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In this paper, A. Avila’s theorem on convergence of the exact quantization scheme of A. Vo-
ros is related to the reality proofs of eigenvalues of certain PT -symmetric boundary value
problems. As a result, a special case of a conjecture of C. Bender, S. Boettcher and P. Meisinger
on reality of eigenvalues is proved. In particular the following Theorem 2 is proved: Consider
the eigenvalue problem

−w′′ + (−1)`(iz)mw = λw,

where m ≥ 2 is real, and (iz)m is the principal branch, (iz)m > 0 when z is on the negative
imaginary ray, with boundary conditions w(teiβ) → 0, t → ∞, where β = π/2 ± `+1

m+2π. If
` = 2, and m ≥ 4, then all eigenvalues are positive.

1. Introduction. The following two theorems are proved in the article:

Theorem 1. Consider three rays:

Lj = {eijαt : t ≥ 0}, j ∈ {−1, 0, 1}, i =
√
−1.

If
α ∈ (0, π/3], (1)

then there exists an entire function g whose all zeros lie on L0 and all 1-points on L1 ∪L−1,
and having infinitely many zeros and 1-points.

Theorem 2. Consider the eigenvalue problem

−w′′ + (−1)`(iz)mw = λw, (2)

where m ≥ 2 is real, and (iz)m is the principal branch, (iz)m > 0 when z is on the negative
imaginary ray, with boundary conditions

w(teiβ)→ 0, t→∞, (3)

where
β = π/2± `+ 1

m+ 2
π.

If ` = 2, and m ≥ 4, then all eigenvalues are positive.
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Theorem 2 is the simplest case of a conjecture of Bender, Boettcher and Meisinger [2, 3].
When m = 2, ` = 1, the eigenvalue problem (2), (3) is the harmonic oscillator. When m = 4,
` = 2, it is the quartic oscillator. When m is an integer, m ≥ 3, and ` is an integer in [1,m],
Theorem 2 was proved by Shin ([12]). Notice that the case m = 3, ` = 2 is not covered by
Theorem 2. When m ≥ 2 and ` = 1 positivity of eigenvalues was proved in [8], section 6.2.

When m is not an integer, the bound for m ≥ 4 in Theorem 2 seems to be exact: almost
all eigenvalues are non-real when ` = 2 and m ∈ (2, 3)∪ (3, 4), according to the computation
in [2, Figs. 14,15]. Here m = 3 is an exceptional value, covered by the theorem of Shin, when
all eigenvalues are real.

We recall that an eigenvalue problem for a differential operator is called PT -symmetric
if it is invariant with respect to the change of the independent variable z 7→ σ(z) = −z.
This means that the equation and the boundary conditions are invariant. If each of the
two boundary conditions is invariant under σ, the problem is equivalent to an Hermiti-
an one. In other PT -symmetric problems the two boundary conditions are interchanged
by σ. PT -symmetric problems have eigenvalues symmetric with respect to the real line but
not necessarily real. The conjecture of Bender, Boettcher and Meisinger arises from their
numerical study of PT -symmetric boundary value problems for the operator (2) with vari-
ous PT -symmetric boundary conditions. The idea was to connect the potentials z2, z3 and
z4 into one continuous family. All our eigenvalue problems (2), (3) are PT-symmetric.

The background of Theorem 1 and its relation with Theorem 2 is the following.
In a conference in Joensuu in summer 2015, Gary Gundersen asked whether there exist

entire functions with all zeros positive, while 1-points lie on some rays from the origin,
distinct from the positive ray, ([5, Questions 3.1, 3.2]). As a partial answer to this question,
Bergweiler, Hinkkanen and the present author ([4]) proved among other things the following
fact:

Theorem A. If there exists an entire function with zeros on the positive ray L0, and
1-points on the rays L and L′ from the origin, which are different from the positive ray, and
this function has infinitely many zeros and 1-points, then ∠(L0, L) = ∠(L0, L

′) < π/2.

Trying to construct an example of a function with this property, the authors of [4] recalled
the functional equation

f(ωλ)f(ω−1λ) = 1− f(λ), ω = e2πi/5,

which was studied by Sibuya and Cameron ([17]) and Sibuya ([16]). This equation is satisfied
by the Stokes multiplier of the differential equation

−y′′ + (z3 − λ)y = 0.

On the other hand, it is known that this Stokes multiplier is an entire function with all zeros
positive ([7]). So f has positive zeros, and 1-points of f lie on the rays Arg z = ±2π/5.
Considering more general differential equations

−y′′ + (zm − λ)y = 0, (4)

with integer m ≥ 3 the authors of [4] used the results of Sibuya ([15]) and Shin ([12]) to
prove Theorem 1 with α = 2π/(m+ 2), where m ≥ 3 is an integer.

