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For analytic functions

f(z) = z +

∞∑
k=2

fkz
k and g(z) = z +

∞∑
k=2

gkz
k

in the unit disk properties of the Hadamard compositions Dn
l,[S]f ∗D

n
l,[S]g and Dn

l,[R]f ∗D
n
l,[R]g

of their Gelfond-Leont’ev-Sǎlǎgean derivatives

Dn
l,[S]f(z) = z +

∞∑
k=2

(
l1lk−1
lk

)n

fkz
k

and Gelfond-Leont’ev-Ruscheweyh derivatives

Dn
l,[R]f(z) = z +

∞∑
k=2

lk−1ln
ln+k−1

fkz
k

are investigated. For study, generalized orders are used. A connection between the growth
of the maximal term of the Hadamard composition of Gelfond-Leont’ev-Sǎlǎgean derivatives
or Gelfond-Leont’ev-Ruscheweyh derivatives and the growth of the maximal term of these
derivatives of Hadamard composition is established. Similar results are obtained in terms of
the classical order and the lower order of the growth.

1. Introduction. For formal power series

f(z) =
∞∑
k=0

fkz
k and l(z) =

∞∑
k=0

lkz
k

(lk > 0) the formal power series

Dn
l f(z) =

∞∑
k=0

lk
lk+n

fk+nz
k
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is called the Gelfond-Leont’ev derivative ([1]). If l(z) = ez (i.e. lk = 1/k!) then Dn
l f = f (n) is

a usual derivative.
Let H be the class of analytic in the disk {z : |z| < 1} functions given by power series

f(z) = z +
∞∑
k=2

fkz
k (1)

with the radius of convergence R[f ] = 1 and the operator Dn
[S]f(n ≥ 0) be defined by

D0
[S]f(z) = f(z), D1

[S]f(z) = D[S]f(z) = zf ′(z) and

Dn
[S]f(z) = D[S](D

n−1
[S] f(z)) = z +

∞∑
k=2

knfkz
k.

The operator Dn
[S]f is known as the Sǎlǎgean derivative ([2]). For f ∈ H

Dn
[R]f(z) =

z

n!

dn

dzn
{zn−1f(z)} = z +

∞∑
k=2

(k + n− 1)!

n!(k − 1)!
fkz

k

is called the Ruscheweyh derivative ([3]).
Combining the definitions of Gelfond-Leont’ev derivative with Sǎlǎgean derivative and

Ruscheweyh derivative in [4] for f ∈ H the following operators are defined

Dn
l,[S]f(z) = l1zD

1
l (D

n−1
l,[S]f(z)) = z +

∞∑
k=2

(
l1lk−1
lk

)n
fkz

k (2)

and

Dn
l,[R]f(z) = zlnD

n
l {zn−1f(z)} = z +

∞∑
k=2

lk−1ln
ln+k−1

fkz
k. (3)

The operator Dn
l,[S] is called the Gelfond-Leont’ev-Sǎlǎgean derivative ([4]) and the operator

Dn
l,[R] is called the Gelfond-Leont’ev-Ruscheweyh derivative.
For power series (1) and g(z) =

∑∞
k=0 gkz

k with the convergence radii R[f ] and R[g] the
series

(f ∗ g)(z) =
∞∑
k=0

fkgkz
k

is called [5, 6] the Hadamard composition. Obtained by J. Hadamard properties of this
composition find the applications ([6, 7]) in the theory of the analytic continuation of the
functions represented by power series. We remark also that singular points of the Hadamard
composition are investigated in the paper [8].

For 0 ≤ r < R[f ] let M(r, f) = max{|f(z)| : |z| = r} and µ(r, f) = max{|fk|rk : k ≥ 0}
be the maximal term of the power expansion of f and ν(r, f) = max{n : |fnrn = µ(r, f)} be
its central index. A connection between the growth of the maximal terms of a derivative of
the Hadamard composition of two entire functions f and g and the Hadamard composition of
their derivative is studied by M. K. Sen ([9, 10]). The properties of compositions of Hadamard
for Gelfond-Leont’ev derivatives of analytic functions f and g are investigated in [11]. For
entire functions f and g it is proved ([11]) for example that if

