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Let l be a continuous function on R increasing to +∞, and ϕ be a positive function on R.
We proved that the condition

lim
x→+∞

ϕ(ln[x])

lnx
> 0

is necessary and sufficient in order that for any complex sequence (ζn) with n(r) ≥ l(r), r ≥ r0,
and every set E ⊂ R which is unbounded from above there exists an entire function f having
zeros only at the points ζn such that

lim
r∈E, r→+∞

ln lnMf (r)

ϕ(lnnζ(r)) ln l−1(nζ(r))
= 0.

Here n(r) is the counting function of (ζn), and Mf (r) is the maximum modulus of f .

1. Introduction. Let Z be the class of all complex sequences
ζ = (ζn) such that 0 < |ζ0| ≤ |ζ1| ≤ . . . and ζn →∞ (n→ +∞).

For every sequence ζ ∈ Z, by Eζ we denote the class of all entire functions whose sequence
of zeros, enumerated (counted with multiplicity) in non-decreasing order of their moduli,
coincides with the sequence ζ ∈ Z, and let

nζ(r) =
∑
|ζn|≤r 1

be the counting function of this sequence.
Suppose that E ⊂ R is a measurable set. As usual, the value

∫
E∩(1,+∞)

d ln r is called the
logarithmic measure of the set E, and the value

lim
r→+∞

1

ln r

∫
E∩(1,+∞)

d ln r

is called the upper logarithmic density of this set.
For an entire function f and every r ≥ 0 we denote Mf (r) = max{|f(z)| : |z| = r}.
A. A. Goldberg ([1]) proved the following theorem.
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Theorem A. Let δ > 2. For any sequence ζ ∈ Z satisfying the condition

lim
r→+∞

lnnζ(r)

ln r
> 0, (1)

there exist an entire function f ∈ Eζ and a set E of finite logarithmic measure such that
outside the set E one has

ln lnMf (r) = o(lnδ nζ(r)), r → +∞. (2)

In addition, A. A. Goldberg ([1]) showed that Theorem A is not valid in the case δ =
1, and also posed the question of whether in this theorem the condition δ > 2 can be
replaced by the one δ > 1. The negative answer to Goldberg’s question was obtained by W.
Bergweiler ([2]), who showed that Theorem A is not true anymore even in the case δ = 2.

Theorem B ([2]). Let α ∈ (0,+∞). There exists a sequence ζ ∈ Z satisfying the condition

lim
r→+∞

lnnζ(r)

ln r
= α, (3)

such that for any entire function f ∈ Eζ along some set Ef of infinite logarithmic measure
one has

ln2 nζ(r) = o(ln lnMf (r)), r → +∞.

If we require the validity of relation (2) not outside a small set such as a set of finite
logarithmic measure, but only along some increasing to +∞ sequence of values r, this relation
can also be valid in the case of δ = 2.

Theorem C ([2]). For any sequence ζ ∈ Z that satisfies condition (1) and every unbounded
from above set E ⊂ R there exists a function f ∈ Eζ such that

lim
r∈E, r→+∞

ln lnMf (r)

ln2 nζ(r)
= 0. (4)

The following statement shows that under conditions of Theorem C relation (4) is final
in some sense.

Theorem D ([2]). Suppose α ∈ (0,+∞) and φ is a function decreasing to 0 on R. Then
there exist a sequence ζ ∈ Z satisfying condition (3) and a set E ⊂ R of upper logarithmic
density 1 such that for any function f ∈ Eζ we have

lim
r∈E, r→+∞

ln lnMf (r)

ln2 nζ(r)φ(lnnζ(r))
= +∞.

Remark 1. W. Bergweiler [2] actually proved to some extent deeper results than Theorems A
and B. Particularly, from results obtained in [2] it follows that a function f ∈ Eζ and an
exceptional set E in Theorem A can be selected independently of the number δ > 2. On the
other hand, Theorem C shows that the set Ef in Theorem B is dependends on f .
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Theorems A and B describe the minimal growth of an entire function having given
sequence of zeros ζ only in the case when the growth of the counting function nζ(r) for
this sequence is bounded from below by some power function rα. Analogs of Theorems A
and B were obtained in [3] in the case when the growth of the function nζ(r) is bounded
from below by a function of the form lnα r. Theorems A and B were extended in [4] to the
case when the restrictions mentioned above are of any possible kind.

