the zeros of f(z) with multiplicity not greater than k and the
poles of ϕ(z) with multiplicity at most 2p− 1.
Case 2. Let p ≥ k+ 1. If t ≤ 3p− k− 1, then z0 is a zero of (ϕf 2f (k))′ with multiplicity at
least 3p − t − k − 1. If t ≥ 3p − k, then z0 is not the zero of (ϕf 2f (k))′. Hence in this case
the zeros of (ϕf 2f (k))′ come only from the zeros of f(z) with multiplicity greater than k and
the poles of ϕ(z) with multiplicity at most 3p− k − 1.

Hence we can write

N00

(
r,

1

(ϕf 2f (k))′

)
≥ 2Nk)

(
r,

1

f

)
−Nk)

(
r,

1

f

)
+ 3N(k+1

(
r,

1

f

)
− (k + 1)N (k+1

(
r,

1

f

)
−

−sN(r, ϕ) = 2N
(
r,

1

f

)
+N(k+1

(
r,

1

f

)
−Nk)

(
r,

1

f

)
− (k + 1)N (k+1

(
r,

1

f

)
− sN(r, ϕ),

where s = max{2p− 1, 3p− k − 1}. Therefore, we have

3N
(
r,

1

f

)
−N00

(
r,

1

(ϕf 2f (k))′

)
≤ Nk)

(
r,

1

f

)
+N

(
r,

1

f

)
+ kN (k+1

(
r,

1

f

)
+ S(r, f). (6)

Combining (3)–(6), we have

3T (r, f) ≤ N(r, f) +N
(
r,

1

f

)
+Nk)

(
r,

1

f

)
+ kN (k+1

(
r,

1

f

)
+

+N
(
r,

1

ϕf 2f (k) − 1

)
−N0

(
r,

1

(ϕf 2f (k))′

)
+ S(r, f).

Thus the inequality (1) is proved. Since

3T (r, f) = N(r, f) +N
(
r,

1

f

)
+Nk)

(
r,

1

f

)
+N(k+1

(
r,

1

f

)
+m(r, f) + 2m

(
r,

1

f

)
+O(1),

the inequality (2) can be obtained easily.

Lemma 4. Let f(z) be a transcendental meromorphic function and ϕ(z) ( 6≡ 0) be a small
function of f(z) such that the set of zeros and poles of f(z) and that of ϕ(z) are disjoint.
Suppose that F = ϕf 2f (k) − 1 and h = F ′

f
, where k (≥ 2) is an integer. Let

G(z) = a1

(F ′(z)
F (z)

)2

+ a2

(F ′(z)
F (z)

)′
+ a3

F ′(z)

F (z)

h′(z)

h(z)
+ a4

(h′(z)
h(z)

)2

+ a5

(h′(z)
h(z)

)′
+
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+a6
ϕ′(z)

ϕ(z)

F ′(z)

F (z)
+ a7

ϕ′(z)

ϕ(z)

h′(z)

h(z)
+ a8

(ϕ′(z)
ϕ(z)

)2

+ a9

(ϕ′(z)
ϕ(z)

)′
, (7)

where

a1 = 2(k + 1)2 − (3k + 7)(k2 − 4k − 29)

k + 3
,

a2 = −(k + 5)(k2 − 4k − 29), a3 = 4(k2 − 4k − 29),

a4 = −4(k + 1)(k + 3), a5 = 2(k + 1)(k + 3)(k + 5), a6 = −2(k2 − 4k − 29),

a7 = 4(k + 1)(k + 3), a8 = −(k + 1)(k + 3), a9 = −(k + 1)(k + 3)(k + 5).

If G(z) 6≡ 0, then the simple poles of f(z) are the zeros of G(z).

