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SOME NEW COINCIDENCE POINT RESULTS FOR SINGLE-VALUED

AND MULTI-VALUED MAPPINGS IN b-METRIC SPACES VIA

DIGRAPHS
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mappings in b-metric spaces via digraphs, Mat. Stud. 53 (2020), 69–84.

We introduce the concept of generalized F -G-contraction and prove some new coincidence
point results for single-valued and multi-valued mappings in b-metric spaces endowed with a
digraph G. Our results generalize and extend several well-known comparable results including
Nadler’s fixed point theorem for multi-valued mappings. Moreover, we give some examples to
justify the validity of our main result.

1. Introduction. It is well-known that Banach contraction principle [6] is one of the most
important theorems in classical functional analysis. Because of its simplicity and usefulness
it has become a popular tool for solving existence and uniqueness problems in nonlinear
analysis. Indeed, it is widely considered as the source of metric fixed point theory. Several
authors successfully extended this interesting result in many directions. The study finds
applications in different branches of mathematics and applied sciences such as variational
and linear inequalities, optimal control problems, operation research, integral equations etc..
In 1969, Nadler [28] proved that every multi-valued contraction on a complete metric space
has a fixed point. Since then, many authors including Gordji [21], Berinde [4], Pathak [29] and
others studied lots of different types of fixed point theorems for multi-valued contractions.
In 2012, Wardowski [31] introduced the concept of F -contraction for single-valued mappings
and studied fixed points for such class of mappings in metric spaces. By using Wardowski’s
[31] and Nadler’s [28] ideas, many authors (see [1, 2, 15, 24] and references therein) studied
fixed points for multi-valued mappings.

In 1989, Bakhtin [5] introduced the concept of b-metric spaces as a generalization of
metric spaces and generalized the famous Banach contraction principle in metric spaces to b-
metric spaces. In recent investigations, the study of fixed point theory combining a graph is a
new development in the domain of contractive type multi-valued theory. Starting from these
considerations, the study of fixed points and common fixed points of mappings satisfying
a certain contractive type condition endowed with a graph attracted many researchers, see
for examples [8, 9, 10, 17, 18, 23, 26, 30]. Inspired and motivated by the results in [15, 31],
we introduce the concept of generalized F -G-contraction in b-metric spaces and obtain some
coincidence point results for hybrid pair of single-valued and multi-valued mappings in b-
metric spaces with a digraph. Our main result extends Nadler’s fixed point theorem in the
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setting of b-metric spaces. Finally, we give some examples to justify the validity of our main
result.

2. Some basic concepts. In this section, we recall some basic known definitions, notations
and results in b-metric spaces which will be used in the sequel. Throughout this article,
N, R, R+ denote the set of natural numbers, the set of real numbers and the set of positive
real numbers, respectively.

Definition 1 ([12]). Let X be a nonempty set and s ≥ 1 be a given real number. A function
d : X ×X → [0,∞) is said to be a b-metric on X if the following conditions hold:

(i) d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, y) ≤ s (d(x, z) + d(z, y)) for all x, y, z ∈ X.

The pair (X, d) is called a b-metric space.

It is worth mentioning that the class of b-metric spaces is effectively larger than that of
the ordinary metric spaces. The following example illustrates the above fact.

Example 1. Let X = R. Define d : X ×X → [0,∞) by d(x, y) =| x− y |2 for all x, y ∈ X.
Then (X, d) is a b-metric space with the coefficient s = 2, but it is not a metric space since
the triangle inequality does not hold. Indeed, we have

d(−1, 0) + d(0, 1) = 1 + 1 = 2 < 4 = d(−1, 1).

Example 2 ([3]). Let p ∈ (0, 1). Then the set

lp(R) :=
{

(xn) ⊆ R :
∞∑
n=1

| xn |p<∞
}

endowed with the functional d : lp(R)× lp(R)→ R given by

d((xn), (yn)) =

(
∞∑
n=1

| xn − yn |p
) 1

p

for all (xn), (yn) ∈ lp(R) is a b-metric space with s = 2
1
p .

Definition 2 ([11]). Let (X, d) be a b-metric space, x ∈ X and (xn) be a sequence in X.
Then

(i) (xn) converges to x if and only if lim
n→∞

d(xn, x) = 0. We denote this by lim
n→∞

xn = x or
xn → x(n→∞).

(ii) (xn) is Cauchy if and only if lim
n,m→∞

d(xn, xm) = 0.

(iii) (X, d) is complete if and only if every Cauchy sequence in X is convergent.

Remark 1 ([11]). In a b-metric space (X, d), the following assertions hold:

(i) A convergent sequence has a unique limit.

(ii) Each convergent sequence is Cauchy.
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(iii) In general, a b-metric is not continuous.

Definition 3 ([22]). Let (X, d) be a b-metric space. A subset A ⊆ X is said to be open if
and only if for any a ∈ A, there exists ε > 0 such that the open ball B(a, ε) ⊆ A. The family
of all open subsets of X will be denoted by τ .

Theorem 1 ([22]). τ defines a topology on (X, d).