By L we denote the class of all continuous on R functions increasing to +∞.

Theorem E ([4]). Let l ∈ L. For any sequence ζ ∈ Z satisfying the condition

nζ(r) ≥ l(r) (r ≥ r0), (5)

there exist an entire function f ∈ Eζ and a set E ⊂ R of finite logarithmic measure such
that for every δ > 1 outside the set E one has

ln lnMf (r) = o(lnδ nζ(r) ln l
−1(nζ(r))), r → +∞.

Theorem F ([4]). Let l ∈ L. There exists a sequence ζ ∈ Z that satisfies condition (5) such
that nζ(r−0) = l(r) on an unbounded from above set of values r and for any entire function
f ∈ Eζ along some set Ef of infinite logarithmic measure one has

lnnζ(r) ln l
−1(nζ(r)) = o(ln lnMf (r)), r → +∞.

The goal of our paper is generalizations of Theorems C and D for the case of any possible
lower bound on the growth of the counting function nζ(r) for a sequence ζ ∈ Z.

Theorem 1. Let l ∈ L. Then for any sequence ζ ∈ Z that satisfies condition (5), and for
every unbounded from above set E ⊂ R there exists a function f ∈ Eζ for which

lim
r∈E, r→+∞

ln lnMf (r)

lnnζ(r) ln l−1(nζ(r))
= 0. (6)

Theorem 2. Let l ∈ L and ϕ be a function which is positive on R and such that

lim
x→+∞

ϕ(ln[x])

lnx
= 0. (7)

Then there exists a sequence ζ ∈ Z such that condition (5) holds and nζ(r− 0) = l(r) on an
unbounded from above set of values r, and also there exists a set E ⊂ R of upper logarithmic
density 1 such that for any function f ∈ Eζ one has

lim
r∈E, r→+∞

ln lnMf (r)

ϕ(lnnζ(r)) ln l−1(nζ(r))
= +∞. (8)

Immediately from Theorems 1 and 2 we obtain the following theorem.

Theorem 3. Let l ∈ L and ϕ be a function which is positive on R. Then the condition

lim
x→+∞

ϕ(ln[x])

lnx
> 0

is necessary and sufficient in order that for any sequence ζ ∈ Z that satisfies condition (5)
and for every unbounded from above set E ⊂ R there exists an entire function f ∈ Eζ such
that

lim
r∈E, r→+∞

ln lnMf (r)

ϕ(lnnζ(r)) ln l−1(nζ(r))
= 0.
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To prove Theorems 1 and 2, we need some auxiliary results which are formulated in the
next section.

We have noted that the paper [1] also inspired other problems related to the description
of the minimum growth of entire functions with given zeros. In particular, some of these
problems were solved in papers [5, 6, 7, 8, 9].

2. Auxiliary results.

Lemma 1 ([4]). For every sequence ζ ∈ Z there exists a nonnegative sequence (λn) having
the following properties:

(i) λn ∼ lnn/ ln |ζn|, as n→∞;

(ii) for any sequence of nonnegative integers (pn) such that pn ≥ [λn], n ≥ n0, the product

f(z) =
∞∏
n=0

E

(
z

ζn
, pn

)
(9)

defines an entire function f ∈ E(ζ), moreover,

lnMf (r) ≤ Gf (r) :=
∞∑
n=0

(
r

|ζn|

)pn+1

. (10)

Let f be an entire function, r > 0, and cp(r) be the p-th Fourier coefficient of the function
ln |f(reiθ)|, that is,

cp(r) =
1

2π

∫ 2π

0

e−ipθ ln |f(reiθ)|dθ, p ∈ Z.

Suppose that f(0) 6= 0 and

ln f(z) =
∞∑
p=0

apz
p (11)

near the point z = 0. Then, applying the Poisson-Jensen formula (see [10, p. 16–17]), for
every integer p ≥ 1 we have

cp(r) =
1

2
apr

p +
1

2p

∑
|ζn|<r

((
r

ζn

)p
−
(
ζn
r

)p)
, (12)

where ζn are zeros of the function f . Moreover, the following lemma is valid.