Proof. Suppose z0 is a simple pole of f(z). Let

f(z) =
a

(z − z0)

[
1 + b0(z − z0) + b1(z − z0)

2 +O((z − z0)
3)
]
, (8)

where a (6= 0), b0, b1 are constants. Noting that ϕ(z0) 6= 0, ∞, let

ϕ(z) = c
[
1 + c0(z − z0) + c1(z − z0)

2 +O((z − z0)
3)
]
, (9)

where c (6= 0), c0, c1 are constants. Using (8) and (9), we obtain the following:

ϕ′(z)

ϕ(z)
=
[
c0 + (2c1 − c20)(z − z0) +O((z − z0)

2)
]
, (10)

f 2(z) =
a2

(z − z0)2

[
1 + 2b0(z − z0) + (b20 + 2b1)(z − z0)

2 +O((z − z0)
3)
]
, (11)

f (k)(z) =
(−1)kk!a

(z − z0)k+1

[
1 +O((z − z0)

k+1)
]
. (12)

Using (9), (11) and (12) we get

F (z) = ϕf 2f (k) − 1 =
(−1)kk!a3c

(z − z0)k+3

[
1 + (2b0 + c0)(z − z0)+

+(b20 + 2b0c0 + 2b1 + c1)(z − z0)
2 +O((z − z0)

3)
]
,

F ′(z) =
(−1)k+1(k + 3)k!a3c

(z − z0)k+4

[
1 +

k + 2

k + 3

(
2b0 + c0

)
(z − z0)+

+
k + 1

k + 3

(
b20 + 2b0c0 + 2b1 + c1

)
(z − z0)

2 +O((z − z0)
3)
]
.

Hence,

F ′(z)

F (z)
= − (k + 3)

(z − z0)

[
1− 1

k + 3

(
2b0 + c0

)
(z − z0)+

+
1

k + 3

(
2b20 + c20 − 4b1 − 2c1

)
(z − z0)

2 +O((z − z0)
3)
]
, (13)

h(z) =
F ′(z)

f(z)
=

(−1)k+1(k + 3)k!a2c

(z − z0)k+3

[
1 +

1

k + 3

{
(k + 1)b0 + (k + 2)c0

}
(z − z0)+
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+
1

k + 3

{
kb0c0 + (k − 1)b1 + (k + 1)c1

}
(z − z0)

2 +O((z − z0)
3)
]
,

h′(z)

h(z)
= − k + 3

(z − z0)

[
1− 1

(k + 3)2

{
(k + 1)b0 + (k + 2)c0

}
(z − z0)+

+
1

(k + 3)3

{
(k + 1)2b20 + (k + 2)2c20 + 4b0c0 − 2(k − 1)(k + 3)b1−

−2(k + 1)(k + 3)c1

}
(z − z0)

2 +O((z − z0)
3)
]
. (14)

Thus from (10), (13) and (14) we obtain the following asymptotic relations:(F ′(z)
F (z)

)2

=
1

(z − z0)2

[
(k + 3)2 − 2(k + 3)(2b0 + c0)(z − z0) +

{
4(k + 4)b20+

+(2k + 7)c20 + 4b0c0 − 8(k + 3)b1 − 4(k + 3)c1

}
(z − z0)

2 +O((z − z0)
3)
]
, (15)(F ′(z)

F (z)

)′
=

1

(z − z0)2

[
(k + 3)− (2b20 + c20 − 4b1 − 2c1)(z − z0)

2 +O((z − z0)
3)
]
, (16)

F ′(z)

F (z)

h′(z)

h(z)
=

1

(z − z0)2

[
(k + 3)2 −

{
(3k + 7)b0 + (2k + 5)c0

}
(z − z0) +

{
(3k + 7)b20+

+(2k + 5)c20 + 3b0c0 − 2(3k + 5)b1 − 4(k + 2)c1

}
(z − z0)

2 +O((z − z0)
3)
]
, (17)(h′(z)

h(z)

)2

=
1

(z − z0)2

[
(k + 3)2 − 2

{
(k + 1)b0 + (k + 2)c0

}
(z − z0)+

+
1

(k + 3)2

{
(k + 1)2(2k + 7)b20 + (k + 2)2(2k + 7)c20 + 2(k2 + 7k + 14)b0c0−

−4(k − 1)(k + 3)2b1 − 4(k + 1)(k + 3)2c1

}
(z − z0)