Theorem 2 ([22]). Let (X, d) be a b-metric space and τ be the topology defined above.
Then for any nonempty subset A ⊆ X we have

(i) A is closed if and only if for any sequence (xn) in A which converges to x, we have
x ∈ A;

(ii) if we define A to be the intersection of all closed subsets of X which contains A, then
for any x ∈ A and for any ε > 0, we have B(x, ε) ∩ A 6= ∅.

Definition 4 ([27]). Let (X, d) be a b-metric space and A be a nonempty subset of X. The
diameter of A, denoted by δ(A), is defined by δ(A) = sup{d(x, y) : x, y ∈ A}. The subset A
is said to be bounded if δ(A) is finite.

Let (X, d) be a b-metric space and CB(X) be the set of all nonempty closed bounded
subsets of X. An element x ∈ X is said to be a fixed point of a multi-valued mapping
T : X → 2X if x ∈ Tx, where 2X denotes the collection of all nonempty subsets of X. For
A, B ∈ CB(X), define

H(A,B) = max{sup
x∈A

d(x,B), sup
y∈B

d(y, A)},

where d(x,B) = inf{d(x, y) : y ∈ B}. Such a map H is called the Hausdorff b-metric induced
by the b-metric d.

We now present some lemmas which can be found in [12, 13, 14].

Lemma 1. Let (X, d) be a b-metric space with the coefficient s ≥ 1. For any A, B, C ∈
CB(X) and any x, y ∈ X, we have the following:

(i) d(x,B) ≤ d(x, b) for any b ∈ B;

(ii) d(x,B) ≤ H(A,B) for any x ∈ A;

(iii) d(x,A) ≤ s[d(x, y) + d(y, A)].

Lemma 2. Let (X, d) be a b-metric space with the coefficient s ≥ 1 and A, B ∈ CB(X).
Then, for each h > 1 and for each a ∈ A, there exists b(a) ∈ B such that d(a, b(a)) ≤
hH(A,B).

Lemma 3. Let (X, d) be a b-metric space with the coefficient s ≥ 1. For A ∈ CB(X) and
x ∈ X, we have

d(x,A) = 0⇐⇒ x ∈ A = A,

where A denotes the closure of the set A.
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Let (X, d) be a b-metric space with the coefficient s ≥ 1 and ρ be a binary relation
over X. Denote S = ρ ∪ ρ−1. Then

xSy ⇔ xρy and yρx for any x, y ∈ X.

In fact, xSy ⇒ ySx for all x, y ∈ X.

Definition 5. A symmetrical relation S is regular in (X, d) if the following condition holds:
If the sequence (xn) in X and the point x ∈ X are such that xnSxn+1 for all n ≥ 1 and

lim
n→∞

d(xn, x) = 0, then there exists a subsequence (xni
) of (xn) such that xni

Sx for all i ≥ 1.

Definition 6. Let (X, d) be a b-metric space and ρ be a binary relation over X. Then the
mapping f : X → X is called S-preserving if f maps comparable elements into comparable
elements, that is,

x, y ∈ X, xSy ⇒ (fx)S (fy).

For subsets A, B of X, we use the following notation:

AS B ⇔ aSb for all a ∈ A, b ∈ B.

Definition 7. Let (X, d) be a b-metric space and ρ be a binary relation over X. Then the
mapping T : X → CB(X) is called S-preserving if

∀x, y ∈ X, xSy ⇒ (Tx)S (Ty).

Definition 8 ([27]). Let (X, d) be a b-metric space and T : X → CB(X) and g : X → X
be two mappings. If y = gx ∈ Tx for some x in X, then x is called a coincidence point of T
and g and y is called a point of coincidence of T and g.

We next review some basic notions in graph theory.
Let (X, d) be a b-metric space. We assume that G is a digraph with the set of vertices

V (G) = X and the set E(G) of its edges contains all the loops, i.e., ∆ ⊆ E(G) where
∆ = {(x, x) : x ∈ X}. We also assume that G has no parallel edges and obtain a weighted
graph by assigning to each edge the distance between its vertices. We can identify G with the
pair (V (G), E(G)). We denote the conversion of a graphG byG−1, that is, the graph obtained
from G by reversing the direction of the edges i.e., E(G−1) = {(x, y) ∈ X × X : (y, x) ∈
E(G)}. Let G̃ denote the undirected graph obtained from G by ignoring the direction of
edges. Actually, it will be more convenient for us to treat G̃ as a digraph for which the set
of its edges is symmetric. Under this convention,

E(G̃) = E(G) ∪ E(G−1).

Our graph theory notations and terminology are standard and can be found in all graph
theory books, like [7, 16, 20]. If x, y are vertices of the digraph G, then a path in G from x
to y of length n (n ∈ N) is a sequence (xi)

n
i=0 of n+ 1 vertices such that x0 = x, xn = y and

(xi−1, xi) ∈ E(G) for i = 1, 2, · · · , n. A graph G is connected if there is a path between any
two vertices of G. G is weakly connected if G̃ is connected.

Definition 9. Let (X, d) be a b-metric space with the coefficient s ≥ 1 and let G =
(V (G), E(G)) be a graph. Then the mapping f : X → X is called edge preserving if

x, y ∈ X, (x, y) ∈ E(G̃)⇒ (fx, fy) ∈ E(G̃).