Lemma 2 ([2]). For any entire function f and every integer n ≥ 1 the inequality

|cn(r)| ≤ lnMf (r) (r > 0)

is satisfied.
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3. Proof of Theorems.

Proof of Theorem 1. Suppose that ζ ∈ Z is a fixed sequence such that nζ(r) ≥ l(r), r ≥ r0,
and λ = (λn) is a sequence whose existence for given ζ is asserted by Lemma 1. Then there
exists a non-decreasing sequence of non-negative integers (qn) such that qn ≥ [λn] for n ≥ n0,
and also qn → +∞ and qn = o(lnn) as n→∞.

Let us consider the series
∞∑
n=0

(
r

|ζn|

)qn+1

,

which is convergent for all r ≥ 0, and for every r ≥ 0 we put n(r) = nζ(r). We also put

m(r) = min

{
k ≥ n(r) + 2 :

∞∑
n=k

(
r

|ζn|

)qn+1

≤ 1

}
, γ(r) =

ln(m(r)− n(r))
ln |ζn(r)+1| − ln r

.

Let E ⊂ R be a set unbounded from above. In this set we choose a sequence (rk) increasing
to +∞ such that for every integer k ≥ 0 the following inequality is valid:

n(rk+1) > m(rk), qn(rk+1) ≥ γ(rk) + 1.

For any integer t ≥ 0 let us denote pt = max{[γ(rk)] + 1, qt} if t ∈ [n(rk) + 1,m(rk)) for
some k ≥ 0, and put pt = qt if t /∈ H, where

H =
∞⋃
k=0

[n(rk) + 1,m(rk)).

Note that n(rk) /∈ H for every k ≥ 0.
Let us prove that pt ≤ qn(rk) for all t ≤ n(rk) and k ≥ 0. If t /∈ H, we have pt = qt ≤ qn(rk),

because the sequence (qn) is non-decreasing. But if t ∈ H, then we have t ∈ [n(rj)+1,m(rj))
for some j < k, and therefore either

pt = [γ(rj)] + 1 ≤ γ(rj) + 1 ≤ qn(rj+1) ≤ qn(rk),

or pt = qt ≤ qn(rk) again.
It is also clear that pt ≥ qt for all t ≥ 0. Therefore, by Lemma 1, product (9) defines an

entire function f ∈ Eζ for which inequality (10) is true. For each k ≥ 0, we successively have∑
t≤n(rk)

(
rk
|ζt|

)pt+1

≤ r
qn(rk)+1

k

∑
t≤n(rk)

(
1

|ζt|

)pt+1

≤ r
qn(rk)+1

k G(1),

∑
n(rk)<t<m(rk)

(
rk
|ζt|

)pt+1

≤ (m(rk)− n(rk))
(

rk
|ζn(rk)+1|

)γ(rk)
= 1,

∑
t≥m(rk)

(
rk
|ζt|

)pt+1

≤
∑

t≥m(rk)

(
rk
|ζt|

)qt+1

≤ 1.

Thus, applying inequality (10), we obtain

ln lnMf (rk) ≤ (1 + o(1))qn(rk) ln rk = o(lnn(rk) ln l
−1(n(rk))), k →∞.

It implies (6).
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Proof of Theorem 2. Without loss of generality, we may suppose that l(1) < 0.
Let (δk) be any decreasing to 0 sequence of points in the interval (0, 1). From condition

(7) it follows the existence of an increasing sequence of integers (nk) such that n0 = 0 and

2rk ≤ rδkk+1, lnmk ≥ (1− δk) lnnk+1, (13)
lnmk ≥ 2k ln rk, εk ≤ δk, εk ln rk ≤ 1, (14)

for every k ≥ 0, where

εk =

(
ϕ(lnnk+1)

lnnk+1

)1/3

, rk = l−1(nk), mk = nk+1 − nk (k ≥ 0).

Note that r0 > 1 by inequality l(1) < 0.
For any k ≥ 0 we also denote

pk =

[
lnmk

2 ln rk

]
+ 1.