2 +O((z − z0)
3)
]
, (18)(h′(z)

h(z)

)′
=

1

(z − z0)2

[
k + 3− 1

(k + 3)2

{
(k + 1)2b20 + (k + 2)2c20 + 4b0c0−

−2(k − 1)(k + 3)b1 − 2(k + 1)(k + 3)c1

}
(z − z0)

2 +O((z − z0)
3)
]
, (19)

ϕ′(z)

ϕ(z)

F ′(z)

F (z)
=

1

(z − z0)

[
− (k + 3)c0 +

{
(k + 4)c20 + 2b0c0 − 2(k + 3)c1

}
(z − z0)+

+O((z − z0)
2)
]
. (20)

ϕ′(z)

ϕ(z)

h′(z)

h(z)
=

1

(z − z0)

[
− (k + 3)c0 +

1

k + 3

{
(k2 + 7k + 11)c20 + (k + 1)b0c0−

−2(k + 3)2c1

}
(z − z0) +O((z − z0)

2)
]
, (21)(ϕ′(z)

ϕ(z)

)2

=
[
c20 +O((z − z0))

]
,

(ϕ′(z)
ϕ(z)

)′
=
[
(2c1 − c20) +O((z − z0))

]
. (22)

By substituting the above equalities (15)–(22) in (7) and executing some easy calculation,
we obtain G(z) = O((z − z0)). So z0 is a zero of G(z).

Lemma 5. Let f(z), F (z), ϕ(z), h(z) and G(z) be defined as in Lemma 4, ϕ(z) (6≡ 0) has
no zeros of multiplicity 2 and let k ≥ 2 be an integer. Then G(z) 6≡ 0.
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Proof. We follow the proof as explained in [2, 13, 14]. On the contrary, we assume that
G(z) ≡ 0. Under this assumption, we first show that: (i) F (z) has no zeros; (ii) ϕ(z) has no
zeros and poles; (iii) h(z) has no zeros; (iv) all zeros of f(z) are simple.
Suppose first that z1 is a zero of F (z) of multiplicity l1 (≥ 1). From F (z1) = 0 and
F = ϕf 2f (k) − 1 it is obvious that f(z1) 6= 0, ∞ and ϕ(z1) 6= 0, ∞. As z1 is a zero of F (z)
of multiplicity l1, z1 is a zero of F ′(z) = fh of multiplicity l1 − 1. Obviously, z1 will be the
zero of h(z) of order l1 − 1. Using the Laurent series of G(z) at z1, we obtain the coefficient
of (z−z1)

−2 as A(l1) = (a1 +a3 +a4)l
2
1− (a2 +a3 +2a4 +a5)l1 +(a4 +a5). From the definition

of ai (i ∈ {1, 2, , . . . , 9}), we have

A(l1) = −(k + 5)2(k + 7)

(k + 3)
l21 − (k + 1)(k + 5)(k + 7)l1 + 2(k + 1)(k + 3)2.

Obviously, A(l1) = 0 has one positive solution lying between 0 and 2. Also A(1) 6= 0 for any
positive integer k. Hence A(l1) 6= 0 for any positive integers l1 and k. So the point z1 is a
pole of G(z) which contradicts G(z) ≡ 0. Hence our claim (i) is proved. Let z2 be a zero
of ϕ(z) with multiplicity l2 (l2 ≥ 1, 6= 2). Then by (i) and the assumptions of the lemma,
F (z) has no zeros and poles at z2 and also f(z2) 6= 0, ∞. Hence z2 will be a zero of h of
order l2− 1. Using the Laurent series of G(z) at z2, we obtain the coefficient of (z− z2)

−2 as
B(l2) = (a4 + a7 + a8)l

2
2 − (2a4 + a5 + a7 + a9)l2 + (a4 + a5).

From the definition of ai we again have
B(l2) = −(k + 1)(k + 3)l22 − (k + 1)2(k + 3)l2 + 2(k + 1)(k + 3)2.