It was tempting to consider such differential equations (4) with non-integer m ≥ 2,
with solutions defined on the Riemann surface of the logarithm. The Stokes multiplier of
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such an equation is still an entire function of λ. However, the numerical experiments and
heuristic arguments of Bender, Boettcher and Meisinger ([2, 3]) show that the straightforward
generalization of the result of Shin on reality of PT -symmetric eigenvalues does not hold for
non-integer m.

This suggested a more general treatment of the required functional equations (Section 2
below) based on a deep result of Avila, where the differential equation does not figure at all.
Theorem 2 is proved as a byproduct.

The main message of this paper is that a substantial part of reality proofs for PT -
symmetric eigenvalues in [7, 8, 12] can be performed in a more general setting, by working
only with entire functions of the spectral parameter λ, without even mentioning the di-
fferential equation or the variable z.

A challenging question remains whether Theorem 1 can be extended to angles α ∈
(π/3, π/2), besides 2π/5. Notice that Theorem 1 does not cover the case α = 2π/5 whi-
ch was proved in [4]. Shin’s proof of this result uses the change of the independent vari-
able z 7→ −z which in the case of equation (2) works only for integer m. Numerical and
heuristic results in [2, 3] suggest that the construction described below will not work with
α ∈ (π/3, π/2)\{2π/5}.

Remark. Figs. 14, 15, 20 in [2] show that for some non-integer m ≥ 2 and some ` ≥ 2
almost all eigenvalues are non-real, and form complex conjugate pairs. This shows that the
usual asymptotic expansions of eigenvalues λk as a function of k, which are common in one-
dimensional eigenvalue problems [13, 11, 9], and which would imply |λk+1| > |λk|, for large k,
cannot hold in these cases.

2. Voros’s quantization scheme and Avila’s theorem. Consider an entire function f
of genus zero with positive zeros and f(0) = 1, that is

f(λ) =
∞∏
j=1

(
1− λ

Ej

)
, 0 < E1 < E2 . . . . (5)

Denote
ω = eiα, α ∈ (0, π/2).

Later, in Section 3, we will need to impose a stronger condition (1). Consider the function

Arg f(ω−2t) =
∞∑
j=1

tan−1
sin 2α

Ej/t− cos 2α
.

This is a continuous, strictly increasing function of t which is zero at 0, and tends to +∞ as
t→ +∞. We want to find a function f as in (5) with the property

1

π
Arg f(ω−2Ek) = k − 1/2, k = 1, 2, 3, . . . . (6)

Avila proved in [1] that such functions f exist. More precisely, Voros proposed to solve equati-
ons (6) in the following way. Start with an appropriate sequence E = (Ek). It determines fE
by (5) and the increasing function t 7→ Arg fE(ω

−2t). Let E ′ = (E ′k) be the solutions of

1

π
Arg fE(ω

−2E ′k) = k − 1/2, k = 1, 2, . . . .
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These E ′k are uniquely defined because t 7→ Arg fE(ω
−2t) is strictly increasing and maps

[0,+∞) onto itself. This construction defines a map E 7→ E ′. Voros conjectured that under
an appropriate choice of the initial sequence iterates of this map converge to a solution
of (6). He called this the “exact quantization scheme”. Avila proved the convergence of the
scheme for every α ∈ (0, π/2). (He uses parameter θ = π − 2α ∈ (0, π) instead of α.) The
sufficient conditions of convergence and initial conditions are stated on p. 309 in [1]. In
fact his assumptions on the right hand side of (6) are flexible: it has to be k + O(1) and
≥ (k − 1/2)(1− 2α)/π.

3. Functional equations. It follows from (6) that the entire function

f(ω−2λ) + f(ω2λ)

has zeros at Ek, and no other positive zeros. Indeed, for λ > 0 the summands are complex
conjugate to each other, so their sum is zero if and only if their arguments are π/2 modulo
π, and this happens exactly for λ = Ek according to (6). Therefore,

f(ω−2λ) + f(ω2λ) = C(λ)f(λ), (7)

where C is an entire function without positive zeros. This is our first main functional equation.
Equation (7) is equivalent to (6): if f is an entire function of the form (5), satisfying (7)

with some entire C having no positive zeros, then f satisfies (6).
Substituting λ 7→ ω2λ we obtain

f(λ) + f(ω4λ) = C(ω2λ)f(ω2λ). (8)

Elimination of f(λ) from (7) and (8) gives

f(ω−2λ) =
(
C(λ)C(ω2λ)− 1

)
f(ω2λ)− C(λ)f(ω4λ).