Applying the first inequality in (14), we see that pk → +∞, k →∞. Moreover,

ln
mk

4pkr
pk
k

= lnmk − pk ln rk − ln pk − ln 4 =

(
1

2
+ o(1)

)
lnmk → +∞, k →∞. (15)

Construct the sequence ζ as following

r0, . . . , r0︸ ︷︷ ︸
m0

, r1, . . . , r1︸ ︷︷ ︸
m1

, . . . , rk, . . . , rk︸ ︷︷ ︸
mk

, . . . .

If r ∈ [0, r0), then nζ(r) = 0 = l(r0) > l(r). But if r ∈ [rk, rk+1) for some k ≥ 0, then we get

nζ(r) =
k∑
j=0

mj = nk+1 = l(rk+1) > l(r).

Therefore, nζ(r) > l(r) for every r ≥ 0. Moreover, nζ(rk − 0) = l(rk) for all k ≥ 0.
Denote sk = rδkk+1, k ≥ 0. Then, applying the second inequality in (13), we see that

rk < sk < rk+1 for every k ≥ 0. Let E = ∪∞k=0(sk, rk+1). For the set E we have

lim
r→+∞

1

ln r

∫
E∩(1,r)

dt

t
≥ lim

k→∞

1

ln rk+1

∫ rk+1

sk

dt

t
= lim

k→∞
(1− δk) = 1.

Thus, E is a set of upper logarithmic density 1.
We need to prove that for any function f ∈ Eζ relation (8) is true.
Let f ∈ Eζ . Then in the disc {z ∈ C : |z| < r0} the function f has not zeros. Since r0 > 1,

we deduce that if we have (11) near the point z = 0, then the sequence (ap) is bounded, that
is, C := sup{|ap| : p ∈ N} < +∞.

Suppose cp(r) is the p-th Fourier coefficient of the function ln |f(reiθ)|. Using equality
(12) and the first inequality in (13), which can be rewritten as 2rk ≤ sk, and, taking into
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account that the sequence ζ is positive for all k ≥ 0 and p ≥ 1, we obtain

|cp(sk)| ≥
1

2p

∑
ζn<sk

((
sk
ζn

)p
−
(
ζn
sk

)p)
− Cspk ≥

1

2p

∑
rk≤ζn<sk

((
sk
ζn

)p
−
(
ζn
sk

)p)
− Cspk =

=
mk

2p

((
sk
rk

)p
−
(
rk
sk

)p)
− Cspk =

mk

2p

(
sk
rk

)p(
1−

(
rk
sk

)2p
)
− Cspk ≥

≥ mk

4p

(
sk
rk

)p
− Cspk ≥ spk

(
mk

4prpk
− C

)
.

Further, from (15), it follows that |cpk(sk)| ≥ spkk , k ≥ k0.
Using this inequality together with (13) and (14), for all r ∈ (sk, rk+1) and k ≥ k0 we

obtain

ln lnMf (r) ≥ ln lnMf (sk) ≥ ln |cp(sk)| ≥ pk ln sk ≥

≥ lnmk

2 ln rk
δk ln rk+1 ≥

1− δk
2

lnnk+1
1

ln rk
δk ln l

−1(nk+1) ≥

≥ 1− δk
2

ϕ(lnnk+1)

ε3k
εkεk ln l

−1(nk+1) =
1− δk
2εk

ϕ(lnnζ(r)) ln l
−1(nζ(r)).

Hence, we get (8).

Remark 2. To characterize the growth of an entire function f , we can use besides lnMf (r)
its Nevanlinna characteristic function

Tf (r) =
1

2π

∫ 2π

0

ln+ |f(reiθ)|dθ, r ≥ 0.

We note that in Theorems 1, 2, and 3 the function lnMf (r) can be replaced by the function
Tf (r). The validity of this replacement in relation (6) follows from the inequality Tf (r) ≤
ln+Mf (r). To justify the possibility of replacing lnMf (r) by Tf (r) in relation (8), it is
sufficient to repeat the proof of Theorem 2 using the inequality |cn(r)| ≤ 2Tf (r) (see, for
example, [10, p. 340]) instead of the inequality |cn(r)| ≤ lnMf (r) from Lemma 2.
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