SOME NEW COINCIDENCE POINT RESULTS 73

Definition 10. Let (X, d) be a b-metric space with a graph G = (V (G), E(G)) and let
f, g : X → X be two mappings. Then f is called edge preserving w.r.t. g if

x, y ∈ X, (gx, gy) ∈ E(G̃)⇒ (fx, fy) ∈ E(G̃).

Definition 11. Let (X, d) be a b-metric space with a graph G = (V (G), E(G)). Then the
mapping T : X → CB(X) is called edge preserving if

x, y ∈ X, x 6= y, (x, y) ∈ E(G̃)⇒ (z1, z2) ∈ E(G̃), for all z1 ∈ Tx, z2 ∈ Ty.

Definition 12. Let (X, d) be a b-metric space with a graph G = (V (G), E(G)). Let T : X →
CB(X) be a multi-valued mapping and g : X → X be a single-valued mapping. Then T is
called edge preserving w.r.t. g if

x, y ∈ X, x 6= y, (gx, gy) ∈ E(G̃)⇒ (z1, z2) ∈ E(G̃), for all z1 ∈ Tx, z2 ∈ Ty.

Definition 13 ([15]). Let s ≥ 1 be a real number. We denote by Fs the family of all functions
F : R+ → R with the following properties:

(F1) F is strictly increasing;

(F2) for each sequence (αn) of positive numbers, lim
n→∞

αn = 0 if and only if lim
n→∞

F (αn) = −∞;

(F3) for each sequence (αn) of positive numbers with lim
n→∞

αn = 0, there exists k ∈ (0, 1)

such that lim
n→∞

(αn)kF (αn) = 0;

(F4) for each sequence (αn) of positive numbers such that τ + F (sαn) ≤ F (αn−1) for all
n ∈ N and some τ > 0, then τ + F (snαn) ≤ F (sn−1αn−1) for all n ∈ N.

Example 3 ([15]). If F (x) = x+ lnx, x > 0, then F ∈ Fs.

Example 4 ([15]). If F (x) = ln x, x > 0, then F ∈ Fs.

Definition 14 ([15]). Let (X, d) be a b-metric space with the coefficient s ≥ 1. A multi-
valued mapping T : X → CB(X) is called an F -contraction of Nadler type if there exist
F ∈ Fs, τ > 0 such that

2τ + F (sH(Tx, Ty)) ≤ F (d(x, y)),

for all x, y ∈ X with Tx 6= Ty.

3. Main Results. We begin this section by introducing the following definition.

Definition 15. Let (X, d) be a b-metric space with the coefficient s ≥ 1 and let G =
(V (G), E(G)) be a digraph. Then the pair (T, f) of mappings T : X → CB(X) and f : X →
X is called a generalized F -G-contraction of Nadler type if there exist F ∈ Fs and τ > 0
such that

2τ + F (sH(Tx, Ty)) ≤ F (Ms(fx, fy)), (1)

for all x, y ∈ X with Tx 6= Ty and (fx, fy) ∈ E(G̃) where

Ms(fx, fy) = max
{
d(fx, fy), d(fx, Tx),

d(fy, Ty)

2s
,
d(fx, Ty) + d(fy, Tx)

2s

}
.
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Actually, Ms(fx, fy) does not depend only from s, fx and fy. It depends from x, y and
T too. But we use this notation for the simplicity.

We now assume that (X, d) is a b-metric space endowed with a reflexive digraph G such
that V (G) = X and G has no parallel edges. Let f : X → X and T : X → CB(X) be such
that T (X) ⊆ f(X). Let x0 ∈ X be arbitrary. Since T (X) ⊆ f(X), there exists an element
x1 ∈ X such that fx1 ∈ Tx0. Continuing in this way, we can construct a sequence (fxn)
such that fxn ∈ Txn−1, n = 1, 2, 3, · · ·.

Our main result is as follows:

Theorem 3. Let (X, d) be a b-metric space with the coefficient s ≥ 1 and let G =
(V (G), E(G)) be a graph. Let T : X → CB(X) and f : X → X be such that T (X) ⊆ f(X)
and f(X) a complete subspace of X. Assume that T is edge preserving w.r.t. f and there
exist a function F ∈ Fs which is continuous from right and τ > 0 such that (T, f) is generali-
zed F-G-contraction of Nadler type. Suppose also that the triple (X, d,G) has the following
property:

(∗) If (fxn) is a sequence in X such that fxn → x and (fxn, fxn+1) ∈ E(G̃) for all n ≥ 1,
then there exists a subsequence (fxni

) of (fxn) such that (fxni
, x) ∈ E(G̃) for all i ≥ 1.

If there exists x0 ∈ X such that (fx0, z) ∈ E(G̃) for some z ∈ Tx0, then f and T have
a point of coincidence in f(X).