Obviously, B(l2) 6= 0 for any positive integers l2 (6= 2) and k. So the point z2 is a pole of
G(z) which contradicts G(z) ≡ 0. Thus if G(z) ≡ 0, then ϕ(z) has no zeros.

Now suppose that z3 is a pole of ϕ(z) of multiplicity l3 (≥ 1). From F = ϕf 2f (k) − 1 it
is obvious that z3 will be a pole of F (z) of multiplicity l3 and a pole of h(z) of multiplicity
l3 + 1. Using the Laurent series of G(z) at z3, we obtain the coefficient of (z − z3)

−2 as
C(l3) = (a1 + a3 + a4 + a6 + a7 + a8)l

2
3 + (a2 + a3 + 2a4 + a5 + a7 + a9)l3 + (a4 + a5).

From the definition of ai we have

C(l3) =
2(k + 1)(3k + 13)

(k + 3)
l23 + 8(k + 1)(k + 4)l3 + 2(k + 1)(k + 3)2.

Obviously, C(l3) 6= 0 for any positive integer l3. So the point z3 is a pole of G(z) which
contradicts G(z) ≡ 0. Thus if G(z) ≡ 0, then ϕ(z) has no poles. Hence our claim (ii) is
proved.

Now let z4 be a zero of h(z) of order l4 (≥ 1). Then by (i), (ii) and the definition of h,
F (z) and ϕ(z) has no zeros and poles at z4. Using the Laurent series of G(z) at z4, we can
get the coefficient of (z − z4)

−2 as

D(l4) = a4l
2
4 − a5l4.

From the definition of a4 and a5, we see that D(l4) 6= 0 for any positive integer l4. So the
point z4 is a pole of G(z) which contradicts G(z) ≡ 0. Hence our claim (iii) that h(z) has no
zeros is true. From h(z) = ϕ(z){2f ′(z)f (k)(z) + f(z)f (k+1)(z)} + ϕ′(z)f(z)f (k)(z) and (iii),
we obtain (iv).

Set ψ(z) = h(z)
F (z)

. We can deduce that ψ(z) is an entire function, all zeros of ψ(z) can
occur only at multiple poles of f(z) and the following expressions hold:

F ′

F
=
fh

F
= fψ,

h′

h
=
F ′

F
+
ψ′

ψ
= fψ +

ψ′

ψ
.
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Substituting the above two equalities in (7), we get

(a1 + a3 + a4)f
2ψ2 + (a2 + a3 + 2a4 + a5)fψ

′ + (a6 + a7)f
ϕ′

ϕ
ψ+

+
{
a4

(ψ′
ψ

)2

+ a5

(ψ′
ψ

)′
+ a7

ψ′

ψ

ϕ′

ϕ
+ a8

(ϕ′
ϕ

)2

+ a9

(ϕ′
ϕ

)′}
+ (a2 + a5)f

′ψ ≡ 0. (23)

Obviously a2 + a5 = (k + 5)2(k + 7) 6= 0 and ψ 6≡ 0, otherwise from F ′

F
= fψ ≡ 0, we get F

is equivalently constant which contradicts Lemma 2. Thus by (23), we have

f ′(z) =
1

ψ
l1,1(z) + fl1,2(z) + f 2ψl1,3(z), (24)

where l1,i(z) (i ∈ {1, 2, 3}) are differential polynomials in ψ′

ψ
and ϕ′

ϕ
. Differentiating both

sides of (24) we have

f ′′(z) =
1

ψ
l2,1(z) + fl2,2(z) + f 2ψl2,3(z) + f 3ψ2l2,4(z),

where l2,i(z) (i ∈ {1, 2, 3, 4}) are differential polynomials in ψ′

ψ
and ϕ′

ϕ
. Continuing the above

process we obtain

f (k)(z) =
1

ψ
lk,1(z) + flk,2(z) + f 2ψlk,3(z) + . . .+ fk+1ψklk,k+2(z), (25)

where lk,i(z) (i ∈ {1, 2, . . . , k + 2}) are differential polynomials in ψ′

ψ
and ϕ′

ϕ
.