0 < lim
k→∞

lk
(k + 1)lk+1

≤ lim
k→∞

lk
(k + 1)lk+1

< +∞
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then

lim
r→+∞

1

ln r
ln
µ(r,D

(n+1)
l f ∗D(n+1)

l g)

µ(r,D
(n)
l (f ∗ g))

= (n+ 2)%[f ∗ g]− 1

and

lim
r→+∞

1

ln r
ln
µ(r,D

(n+1)
l f ∗D(n+1)

l g)

µ(r,D
(n)
l (f ∗ g))

= (n+ 2)λ[f ∗ g]− 1,

where %[f ] is the order and λ[f ] is the lower order of the entire function f . If R[f ] = 1,
R[g] = 1 and R[f ∗ g] = 1 then ([11])

(n+ 2)%(1)[f ∗ g] ≤ lim
r↑1

1

− ln(1− r)
ln+ µ(r,D

(n+1)
l f ∗D(n+1)

l g)

µ(r,D
(n)
l (f ∗ g))

≤ (n+ 2)(%(1)[f ∗ g] + 1)

and

(n+ 2)λ(1)[f ∗ g] ≤ lim
r↑1

1

− ln(1− r)
ln+ µ(r,D

(n+1)
l f ∗D(n+1)

l g)

µ(r,D
(n)
l (f ∗ g))

≤ (n+ 2)(λ(1)[f ∗ g] + 1),

where %(1)[f ] is the order and λ(1)[f ] is the lower order of the analytic function f in the unit
disk.

Naturally, the question arises of similar properties of the Hadamard compositions of the
Gelfond-Leont’ev-Sǎlǎgean derivatives and the Gelfond-Leont’ev-Ruscheweyh derivatives.

2. Hadamard composition of two Gelfond-Leont’ev-Sǎlǎgean derivatives. Let f ∈
H, g ∈ H, n ∈ Z+ and m ∈ Z+. Then

(Dn
l,[S]f ∗Dm

l,[S]g)(z) = z +
∞∑
k=2

(
l1lk−1
lk

)n
fk

(
l1lk−1
lk

)m
gkz

k =

= z +
∞∑
k=2

(
l1lk−1
lk

)n+m
fkgkz

k = Dn+m
l,[S] (f ∗ g)(z), (4)

i. e. the study of the Hadamard composition of Gelfond-Leont’ev-Sǎlǎgean derivatives of
two functions is reduced to the study of Gelfond-Leont’ev-Sǎlǎgeanthe derivative of the
Hadamard composition of these functions. For the Gelfond-Leont’ev-Sǎlǎgeanthe derivative
of the Hadamard composition the following statement is true.

Lemma 1. If f ∈ H, g ∈ H, n ∈ N and there exists lim
k→∞

k
√
lk−1/lk = q then R[Dn

l,[S](f ∗g)] ≥

q−n and if, moreover, lim
k→∞

k
√
|gk| = 1 then R[Dn

l,[S](f ∗ g)] = q−n.

Proof. Indeed,

1

R[Dn
l,[S](f ∗ g)]

= lim
k→∞

k

√(
l1lk−1
lk

)n
|fk||gk| ≤

≤

(
lim
k→∞

k

√
lk−1
lk

)n

lim
k→∞

k
√
|fk| lim

k→∞
k
√
|gk| =

(
lim
k→∞

k

√
lk−1
lk

)n

,

1

R[Dn
l,[S](f ∗ g)]

≥

(
lim
k→∞

k

√
lk−1
lk

)n

lim
k→∞

k
√
|fk| lim

k→∞

k
√
|gk|.
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Therefore, if there exists lim
k→∞

k
√
lk−1/lk = q then 1/R[Dn

l,[S](f ∗ g)] ≤ qn, and if, moreover,

lim
k→∞

k
√
|gk| = 1 then 1/R[Dn

l,[S](f ∗ g)] ≥ qn. Lemma 1 is proved.

Let E be the class of entire functions. From Lemma 1 it follows that if k
√
lk/lk−1 → ∞

as k → ∞ then Dn
l,[S](f ∗ g) ∈ E. If k

√
lk/lk−1 → 1 and lim

k→∞
k
√
|gk| = 1 as k → ∞ then

Dn
l,[S](f ∗ g) ∈ H. In the sequel, we will consider only these two cases.