Proof. Suppose there exists x0 ∈ X such that (fx0, z) ∈ E(G̃) for some z ∈ Tx0. If fx0 ∈
Tx0, then there is nothing to prove. So, we assume that fx0 6∈ Tx0. This ensures that
d(fx0, Tx0) > 0, since Tx0 is closed. Therefore, d(fx0, y) > 0 for all y ∈ Tx0. As Tx0 ⊆
f(X) is nonempty, there exists x1 ∈ X such that z = fx1 ∈ Tx0, d(fx0, fx1) > 0 and
(fx0, fx1) ∈ E(G̃). If fx1 ∈ Tx1, then f and T have a point of coincidence in f(X). So, we
assume that fx1 6∈ Tx1 and hence Tx0 6= Tx1 which gives that x0 6= x1. Since F ∈ Fs is
continuous from the right, there exists h > 1 such that

F (hsH(Tx0, Tx1)) < F (sH(Tx0, Tx1)) + τ. (2)

As fx1 ∈ Tx0 and h > 1, by applying Lemma 2, there exists fx2 ∈ Tx1 for some x2 ∈ X
such that

d(fx1, fx2) ≤ hH(Tx0, Tx1). (3)

Since fx1 6∈ Tx1, we have d(fx1, Tx1) > 0 and consequently, d(fx1, fx2) > 0.

By using monotonicity property of F , we obtain from conditions (2) and (3) that

F (sd(fx1, fx2)) ≤ F (hsH(Tx0, Tx1)) < F (sH(Tx0, Tx1)) + τ. (4)

By using conditions (1) and (4), we get

2τ + F (sd(fx1, fx2)) < 2τ + F (sH(Tx0, Tx1)) + τ ≤ F (Ms(fx0, fx1)) + τ.

Therefore,
τ + F (sd(fx1, fx2)) < F (Ms(fx0, fx1)).

As T is edge preserving w.r.t. f and x0 6= x1, (fx0, fx1) ∈ E(G̃), fx1 ∈ Tx0, fx2 ∈ Tx1,
it follows that (fx1, fx2) ∈ E(G̃). If fx2 ∈ Tx2, then the theorem is proved. So, we assume
that fx2 6∈ Tx2. As a consequence, it follows that Tx1 6= Tx2 and this implies that x1 6= x2.
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By an argument similar to that used above, there exists fx3 ∈ Tx2 for some x3 ∈ X and
d(fx2, fx3) > 0 such that

τ + F (sd(fx2, fx3)) < F (Ms(fx1, fx2)).

As T is edge preserving w.r.t. f and x1 6= x2, (fx1, fx2) ∈ E(G̃), fx2 ∈ Tx1, fx3 ∈ Tx2, it
follows that (fx2, fx3) ∈ E(G̃). Continuing this process, we can construct a sequence (fxn)
in f(X) such that fxn ∈ Txn−1, fxn 6∈ Txn, d(fxn, fxn+1) > 0, (fxn, fxn+1) ∈ E(G̃) for
n = 0, 1, 2, · · · and

τ + F (sd(fxn, fxn+1)) < F (Ms(fxn−1, fxn)), for all n ∈ N. (5)

This gives that

F (sd(fxn, fxn+1)) < F (Ms(fxn−1, fxn)), for all n ∈ N.

F being strictly increasing, it follows that

0 < sd(fxn, fxn+1) < Ms(fxn−1, fxn), for all n ∈ N.

This implies that
d(fxn, fxn+1) < Ms(fxn−1, fxn), for all n ∈ N. (6)

Here,

Ms(fxn−1, fxn) = max

{
d(fxn−1, fxn), d(fxn−1, Txn−1),

d(fxn,Txn)
2s

,
d(fxn−1,Txn)+d(fxn,Txn−1)

2s

}
. (7)

We now estimate each of the expressions on the right hand side of condition (7) separately.

d(fxn−1, Txn−1) ≤ d(fxn−1, fxn), as fxn ∈ Txn−1,
d(fxn, Txn)

2s
≤ d(fxn, fxn+1)

2s
< d(fxn, fxn+1), as fxn+1 ∈ Txn,

d(fxn−1, Txn) + d(fxn, Txn−1)

2s
≤ d(fxn−1, fxn+1)

2s
≤

≤ d(fxn−1, fxn) + d(fxn, fxn+1)

2
, as fxn ∈ Txn−1.

Therefore,

Ms(fxn−1, fxn) = max

{
d(fxn−1, fxn), d(fxn−1, Txn−1),

d(fxn,Txn)
2s

,
d(fxn−1,Txn)+d(fxn,Txn−1)

2s

}
≤

≤ max

{
d(fxn−1, fxn), d(fxn, fxn+1),
d(fxn−1,fxn)+d(fxn,fxn+1)

2

}
= max{d(fxn−1, fxn), d(fxn, fxn+1)}.

If max{d(fxn−1, fxn), d(fxn, fxn+1)} = d(fxn, fxn+1), thenMs(fxn−1, fxn) ≤ d(fxn, fxn+1),
which contradicts condition (6).
Therefore, max{d(fxn−1, fxn), d(fxn, fxn+1)} = d(fxn−1, fxn) and hence

Ms(fxn−1, fxn) ≤ d(fxn−1, fxn), for all n ∈ N.
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So, condition (5) implies that

τ + F (sd(fxn, fxn+1)) < F (d(fxn−1, fxn)), for all n ∈ N. (8)

Let us put αn = d(fxn, fxn+1) > 0 for all n ∈ N ∪ {0}. By property (F4), we obtain from
condition (8) that τ + F (snαn) ≤ F (sn−1αn−1), for all n ∈ N. This gives that

F (snαn) ≤ F (sn−1αn−1)− τ, for all n ∈ N. (9)

By repeated use of condition (9), we get

F (snαn) ≤ F (sn−1αn−1)− τ ≤ · · · ≤ F (α0)− nτ, for all n ∈ N. (10)

Since τ > 0, we have lim
n→∞

F (snαn) = −∞. By applying property (F2), we get lim
n→∞

snαn = 0.
By property (F3), there exists k ∈ (0, 1) such that

lim
n→∞

(snαn)kF (snαn) = 0.