Now suppose z5 is a zero of f(z). From (24) and (25) with ψ(z5) 6= 0, ∞, we have

f ′(z5) =
1

ψ(z5)
l1,1(z5), f (k)(z5) =

1

ψ(z5)
lk,1(z5).

Also from the expressions for F (z) and h(z) we have

F (z5) = −1, h(z5) = 2ϕ(z5)f
′(z5)f

(k)(z5) =
2ϕ(z5)

ψ2(z5)
l1,1(z5)lk,1(z5).

Substituting the above equality in the expression of ψ(z), we have

ψ3(z5) = −2ϕ(z5)l1,1(z5)lk,1(z5). (26)

Set λ(z) = ψ3(z) + 2ϕ(z)l1,1(z)lk,1(z). We now discuss the following two cases: Case I and
Case II.
Case I. Let λ(z) 6≡ 0. By (26) and (iv) we have

N
(
r,

1

f

)
= N1

(
r,

1

f

)
≤ N

(
r,

1

λ

)
< T (r, λ) +O(1) < O{T (r, ψ)}+ S(r, f),

T (r, ψ) = m(r, ψ) = m
(
r,
h

F

)
≤ m

(
r,

1

f

)
+ S(r, f).

Applying (2) and (i), we have

m
(
r,

1

f

)
= S(r, f). (27)

Then

N
(
r,

1

f

)
= S(r, f). (28)
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Combining (27) and (28) we have T (r, f) = S(r, f), a contradiction.
Case II. λ(z) ≡ 0. Using the expression of λ(z), we deduce that

T (r, ψ) = m(r, ψ) = S(r, f) + S(r, ψ) = S(r, ψ). (29)

Also

ψ3(z) = −2ϕ(z)l1,1(z)lk,1(z). (30)

From (29), we deduce that ψ(z) is either a constant or a polynomial. If ψ is a polynomial,
then the right-hand side of (30) is either a constant or a rational function whereas the left
hand side is a polynomial, and this gives a contradiction. So ψ(z)(6≡ 0) is a constant. Let
ψ(z) ≡ C, where C( 6= 0). Hence from (30) we get

1

ϕ(z)
= − 2

C3
L1,1(z)Lk,1(z),

where L1,1(z) and Lk,1(z) are differential polynomials in ϕ′

ϕ
. Hence

T (r, ϕ) = T
(
r,

1

ϕ

)
+O(1) = S(r, ϕ).

Noting that ϕ(z) has no zero, it becomes a nonzero constant. Substituting ψ(z) ≡ C in (23),
we obtain

(a1 + a3 + a4)f
2C2 + (a2 + a5)f

′C ≡ 0,

which gives (1/f)′ ≡ C1, where C1 (6= 0) is a constant. Hence f(z) is rational, which is
impossible. Thus we get G(z) 6≡ 0. This completes the proof of Lemma 5.

Lemma 6 ([1]). Suppose that f(z) is a transcendental meromorphic function and that
fnP (f) = Q(f),

where P (f) and Q(f) are differential polynomials in f(z) with functions of small proximity
related to f(z) as the coefficients and the degree of Q(f) is at most n. Then

m(r, P (f)) = S(r, f).

3. Proof of Theorem 1. By Lemmas 4 and 5, we have seen that the simple poles of f(z)
are zeros of G(z) and G(z) 6≡ 0. Differentiating F = ϕf 2f (k) − 1, we get

βf = −F
′

F
, (31)

where

β = ϕ′ff (k) + 2ϕf ′f (k) + ϕff (k+1) − ϕff (k)F
′

F
, h = −βF. (32)

We see in the proof of Lemma 5 that the poles of G(z) whose multiplicities are at most two
come from the multiple poles of f(z) or from the zeros of F (z) or h(z) or from the zeros and
poles of ϕ(z) except double zeros of ϕ(z).