To study the growth of analytic functions, we will use generalized orders. For this purpose
by L we denote the class of continuous non-negative on (−∞,+∞) functions α such that
α(x) = α(x0) > 0 for x ≤ x0 and α(x) ↑ +∞ as x0 ≤ x → +∞. We say that α ∈ L0, if
α ∈ L and α((1 + o(1))x) = (1 + o(1))α(x) as x → +∞. Finally, α ∈ Lsi, if α ∈ L and
α(cx) = (1 + o(1))α(x) as x→ +∞ for each fixed c ∈ (0,+∞), i. e. α is a slowly increasing
function. Clearly, Lsi ⊂ L0.

2.1. The case lim
k→∞

k
√
lk/lk−1 = +∞. For α ∈ L, β ∈ L and an entire transcendental function

(1) the quantities

%α,β[f ] := %α,β[lnM, f ] = lim
r→+∞

α(lnM(r, f))

β(ln r)
,

λα,β[f ] := λα,β[lnM, f ] = lim
r→+∞

α(lnM(r, f))

β(ln r)

are called ([12]) the generalized order and the lower generalized order, respectively. If we
substitute lnµ(r, f) or ν(r, f) instead of lnM(r, f) then we obtain the definitions of the
quantities %α,β[lnµ, f ], λα,β[lnµ, f ] and λα,β[ν, f ], λα,β[ν, f ], respectively.

Lemma 2. Let α ∈ Lsi, β ∈ L0 and dβ−1(cα(x))
d lnx

= O(1) as x → +∞ for each c ∈ (0,+∞).
Then

%α,β[f ] = lim
k→∞

α(k)/β

(
1

k
ln

1

|fk|

)
. (5)

If, moreover, |fk/fk+1| ↗ +∞ as k0 ≤ k →∞ then

λα,β[f ] = lim
k→∞

α(k)/β

(
1

k
ln

1

|fk|

)
. (6)

Formula (5) is proved in [12], and formula (6) follows from the corresponding formula for
entire Dirichlet series proved in [13].

The following lemma is proved in [14].

Lemma 3. If α ∈ Lsi and β ∈ L0 then %α,β[f ] = %α,β[lnµ, f ] and λα,β[f ] = λα,β[lnµ, f ]. If,
moreover, α(ex) ∈ Lsi and α(x) = o(β(x)) as x → +∞ then %α,β[lnµ, f ] = %α,β[ν, f ] and
λα,β[lnµ, f ] = λα,β[ν, f ].

Theorem 1. Let α(x) = α1(lnx), α1 ∈ Lsi, β ∈ Lsi and dβ−1(cα(x))
d lnx

= O(1) as x→ +∞ for
each c ∈ (0,+∞). Suppose that lim

k→∞

k
√
|fkgk| > 0 and

0 < q = lim
k→∞

1

ln k
ln ln

lk
lk−1

≤ lim
k→∞

1

ln k
ln ln

lk
lk−1

= Q < +∞. (7)
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Then for m > n ≥ 1

lim
r→+∞

1

β(ln r)
α

(
ln
µ(r,Dn

l,[S](f ∗ g))

µ(r,Dm
l,[S](f ∗ g))

)
= lim

k→∞

α(k)

β( 1
k

ln lk
lk−1

)
(8)

and if, moreover, |fk/fk+1| ↗ 1, |gk/gk+1| ↗ 1 and lk−1lk+1/l
2
k ↗ +∞ as k0 ≤ k →∞ then

lim
r→+∞

1

β(ln r)
α

(
ln
µ(r,Dn

l,[S](f ∗ g))

µ(r,Dm
l,[S](f ∗ g))

)
= lim

k→∞

α(k)

β( 1
k

ln lk
lk−1

)
. (9)

Proof. Using the definitions of the maximal term and the central index, we have

µ(r,Dn
l,[S](f ∗ g)) =

(
l1lν(r,Dn

l,[S]
(f∗g))−1

lν(r,Dn
l,[S]

(f∗g))

)n

|fν(r,Dn
l,[S]

(f∗g)||gν(r,Dn
l,[S]