From condition (10), we get

(snαn)kF (snαn)− (snαn)kF (α0) ≤ −nτ(snαn)k < 0, for all n ∈ N.

Taking limit as n→∞, we obtain

lim
n→∞

n(snαn)k = 0. (11)

It follows from condition (11) that there exists n1 ∈ N such that n(snαn)k ≤ 1 for all n ≥ n1.
As a consequence, we have

snαn ≤
1

n
1
k

, for all n ≥ n1. (12)

We now show that (fxn) is a Cauchy sequence in f(X).
For m,n ∈ N with m > n ≥ n1, we obtain by using condition (12) that

d(fxn, fxm) ≤ sd(fxn, fxn+1) + s2d(fxn+1, fxn+2) + · · ·+
+sm−n−1d(fxm−2, fxm−1) + sm−n−1d(fxm−1, fxm) ≤
≤ [sαn + s2αn+1 + · · ·+ sm−n−1αm−2 + sm−nαm−1] =

=
1

sn−1
[snαn + sn+1αn+1 + · · ·+ sm−2αm−2 + sm−1αm−1] =

=
1

sn−1

m−1∑
i=n

siαi <
1

sn−1

∞∑
i=n

siαi ≤
1

sn−1

∞∑
i=n

1

i
1
k

.

Since
∞∑
i=1

1

i
1
k

<∞, it follows that

lim
m,n→∞

d(fxn, fxm) = 0.

This gives that (fxn) is a Cauchy sequence in f(X). As f(X) is complete, there exists
u ∈ f(X) such that lim

n→∞
fxn = u = ft for some t ∈ X.
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We now observe that if there exists a subsequence (fxnk
) of (fxn) such that fxnk

∈ Tt
for all k ∈ N, then limk→∞ fxnk

= ft ∈ Tt, Tt being closed. This shows that f and T have
a point of coincidence in f(X). Now we assume that there exists n0 ∈ N such that fxn 6∈ Tt
for all n ∈ N with n ≥ n0. This ensures that fxn+1 6∈ Tt for all n ≥ n0 and hence Txn 6= Tt
for all n ≥ n0. Moreover, by property (∗), there exists a subsequence (fxni

) of (fxn) such
that (fxni

, ft) ∈ E(G̃) for all i ∈ N. Consequently, it follows that Txni
6= Tt for all i ≥ n0.

Using condition (1), we obtain

2τ + F (sH(Txni
, T t)) ≤ F (Ms(fxni

, ft)), for all i ≥ n0.

This gives that

2τ + F (sd(fxni+1, T t)) ≤ 2τ + F (sH(Txni
, T t)) ≤ F (Ms(fxni

, ft)), (13)

for all i ≥ n0. Since τ > 0, we get from condition (13) that

F (sd(fxni+1, T t)) < F (Ms(fxni
, ft)), for all i ≥ n0.

Since F is strictly increasing, we have

sd(fxni+1, T t) < Ms(fxni
, ft), for all i ≥ n0. (14)

Now, we shall show that

Ms(fxni
, ft) <

3

4
d(ft, T t), where

Ms(fxni
, ft) = max

{
d(fxni

, ft), d(fxni
, Txni

), d(ft,T t)
2s

,
d(fxni ,T t)+d(ft,Txni )

2s

}
. (15)

Suppose that d(ft, T t) 6= 0. Let ε = d(ft,T t)
4s2

> 0. Since fxni
→ ft, there exists k1 ∈ N

such that
d(fxni

, ft) <
d(ft, T t)

4s2
, for each i ≥ k1. (16)

As fxn → ft, there exists k2 ∈ N such that

d(fxni+1, ft) <
d(ft, T t)

4s2
, for each i ≥ k2.

So, it must be the case that

d(ft, Txni
) ≤ d(ft, fxni+1) <

d(ft, T t)

4s2
, for each i ≥ k2. (17)

As d(fxni
, T t) ≤ s[d(fxni

, ft) + d(ft, T t)], it follows that

d(fxni
, T t) <

d(ft, T t)

4s
+ sd(ft, T t) ≤ 5s

4
d(ft, T t), for each i ≥ k1. (18)

Put k3 = max{k1, k2}. Then, for i ≥ k3, we have

d(fxni
, Txni

) ≤ d(fxni
, fxni+1) ≤ s[d(fxni

, ft) + d(ft, fxni+1)] <
d(ft, T t)

2s
(19)
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and

d(fxni
, T t) + d(ft, Txni

)

2s
<

1

2s

(5s

4
+

1

4s2

)
d(ft, T t) ≤ 1

2s

(5s

4
+
s

4

)
d(ft, T t) =

3

4
d(ft, T t).