By substituting λ 7→ ω−1λ and denoting

D(λ) = C(ω−1λ)C(ωλ)− 1, (9)

we obtain our second main functional equation

f(ω−3λ) = D(λ)f(ωλ)− C(ω−1λ)f(ω3λ), (10)

which is a direct consequence of (7).
Such functional equations were obtained first by Sibuya ([15]) in his studies of Stokes

multipliers (the Stokes multiplier is C). Later it was discovered by Dorey, Dunning and
Tateo that the same functional equations occur in the exactly solvable models of statistical
mechanics on two-dimensional lattices, as well as in the quantum field theory ([7]). Our new
observation here is that all these functional equations can be obtained from (6), without any
appeal to differential equations.

In the next proposition we will prove that zeros of C and D are negative. Setting
g(λ) = −D(−λ) we will obtain that zeros of g are positive while 1-points, which are zeros
of C(ω−1λ)C(ωλ) lie on L1 ∪ L−1 in view of (9), which will prove the Theorem 1.

Proposition 1. Let f be an entire function of order less than 1 of the form (5), and suppose
that (7) is satisfied with some entire function C which has no positive zeros. Then (10) is
satisfied with D as in (9) and all zeros of C are negative. If (1) holds then all zeros of D are
negative as well.
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Proof. First we prove that zeros of C are real. The idea of this comes from [7], see also [8].
Suppose that C(λ) = 0. Then (7) implies

|f(ω2λ)| = |f(ω−2λ)|. (11)

From the explicit form of f in (5) we see that the function θ 7→ |f(reiθ)| is even, 2π-periodic,
and strictly increasing on (0, π). Therefore (11) can hold only with real λ.

As C has no positive zeros, they are all negative. From (7) we obtain C(0) = 2, so

C(λ) = 2
∞∏
k=1

(1 + λ/λk) , λ1 < λ2 < . . . . (12)

Now we prove that zeros of D are real. The following ingenious argument is due to K. Shin
([12, Thm. 11]), but we slightly generalize his result.

Let D(τ) = 0. As D is real by (9), we also have D(τ) = 0, so without loss of generality
we choose

Im τ ≥ 0. (13)

We claim that
|C(ω−1τ)| = 1. (14)

For this we will need the assumption (1). From (9) we obtain

|C(ω−1τ)C(ωτ)| = 1. (15)

Then, as Im τ ≥ 0 and Imω > 0, we obtain

|C(ωτ)| =
∞∏
k=1

|1 + ωτ/λk| ≤
∞∏
k=1

∣∣1 + ω−1τ/λk
∣∣ = |C(ω−1τ)|,

because

|1 + ωζ| = |ω−1 + ζ| ≤ |ω + ζ| = |1 + ω−1ζ| when Im ζ ≥ 0, Imω > 0.

Then (15) gives
|C(ω−1τ)| ≥ 1.

On the other hand, when we plug λ = τ to (10), we obtain

1 ≤ |C(ω−1τ)| =
∣∣∣∣f(ω−3τ)f(ω3τ)

∣∣∣∣ = ∞∏
k=1

∣∣∣∣ ω3λk − τ
ω−3λk − τ

∣∣∣∣ ≤ 1,

where we used (13) and Imω3 ≥ 0, which follow from (1). This establishes the claim (14).
Once (14) is known, we substitute λ = τ to (10) again, and obtain

|f(ω−3τ)| = |f(ω3τ)|,

which is similar to (11), and implies that τ must be real, in the same way as (11) implied
that λ was real.

It remains only to show that zeros of D are negative. In view of (9), and (12) we have
for x > 0

D(x) + 1 = C(ω−1x)C(ωx) = 4
∞∏
k=1

(
1 + 2(x cosα)/λk + (x/λk)

2
)
> 4,

so D has no positive zeros.
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Theorem 1 is an immediate consequence: take g(λ) = −D(−λ).

Remark 1. For future references we state a slight generalization of the proposition to which
the same proof applies.

Let f be given by (5) and suppose that we have

kf(ω2λ) + k−1f(ω−2λ) = C(λ)f(λ), (16)

where |k| = 1, and C is an entire function with no positive zeros, and ω = eiα, where
0 < α ≤ π/3. Then

k−3/2f(ω−3λ) + C(ω−1λ)k3/2f(ω3λ) = D(λ)k1/2f(ωλ), (17)

where D is as in (9) and both D and C have all zeros negative.