(f∗g))|rν(r,D
n
l,[S]

(f∗g)) =

=

(
l1lν(r,Dn

l,[S]
(f∗g))−1

lν(r,Dn
l,[S]

(f∗g))

)n−m(
l1lν(r,Dm

l,[S]
(f∗g))−1

lν(r,Dn
l,[S]

(f∗g))

)n

|fν(r,Dn
l,[S]

(f∗g)||gν(r,Dn
l,[S]

(f∗g))|rν(r,D
n
l,[S]

(f∗g)) ≤

≤

(
l1lν(r,Dn

l,[S]
(f∗g))−1

lν(r,Dn
l,[S]

(f∗g))

)n−m

µ(r,Dm
l,[S](f ∗ g))

and

µ(r,Dm
l,[S](f ∗ g)) ≤

(
l1lν(r,Dm

l,[S]
(f∗g))−1

lν(r,Dm
l,[S]

(f∗g))

)m−n

µ(r,Dn
l,[S](f ∗ g)).

Therefore, for m > n(
lν(r,Dm

l,[S]
(f∗g))

l1lν(r,Dm
l,[S]

(f∗g))−1

)m−n

≤
µ(r,Dn

l,[S](f ∗ g))

µ(r,Dm
l,[S](f ∗ g))

≤

(
lν(r,Dn

l,[S]
(f∗g))

l1lν(r,Dn
l,[S]

(f∗g))−1

)m−n

(10)

and

ln ln
lν(r,Dm

l,[S]
(f∗g))

l1lν(r,Dm
l,[S]

(f∗g))−1
≤ ln ln

µ(r,Dn
l,[S](f ∗ g))

µ(r,Dm
l,[S](f ∗ g))

− ln(m− n) ≤ ln ln
lν(r,Dn

l,[S]
(f∗g))

l1lν(r,Dn
l,[S]

(f∗g))−1
.

From condition (7) it follows that q1 ln k ≤ ln ln lk
l1lk−1

≤ Q1 ln k for every 0 < q1 < q ≤ Q <

Q1 < +∞ and all k ≥ k0(q1, Q1). Therefore, for all r ≥ r0

q1(1 + o(1)) ln ν(r,Dm
l,[S](f ∗ g)) ≤ ln ln

µ(r,Dn
l,[S](f ∗ g))

µ(r,Dm
l,[S](f ∗ g))

≤

≤ Q1(1 + o(1)) ln ν(r,Dn
l,[S](f ∗ g)), r → +∞. (11)

Since α1 ∈ Lsi, we obtain

(1 + o(1))α1(ln ν(r,Dm
l,[S](f ∗ g))) ≤ α1

(
ln ln

µ(r,Dn
l,[S](f ∗ g))

µ(r,Dm
l,[S](f ∗ g))

)
≤

≤ (1 + o(1))α1(ln ν(r,Dn
l,[S](f ∗ g)))
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as r → +∞. The condition dβ−1(cα(x))
d lnx

= O(1) as x→ +∞ for each c ∈ (0,+∞) implies that
α(x) = o(β(x)) as x→ +∞. Therefore, by Lemma 3 in view of the condition α(x) = α1(lnx)
we get

%α,β[Dm
l,[S](f ∗ g))] = %α,β[lnµ,Dm

l,[S](f ∗ g))] = %α,β[ν,Dm
l,[S](f ∗ g))] ≤

≤ lim
r→+∞

1

β(ln r)
α

(
ln
µ(r,Dn

l,[S](f ∗ g))

µ(r,Dm
l,[S](f ∗ g))

)
≤

≤ %α,β[ν,Dn
l,[S](f ∗ g))] = %α,β[lnµ,Dn

l,[S](f ∗ g))] = %α,β[Dn
l,[S](f ∗ g))] (12)

and

λα,β[Dm
l,[S](f ∗ g))] = λα,β[lnµ,Dm

l,[S](f ∗ g))] = λα,β[ν,Dm
l,[S](f ∗ g))] ≤

≤ lim
r→+∞

1

β(ln r)
α

(
ln
µ(r,Dn

l,[S](f ∗ g))

µ(r,Dm
l,[S](f ∗ g))