Now put k = max{n0, k3}. Then, for i ≥ k, it follows from conditions (15), (16), (17),
(18) and (19) that

Ms(fxni
, ft) <

3

4
d(ft, T t).

Therefore, for i ≥ k, we obtain from condition (14) that

sd(fxni+1, T t) <
3

4
d(ft, T t). (20)

By condition (20), for i ≥ k, we get

d(ft, T t) ≤ s[d(ft, fxni+1) + d(fxni+1, T t)] < sd(ft, fxni+1) +
3

4
d(ft, T t).

Taking limit as i→∞, we have

d(ft, T t) ≤ 3

4
d(ft, T t) < d(ft, T t),

which is a contradiction. Therefore, d(ft, T t) = 0. Since Tt is closed, it follows that u = ft ∈
Tt, i.e., u is a point of coincidence of f and T .

Corollary 1. Let (X, d) be a complete b-metric space with the coefficient s ≥ 1 and let
G = (V (G), E(G)) be a graph. Assume that T : X → CB(X) is edge preserving and there
exist a function F ∈ Fs which is continuous from right and τ > 0 such that

2τ + F (sH(Tx, Ty)) ≤ F (Ms(x, y)),

for all x, y ∈ X with Tx 6= Ty and (x, y) ∈ E(G̃) where

Ms(x, y) = max
{
d(x, y), d(x, Tx),

d(y, Ty)

2s
,
d(x, Ty) + d(y, Tx)

2s

}
.

Suppose also that the triple (X, d,G) has the following property:
(∗∗) If (xn) is a sequence in X such that xn → x and (xn, xn+1) ∈ E(G̃) for all n ≥ 1,

then there exists a subsequence (xni
) of (xn) such that (xni

, x) ∈ E(G̃) for all i ≥ 1.
If there exists x0 ∈ X such that (x0, z) ∈ E(G̃) for some z ∈ Tx0, then T has a fixed

point in X.

Proof. The proof follows from Theorem 3 by taking f = I, the identity map on X.

Corollary 2. Let (X, d) be a b-metric space with the coefficient s ≥ 1. Let T : X → CB(X)
and f : X → X be such that T (X) ⊆ f(X) and f(X) a complete subspace of X. Assume
that there exist a function F ∈ Fs which is continuous from right and τ > 0 such that

2τ + F (sH(Tx, Ty)) ≤ F (Ms(fx, fy)),

for all x, y ∈ X with Tx 6= Ty. Then f and T have a point of coincidence in f(X).
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Proof. The proof follows from Theorem 3 by taking G = G0, where G0 is the complete graph
(X,X ×X).

The following corollary is a generalization of Theorem 3.4([15]).

Corollary 3. Let (X, d) be a complete b-metric space with the coefficient s ≥ 1 and let
T : X → CB(X) be a multi-valued mapping. Assume that there exist a function F ∈ Fs
which is continuous from right and τ > 0 such that

2τ + F (sH(Tx, Ty)) ≤ F (Ms(x, y)),

for all x, y ∈ X with Tx 6= Ty. Then T has a fixed point in X.

Proof. The proof follows from Theorem 3 by taking f = I and G = G0.

Corollary 4. Let (X, d,�) be a partially ordered b-metric space with the coefficient s ≥ 1.
Let T : X → CB(X) and f : X → X be such that T (X) ⊆ f(X) and f(X) a complete
subspace of X with the property that if x, y ∈ X and fx, fy are comparable, then z1, z2
are comparable for all z1 ∈ Tx, z2 ∈ Ty. Assume that there exist a function F ∈ Fs which
is continuous from right and τ > 0 such that

2τ + F (sH(Tx, Ty)) ≤ F (Ms(fx, fy)),

for all x, y ∈ X with fx � fy or fy � fx and Tx 6= Ty. Suppose also that the triple
(X, d,�) has the following property:

If (fxn) is a sequence in X such that fxn → x and fxn, fxn+1 are comparable for all
n ≥ 1, then there exists a subsequence (fxni

) of (fxn) such that fxni
, x are comparable for

all i ≥ 1.
If there exists x0 ∈ X such that fx0, z are comparable for some z ∈ Tx0, then f and T

have a point of coincidence in f(X).

Proof. The proof can be obtained from Theorem 3 by taking G = G2, where the graph G2

is defined by E(G2) = {(x, y) ∈ X ×X : x � y or y � x}.

Corollary 5. Let (X, d) be a complete b-metric space with the coefficient s ≥ 1. Let ρ be a
binary relation over X and let S = ρ ∪ ρ−1. Suppose T : X → CB(X) is S-preserving and
there exist a function F ∈ Fs which is continuous from right and τ > 0 such that

2τ + F (sH(Tx, Ty)) ≤ F (Ms(x, y)),

for all x, y ∈ X with Tx 6= Ty and xSy. Suppose also that the following conditions hold:

(i) (X, d, S) is regular;

(ii) there exists x0 ∈ X such that x0Sz for some z ∈ Tx0.
Then T has a fixed point in X.

Proof. The proof follows from Theorem 3 by taking f = I and G = (V (G), E(G)), where
V (G) = X, E(G) = {(x, y) ∈ X ×X : xSy} ∪ 4.