We think about the poles of β2G. We can visualize from (32) that the zeros of h(z) are
either the zeros of F (z) or the zeros of β(z). From (31), we can easily verified that the poles
of f(z) with multiplicity q (≥ 2) are the zeros of β(z) with multiplicity q − 1. Hence the
poles of β2G come from the zeros of F(z) and the zeros and poles of ϕ(z) except double zeros
of ϕ(z) and the multiplicity is at most 4. Hence,

N(r, β2G) ≤ 4N(r, 1/F ) + 4N(r, ϕ) + 4N 6=2(r, 1/ϕ) ≤ 4N(r, 1/F ) + S(r, f).
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From the expression for G(z) we see that m(r,G) = S(r, f). Also by Lemma 6, we obtain
from (31) that m(r, β2) = S(r, f). Therefore m(r, β2G) = S(r, f). Hence,

T (r, β2G) ≤ 4N(r, 1/F ) + S(r, f).

Since the zeros of f(z) with multiplicity p (≥ k + 1) are the zeros of β(z) with multiplicity
at least 2p− (k+ 1), and therefore at least the zeros of β2G with multiplicity 4p− 2(k+ 2).
Also the simple poles f(z) are the zeros of β2G. Hence we have

N1(r, f) + 4N(k+1(r, 1/f)− 2(k + 2)N (k+1(r, 1/f) ≤ N(r, 1/β2G) ≤
≤ T (r, β2G) ≤ 4N(r, 1/F ) + S(r, f). (33)

Combining twice of (1) and (33), we obtain

T (r, f) +N(r, f) +N1(r, f)− 2N(r, f) + 4N
(
r,

1

f

)
− 2N

(
r,

1

f

)
+ 4N(k+1

(
r,

1

f

)
−

−2(k + 2)N (k+1

(
r,

1

f

)
− 2Nk)

(
r,

1

f

)
− 2kN (k+1

(
r,

1

f

)
≤

≤ 6N
(
r,

1

ϕf 2f (k) − 1

)
− 2N0

(
r,

1

(ϕf 2f (k))′

)
+ S(r, f). (34)

Let us consider the poles of left-hand side of (34),

N(r, f) +N1(r, f)− 2N(r, f) = N(r, f) +N1(r, f)− 2N1(r, f)− 2N (2(r, f) =

= N(r, f)−N1(r, f)− 2N (2(r, f) = N1(r, f) +N(2(r, f)−N1(r, f)− 2N (2(r, f) ≥ 0. (35)

Next we consider the zeros of left-hand side of (34) which is

4N
(
r,

1

f

)
− 2N

(
r,

1

f

)
+ 4N(k+1

(
r,

1

f

)
− 2(k + 2)N (k+1

(
r,

1

f

)
− 2Nk)

(
r,

1

f

)
−

−2kN (k+1

(
r,

1

f

)
= 2N

(
r,

1

f

)
− 2N

(
r,

1

f

)
+ 4N(k+1

(
r,

1

f

)
− 2(k + 2)N (k+1

(
r,

1

f

)
+

+2Nk)

(
r,

1

f

)
+ 2N(k+1

(
r,

1

f

)
− 2Nk)

(
r,

1

f

)
− 2kN (k+1

(
r,

1

f

)
≥

≥ 2N
(
r,

1

f

)
− 2N

(
r,

1

f

)
+ 6N(k+1

(
r,

1

f

)
− 4k + 4

k + 1
N(k+1

(
r,

1

f

)
> 0. (36)

From (34)–(36), we obtain that T (r, f) ≤ 6N
(
r,

1

ϕf 2f (k) − 1

)
+ S(r, f).

4. Open Problems. We now pose the following two open questions.

Question 4. Is it possible in any way to remove the condition ‘ϕ(z) has no zero of multi-
plicity 2’ in Theorem 1?

Question 5. What conclusion can be drawn if the set of zeros and poles of f(z) and that
of ϕ(z) are not disjoint in Theorem 1?
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