)
≤

≤ λα,β[ν,Dn
l,[S](f ∗ g))] = λα,β[lnµ,Dn

l,[S](f ∗ g))] = λα,β[Dn
l,[S](f ∗ g))]. (13)

The assumptions Theorem 1 imply the conditions of Lemma 2. Therefore, if lim
k→∞

k
√
|fkgk| > 0

then from (5) we get

%α,β[Dn
l,[S](f ∗ g))] = lim

k→∞
α(k)/β

(
1

k

(
ln

(
lk

l1lk−1

)n
+ ln

1

|fk||gk|

))
=

= lim
k→∞

α(k)/β

(
n

k
ln

lk
lk−1

+O(1)

)
= lim

k→∞
α(k)/β

(
1

k
ln

lk
lk−1

)
,

because β ∈ Lsi. Therefore, (12) implies (8).
If |fk/fk+1| ↗ 1, |gk/gk+1| ↗ 1 and lk−1lk+1/l

2
k ↗ +∞ as k0 ≤ k →∞ then |ck/ck+1| ↗

+∞ as k0 ≤ k →∞, where ck = ( l1lk−1

lk
)nfkgk. Therefore, as above by Lemma 2 we obtain

λα,β[Dn
l,[S](f ∗ g))] = lim

k→∞
α(k)/β

(
1

k
ln

lk
lk−1

)
,

and thus, (13) implies (9).

Using equality (4), we can obtain various corollaries from Theorem 1. For example, the
following statement is true.

Corollary 1. Let n ∈ Z+ and j ∈ N. If the conditions of Theorem 1 hold then

lim
r→+∞

1

β(ln r)
α

(
ln
µ(r,Dn

l,[S]f ∗Dn
l,[S]g

µ(r,Dn+j
l,[S]f ∗D

n+j
l,[S]g

)
= lim

k→∞

α(k)

β( 1
k

ln lk
lk−1

)

and by conditions |fk/fk+1| ↗ 1, |gk/gk+1| ↗ 1 and lk−1lk+1/l
2
k ↗ +∞ as k0 ≤ k → ∞ a

similar formula is true for lim.

Remark 1. Choosing α(x) = ln+ x and β(x) = x+ from the definitions of %α,β[f ] and
λα,β[f ] we get the definitions of the order %[f ] = lim

r→+∞
ln lnM(r,f))

ln r
and the lower order λ[f ] =

lim
r→+∞

ln lnM(r,f))
ln r

for entire function (1). The functions α(x) = ln+ x and β(x) = x+ do not

satisfy the hypotheses of Theorem 1.
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However, it is known (see for example [15, 16, 17]) that for entire function (1) %[f ] =

lim
r→+∞

ln ν(r,f))
ln r

= lim
k→∞

k ln k
− ln |fk|

, and if, moreover, |fk|/|fk+1| ↗ +∞ as k0 ≤ k → ∞ then

λ[f ] = lim
r→+∞

ln ν(r,f))
ln r

= lim
k→∞

k ln k
− ln |fk|

. Therefore, (11) yields

q1%[Dm
l,[S](f ∗ g)] ≤ lim

r→+∞

1

ln r
ln ln

µ(r,Dn
l,[S](f ∗ g))

µ(r,Dm
l,[S](f ∗ g))

≤ Q1%[Dn
l,[S](f ∗ g)].

Moreover, as in the proof Theorem 1, we get %[Dn
l,[S](f ∗ g))] = lim

k→∞
k ln k

ln(lk/lk−1)
. Using (11),

similar results can be obtained for lower limits. Therefore, by virtue of arbitrariness of q1
and Q1 we come to the next statement.

Proposition 1. Let m > n ≥ 1, lim
k→∞

k
√
|fkgk| > 0 and (7) hold. Then

q lim
k→∞

k ln k

ln(lk/lk−1)
≤ lim

r→+∞

1

ln r
ln ln

µ(r,Dn
l,[S](f ∗ g))

µ(r,Dm
l,[S](f ∗ g))

≤ Q lim
k→∞

k ln k

ln(lk/lk−1)
,

and if, moreover, |fk/fk+1| ↗ 1, |gk/gk+1| ↗ 1 and lk−1lk+1/l
2
k ↗ +∞ as k0 ≤ k →∞ then

q lim
k→∞

k ln k

ln(lk/lk−1)
≤ lim

r→+∞

1

ln r
ln ln

µ(r,Dn
l,[S](f ∗ g))

µ(r,Dm
l,[S](f ∗ g))

≤ Q lim
k→∞

k ln k

ln(lk/lk−1)
.