As an application of Theorem 3, we obtain the following theorems.
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Theorem 4. Let (X, d) be a b-metric space with the coefficient s ≥ 1 and let T : X →
CB(X) and f : X → X be a hybrid pair of mappings such that T (X) ⊆ f(X) and f(X) a
complete subspace of X. Assume that there exists k ∈ (0, 1) such that

sH(Tx, Ty) ≤ kMs(fx, fy) (21)

for all x, y ∈ X. Then f and T have a point of coincidence in f(X).

Proof. We take G = G0 = (X,X ×X). Let τ > 0 be such that k = e−2τ .

For x, y ∈ X with Tx 6= Ty, we get from condition (21) that

F (sH(Tx, Ty)) ≤ −2τ + F (Ms(fx, fy)),

which gives that 2τ + F (sH(Tx, Ty)) ≤ F (Ms(fx, fy)), where F (x) = lnx. Thus, all the
hypotheses of Theorem 3 hold true and the conclusion of Theorem 4 can be obtained from
Theorem 3.

The result stated below is a generalization of Nadler’s fixed point theorem [13].

Corollary 6. Let (X, d) be a b-metric space with the coefficient s ≥ 1 and let T : X →
CB(X) and f : X → X be a hybrid pair of mappings such that T (X) ⊆ f(X) and f(X) a
complete subspace of X. Assume that there exists k ∈ (0, 1) such that

sH(Tx, Ty) ≤ k d(fx, fy) (22)

for all x, y ∈ X. Then f and T have a point of coincidence in f(X).

Proof. As d(fx, fy) ≤Ms(fx, fy) for all x, y ∈ X, the result follows from Theorem 4.

Theorem 5. Let (X, d) be a complete b-metric space with the coefficient s ≥ 1 and let
T : X → CB(X) be a multi-valued mapping such that

sH(Tx, Ty) ≤ a1 d(x, y) + a2 d(x, Tx) + a3 d(y, Ty) + a4 [d(x, Ty) + d(y, Tx)] (23)

for all x, y ∈ X, where a1, a2, a3, a4 > 0 and a1 + a2 + a3 + 2sa4 < 1. Then T has a fixed
point in X.

Proof. Condition (23) gives that

sH(Tx, Ty) ≤ (a1 + a2 + a3 + 2sa4)Ms(x, y) (24)

for all x, y ∈ X, where 0 < a1 +a2 +a3 + 2sa4 < 1. Taking k = a1 +a2 +a3 + 2sa4, it follows
from condition (24) that

sH(Tx, Ty) ≤ kMs(x, y) (25)

for all x, y ∈ X, where k ∈ (0, 1) is a constant.
Let τ > 0 be such that k = e−2τ .
For x, y ∈ X with Tx 6= Ty, we get from condition (25) that

2τ + F (sH(Tx, Ty)) ≤ F (Ms(x, y)),

where F (x) = ln x. Taking G = G0 = (X,X×X) and f = I, all the hypotheses of Theorem 3
hold true. Thus, Theorem 3 ensures that T has a fixed point in X.
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We now present Nadler’s fixed point theorem in b-metric spaces [13].

Theorem 6. Let (X, d) be a complete b-metric space with the coefficient s ≥ 1 and let
T : X → CB(X) be a multivalued mapping. Assume that there exists k ∈ (0, 1) such that

sH(Tx, Ty) ≤ kd(x, y) (26)

for all x, y ∈ X. Then T has a fixed point in X.

Proof. Condition (26) implies that

sH(Tx, Ty) ≤ kd(x, y) ≤ kMs(x, y) (27)

for all x, y ∈ X, where k ∈ (0, 1) is a constant. Let τ > 0 be such that k = e−2τ .

For x, y ∈ X with Tx 6= Ty, we get from condition (27) that

2τ + F (sH(Tx, Ty)) ≤ F (Ms(x, y)),

where F (x) = lnx. Taking G = G0 = (X,X ×X) and f = I, we have all the hypotheses of
Theorem 3. Thus, applying Theorem 3 we can obtain a fixed point of T .

Remark 2. It is valuable to note that Theorem 3 is a proper generalization (see Example 5)
of some multi-valued fixed point theorems including Nadler’s fixed point theorem for multi-
valued mappings ([13]).

Remark 3. Several special cases of Theorem 3 can be obtained by restricting T : X → X
and taking different F ∈ Fs and G.

The following example shows that Theorem 3 is an extension of Corollary 6.

Example 5. Let X = [0,∞) with d(x, y) =| x − y |2 for all x, y ∈ X. Then (X, d) is
a complete b-metric space with s = 2. Let G be a digraph such that V (G) = X and
E(G) = ∆ ∪ {(0, 1

n
) : n = 1, 2, 3, · · · }. Let T : X → CB(X) be defined by

Tx =


{0, x

4
}, if 0 ≤ x < 1;

{0}, if x = 1;

[x2, x2 + 5], if x > 1

and fx = 4x for all x ∈ X. Obviously, T (X) ⊆ f(X) = X.