The proof is the same as for k = 1.
Combining (17) with (16) we can eliminate C and express D directly in terms of f :

D(λ)f(ω−1λ)f(ωλ) = k−2f(ω−3λ)f(ω−1λ) + k2f(ω3λ)f(ωλ) + f(ω−3λ)f(ω3λ). (18)

4. Proof of Theorem 2. It is convenient to make the change of the variable y(z) = w(−iz).
Then

−y′′ +
(
(−1)`+1zm + λ

)
y = 0, (19)

and
y(z)→ 0, z →∞, arg z = ± `+ 1

m+ 2
π. (20)

In the equation (19) the principal branch of zm is used, so the branch cut is on the negative
ray.

According to Sibuya ([15]), there is a unique normalized solution y0(z, λ) of the equation
(19) with ` = 1 with the property

y0(z, λ) = (1 + o(1))z−m/4 exp

(
− 2

m+ 2
z(m+2)/2

)
, (21)

as z = teiθ, t > 0, t → ∞ and |θ| < 3π/(m + 2). Moreover, for every fixed z0, the function
y(z0, λ) is an entire function of λ of order 1/2 + 1/m < 1. Sibuya stated this result only for
integer m, but his proof actually does not depend on this assumption, see [18], [8], [6]. Let

ω = exp(2πi/(m+ 2)). (22)

As m ≥ 2, Argω ∈ (0, π/2). Then

yk(z, λ) = ωk/2y0(ω
−kz, ω2kλ),

where ωk/2 := exp(πik/(m+2)), satisfies the same differential equation (19) with ` = 1 when
k is an integer, and the equation (19) with ` = 2 when k is a half of an odd integer. We use
normalization of yk from [7, 8] which is more convenient than Sibuya’s normalization. Any
three solutions of the same differential equation must be linearly dependent, so

y1(z, λ) = C0(λ)y0(z, λ)− C̃(λ)y−1(z, λ).
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Comparison of the asymptotics of y1 and y−1 gives C̃ ≡ 1, so

y1(z, λ) = C0(λ)y0(z, λ)− y−1(z, λ). (23)

One can show that C0 is an entire function of order 1/2+1/m, [15, 18]. Substituting (z, λ) 7→
(ω−1z, ω2λ) into (23), we obtain

y0(z, λ) = C0(ω
2λ)y1(z, λ)− y2(z, λ), (24)

a relation of the form (16). Eliminating y0(z, λ) from (23), (24), we obtain

y−1(z, λ) =
(
C0(λ)C0(ω

2λ)− 1
)
y1(z, λ)− C0(λ)y2(z, λ)

Finally, substitute (z, λ) 7→ (ω1/2z, ω−1λ) and multiply on ω−1/4. The result is

y−3/2(z, λ) = D0(λ)y1/2(z, λ)− C0(ω
−1λ)y3/2(z, λ), (25)

where
D0(λ) = C0(ω

−1λ)C0(ωλ)− 1. (26)

Equation (25) is a special case of (17).
We see that functions y3/2 and y−3/2 satisfy equation (19) with ` = 2, and tend to zero

on the rays Arg z = 3π/(m+2) and Arg z = −3π/(m+2), respectively. These functions, as
functions of z, are linearly dependent if and only if (19), (20) with ` = 2 have a non-trivial
solution. Thus the eigenvalues for ` = 2 are zeros of D0.

Let us denote
f(λ) = lim

x→0+
y0(x, λ);

it is easy to see that this is well defined, despite the singularity of (19) at 0. Then f is an
entire function of genus 0 and its zeros Ek can be interpreted as eigenvalues of (19) under
the boundary conditions

lim
t→0+

y(t) = lim
t→+∞

y(t) = 0. (27)

This problem is self-adjoint, so all eigenvalues are real. Moreover the potential zm is positive
on the positive ray, so the “eigenvalues” λ in (19) with ` = 1 under the conditions (27) are
all negative. We also notice that y0(x, λ) is real for real x and λ, so f(0) is real, and thus f
is a real entire function.

Plugging z = 0 in (23) we obtain

ω−1/2f(ω−2λ) + ω1/2f(ω2λ) = C0(λ)f(λ) (28)

which is analogous to (16). Notice that

C0(0) = ω−1/2 + ω1/2

is real. All zeros of C0 are positive by the results in [8, 6.2] and [10]. Application of the
Remark in the previous section gives that all zeros of D0 are negative, and this completes
the proof of Theorem 2.

The author thanks André Voros and Kwang Shin for useful discussions.
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