2.2. The case lim
k→∞

k
√
lk/lk−1 = 1. Unlike entire functions for functions (1) with R[f ] = 1

the maximal term can be bounded, and in order that µ(r, f) ↑ +∞ as r ↑ 1 it is necessary
and sufficient that lim

k→∞
|fk| = +∞. In the sequel, we will consider that lim

k→∞
|fk| = +∞,

lim
k→∞
|gk| = +∞, |fk| > 1 and |gk| > 1 for all k ≥ k0.

For α ∈ L, β ∈ L and the function (1) with R[f ] = 1 the quantities

%
(1)
α,β[f ] := %

(1)
α,β[lnM, f ] = lim

r↑1

α(lnM(r, f))

β(1/(1− r))
, λ

(1)
α,β[f ] := λ

(1)
α,β[lnM, f ] = lim

r↑1

α(lnM(r, f))

β(1/(1− r))

are called ([18]) the generalized order and the lower generalized order, respectively. If here
we substitute lnµ(r, f) or ν(r, f) instead of lnM(r, f) then we obtain the definitions of
the quantities %(1)α,β[lnµ, f ], λ(1)α,β[lnµ, f ] and λ(1)α,β[ν, f ], λ(1)α,β[ν, f ], respectively. The following
lemma is true.

Lemma 4. Let α ∈ Lsi, β ∈ Lsi and for each c ∈ (0,+∞)

lim
x→+∞

d ln β−1(cα(x))

d lnx
< 1, lim

x→+∞

α(x/β−1(cα(x)))

α(x)
= 1. (14)

Then
%
(1)
α,β[f ] = lim

k→∞

α(k)

β(k/ ln |fk|)
. (15)

If, moreover, |fk/fk+1| ↗ 1 as k0 ≤ k →∞ then

λ
(1)
α,β[f ] = lim

k→∞

α(k)

β(k/ ln |fk|)
. (16)
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Formula (15) is proved in [18], and formula (16) follows from the corresponding formula
for Dirichlet series with finite abscissa of absolute convergence proved in [19, 20].

The following lemma also is proved in [14].

Lemma 5. If α ∈ Lsi, β ∈ Lsi and α(x) = o(β(x)) as x → +∞ then %
(1)
α,β[f ] = %

(1)
α,β[lnµ, f ]

and λ
(1)
α,β[f ] = λ

(1)
α,β[lnµ, f ]. If, moreover, α(ex) ∈ Lsi then %

(1)
α,β[lnµ, f ] = %

(1)
α,β[ν, f ] and

λ
(1)
α,β[lnµ, f ] = λ

(1)
α,β[ν, f ].

The following analog of Theorem 1 is hold.

Theorem 2. Let m > n ≥ 1, α(ex) ∈ Lsi, β ∈ Lsi and (12) hold. Suppose that

lk−1/lk � k, k →∞. (17)

Then

lim
r↑1

1

β(1/(1− r))
α

(
m−n

√
µ(r,Dm

l,[S](f ∗ g))

µ(r,Dn
l,[S](f ∗ g))

)
= max{%(1)α,β[f ], %

(1)
α,β[g]} (18)

and if, moreover, |fk/fk+1| ↗ 1, |gk/gk+1| ↗ 1 and lk−1lk+1/l
2
k ↗ 1 as k0 ≤ k →∞ then

max{λ(1)α,β[f ], λ
(1)
α,β[g]} ≤ lim

r↑1

1

β(1/(1− r))
α

(
m−n

√
µ(r,Dm

l,[S](f ∗ g))

µ(r,Dn
l,[S](f ∗ g))

)
≤

≤ min{max{λ(1)α,β[f ], %
(1)
α,β[g]},max{λ(1)α,β[g], %

(1)
α,β[f ]}}. (19)

Proof. From (10) for m > n we get

l1lν(r,Dn
l,[S]

(f∗g))−1

lν(r,Dn
l,[S]

(f∗g))
≤ m−n

√
µ(r,Dm

l,[S](f ∗ g))

µ(r,Dn
l,[S](f ∗ g))

≤
l1lν(r,Dm

l,[S]
(f∗g))−1

lν(r,Dm
l,[S]

(f∗g))
.