For x = 0, y = 2, we have fx = 0, fy = 8, Tx = {0}, T y = [4, 9]. Therefore,

sH(Tx, Ty) = s max{16, 81} = 162 > kd(fx, fy)

for any k ∈ (0, 1) and hence condition (22) of Corollary 6 does not hold. So, we can not
apply Corollary 6 to obtain a point of coincidence of f and T .

For x = 0, y = 1
4n
, n ∈ N, we have fx = 0, fy = 1

n
, Tx = {0}, T y = {0, 1

16n
} and so

(fx, fy) ∈ E(G̃) which implies that (z1, z2) ∈ E(G̃) for all z1 ∈ Tx, z2 ∈ Ty. Therefore, T
is edge preserving w.r.t. f . Obviously, x0 = 0 ∈ X and (fx0, z) ∈ E(G̃) for some z ∈ Tx0.
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Moreover, for x = 0, y = 1
4n
, n ∈ N, we have sH(Tx, Ty) = s

256n2 = 1
128n2 and

Ms(fx, fy) = max

{
d(fx, fy), d(fx, Tx), d(fy,Ty)

2s
,

d(fx,Ty)+d(fy,Tx)
2s

}
=

= max

{
d(0, 1

n
), d(0, {0}), 1

4
d( 1

n
, {0, 1

16n
}),

d(0,{0, 1
16n
})+d( 1

n
,{0})

2s

}
= max

{
1

n2
, 0,

225

1024n2
,

1

4n2

}
=

1

n2
.

Thus,

sH(Tx, Ty) =
1

128n2
=

1

128
Ms(fx, fy) <

1

4
Ms(fx, fy) (28)

for all x, y ∈ X with (fx, fy) ∈ E(G̃) and Tx 6= Ty. Let τ > 0 be such that 1
4

= e−2τ . Then,
we get from condition (28) that 2τ +F (sH(Tx, Ty)) < F (Ms(fx, fy)), for all x, y ∈ X with
(fx, fy) ∈ E(G̃) and Tx 6= Ty, where F (x) = ln x.

Also, any sequence (fxn) with the property (fxn, fxn+1) ∈ E(G̃) must be either a
constant sequence or a sequence of the following form

fxn =

{
0, if n is odd;
1
n
, if n is even,

where the words ’odd’ and ’even’ are interchangeable. Consequently it follows that property
(∗) holds. Thus, all the hypotheses of Theorem 3 hold true. Then the existence of a point of
coincidence of f and T follows from Theorem 3.

It should be noticed that Theorem 3 can not assure the uniqueness of a point of coinci-
dence. It is obvious that f and T have infinitely many points of coincidence in f(X). In fact,
for every x ∈ [2, 4], fx is a point of coincidence of f and T .

The following example shows that Theorem 3 remains invalid without property (∗).

Example 6. Let X = [0,∞) with d(x, y) =| x − y |2 for all x, y ∈ X. Then (X, d) is
a complete b-metric space with s = 2. Let G be a digraph such that V (G) = X and
E(G) = ∆ ∪ {(x, y) : (x, y) ∈ (0, 1]× (0, 1], x ≤ y}. Let T : X → CB(X) be defined by

Tx =

{
{1}, if x = 0;

{x
6
}, if x 6= 0

and fx = x
2
for all x ∈ X. Obviously, T (X) ⊆ f(X) = X.

For x, y ∈ X, x 6= y and

(fx, fy) ∈ E(G̃)⇒ x 6= y, x 6= 0, y 6= 0 and fx ≤ 1, fy ≤ 1

⇒ 0 < x ≤ 2, 0 < y ≤ 2, x 6= y

⇒ Tx =
{x

6

}
, T y =

{y
6

}
, 0 < x, y ≤ 2, x 6= y ⇒

(x
6
,
y

6

)
∈ E(G̃).

This shows that T is edge preserving w.r.t. f . Obviously, x0 = 1 ∈ X and (fx0, z) ∈ E(G̃)
for some z ∈ Tx0.
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Further, for x, y ∈ X, (fx, fy) ∈ E(G̃) with Tx 6= Ty, we have x 6= y, 0 < x, y ≤
2, Tx = {x

6
}, T y = {y

6
}. Therefore,

sH(Tx, Ty) = sd(
x

6
,
y

6
) =

1

18
| x− y |2= 2

9
d(fx, fy) <

4

9
d(fx, fy) ≤ 4

9
Ms(fx, fy) (29)

for all x, y ∈ X, (fx, fy) ∈ E(G̃) with Tx 6= Ty. Let τ > 0 be such that 4
9

= e−2τ . Then,
we get from condition (29) that

2τ + F (sH(Tx, Ty)) < F (Ms(fx, fy)),

for all x, y ∈ X with (fx, fy) ∈ E(G̃) and Tx 6= Ty, where F (x) = lnx. Thus, condition
(1) of Theorem 3 holds true. But property (∗) does not hold true. In fact, if we consider
the sequence (fxn) where xn = 2

n
, then fxn → 0 and (fxn, fxn+1) ∈ E(G̃) for all n ∈ N.

But there exists no subsequence (fxni
) of (fxn) such that (fxni

, 0) ∈ E(G̃). Thus, all the
hypotheses of Theorem 3 hold true except property (∗). As a result, we observe that f and
T have no point of coincidence in X.
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