Since in view of (17) there exist 0 < q ≤ Q < +∞ such that qk ≤ l1lk−1/lk ≤ Qk, hence we
obtain

qν(r,Dn
l,[S](f ∗ g)) ≤ m−n

√
µ(r,Dm

l,[S](f ∗ g))

µ(r,Dn
l,[S](f ∗ g))

≤ Qν(r,Dm
l,[S](f ∗ g)). (20)

We remark that since lim
x→+∞

d ln yβ−1(cα(x))
d lnx

< 1 as x→ +∞ for each c ∈ (0,+∞), we have

α(x) = o(β(x) and β−1(cα(x)) lnx
x

→ 0 as x→ +∞ for each c ∈ (0,+∞). Therefore, in view of
the condition α(ex) ∈ Lsi by Lemma 5 we get

%
(1)
α,β[Dn

l,[S](f ∗ g))] = %
(1)
α,β[lnµ,Dn

l,[S](f ∗ g))] = %
(1)
α,β[ν,Dn

l,[S](f ∗ g))] ≤

≤ lim
r↑1

1

β(1/(1− r))
α

(
m−n

√
µ(r,Dm

l,[S](f ∗ g))

µ(r,Dn
l,[S](f ∗ g))

)
≤

≤ %
(1)
α,β[ν,Dm

l,[S](f ∗ g))] = %
(1)
α,β[lnµ,Dm

l,[S](f ∗ g))] = %
(1)
α,β[Dm

l,[S](f ∗ g))] (21)

and

λ
(1)
α,β[Dn

l,[S](f ∗ g))] = λ
(1)
α,β[lnµ,Dn

l,[S](f ∗ g))] = λ
(1)
α,β[ν,Dn

l,[S](f ∗ g))] ≤
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≤ lim
r↑1

1

β(1/(1− r))
α

(
m−n

√
µ(r,Dm

l,[S](f ∗ g))

µ(r,Dn
l,[S](f ∗ g))

)
≤

≤ λ
(1)
α,β[ν,Dm

l,[S](f ∗ g))] = λ
(1)
α,β[lnµ,Dm

l,[S](f ∗ g))] = λ
(1)
α,β[Dm

l,[S](f ∗ g))]. (22)

Since l1lk−1/lk ≥ qk ≥ 1, |fk| > 1 and |gk| > 1 for all k ≥ k0, we have ( l1lk−1

lk
)n|fk||gk| ≥

|fk| and, similarly, ( l1lk−1

lk
)n|fk||gk| ≥ |gk| for all k ≥ k0. Therefore, µ(r,Dn

l,[S](f ∗ g)) ≥
(1 + o(1))µ(r, f) and µ(r,Dn

l,[S](f ∗ g)) ≥ (1 + o(1))µ(r, g) as r ↑ 1. Therefore, by Lemma 5
we get

%
(1)
α,β[Dn

l,[S](f ∗ g))] ≥ max{%(1)α,β[f ], %
(1)
α,β[g]}, λ(1)α,β[Dn

l,[S](f ∗ g))] ≥ max{λ(1)α,β[f ], λ
(1)
α,β[g]}. (23)

On the other hand, if %(1)α,β[f ] < +∞ and %
(1)
α,β[g] < +∞ then by Lemma 4 ln |fk| ≤

k
β−1(α(k)/%1)

and ln |gk| ≤ k
β−1(α(k)/%2)

for every %1 ∈ (%
(1)
α,β[f ],+∞), %2 ∈ (%

(1)
α,β[g],+∞) and all

k ≥ k0. Therefore, since β−1(cα(x)) lnx
x

→ 0 as x→ +∞ for each c ∈ (0,+∞), we obtain

n ln
l1lk−1
lk

+ ln |fk|+ ln |gk| ≤ n ln(l1Qk) +
k

β−1(α(k)/%1)
+

k

β−1(α(k)/%2)
≤

≤ (2 + o(1))k

β−1(α(k)/max{%1, %2})
, k →∞,

whence it follows that %(1)α,β[Dn
l,[S](f ∗ g))] ≤ max{%1, %2}, i. e. in view of the arbitrariness of

%1 and %2 we get
%
(1)
α,β[Dn

l,[S](f ∗ g))] ≤ max{%(1)α,β[f ], %
(1)
α,β[g]}. (24)

Inequalities (21), (23) and (24) yield (18).
If |fk/fk+1| ↗ 1, |gk/gk+1| ↗ 1 and lk−1lk+1/l

2
k ↗ 1 as k0 ≤ k → ∞ then |ck/ck+1| ↗

+∞ as k0 ≤ k → ∞, where ck = ( l1lk−1

lk
)nfkgk. Since ln |fkj | ≤

kj
β−1(α(kj)/λ)

for every λ ∈
(λ

(1)
α,β[f ],+∞) and some sequence (kj) ↑ +∞, as above, we have by Lemma 4

λ
(1)
α,β[Dn

l,[S](f ∗ g))] ≤ lim
j→∞

α(kj)

β(kj/ ln |fkjgkj |)
≤ max{λ, %2},

in view of the arbitrariness of λ and %2 we get λ(1)α,β[Dn
l,[S](f ∗ g))] ≤ max{λ(1)α,β[f ], %

(1)
α,β[g]}.

Similarly, λ(1)α,β[Dn
l,[S](f ∗ g))] ≤ max{λ(1)α,β[g], %

(1)
α,β[f ]}. Therefore,

λ
(1)
α,β[Dn

l,[S](f ∗ g))] ≤ min{max{λ(1)α,β[f ], %
(1)
α,β[g]},max{λ(1)α,β[g], %

(1)
α,β[f ]}}. (25)

Inequalities (22), (23) and (25) yield (19).

Remark 2. Choosing α(x) = β(x) = ln+ x from the definitions of %(1)α,β[f ] and λ(1)α,β[f ] we get
the definitions of the order

%(1)[f ] = lim
r↑1

ln+ lnM(r, f))

ln(1/(1− r))
and the lower order

λ(1)[f ] = lim
r↑1

ln+ lnM(r, f))

ln(1/(1− r))
for function (1) with R[f ] = 1. The functions α(x) = β(x) = ln+ x do not satisfy the
assumptions of Theorem 2.
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Now we have ([21])

λ(1)[f ] ≤ λ(1)[ν, f ] ≤ λ(1)[f ] + 1, %(1)[f ] ≤ %(1)[ν, f ] ≤ %(1)[f ] + 1.

We remark also that ([21, 22])

%(1)[f ] =
α∗[f ]

1− α∗[f ]
, α∗[f ] := lim

k→∞

ln+ ln |fk|
ln k

,

and if |fk|/|fk+1| ↗ 1 as k0 ≤ k →∞ then

λ(1)[f ] =
α∗[f ]

1− α∗[f ]
, α∗[f ] := lim

k→∞

ln+ ln |fk|
ln k

.

From (20) we obtain

(m− n)%(1)[Dn
l,[S](f ∗ g)] ≤ lim

r↑1

1

ln(1/(1− r))
ln
µ(r,Dm

l,[S](f ∗ g))

µ(r,Dn
l,[S](f ∗ g))

≤

≤ (m− n)(%(1)[Dm
l,[S](f ∗ g)] + 1). (26)

and

(m− n)λ(1)[Dn
l,[S](f ∗ g)] ≤ lim

r↑1

1

ln(1/(1− r))
ln
µ(r,Dm

l,[S](f ∗ g))

µ(r,Dn
l,[S](f ∗ g))

≤

≤ (m− n)(λ(1)[Dm
l,[S](f ∗ g)] + 1). (27)

Since l1lk−1/lk ≥ qk ≥ 1, |fk| > 1 and |gk| > 1 for all k ≥ k0, we have

α∗[Dn
l,[S](f ∗ g)] = lim

k→∞

ln+(n ln(l1lk−1/lk) + ln |fk|+ ln |gk|)
ln k

≥

≥ lim
k→∞

ln+ min{nq ln k, ln |fk|}
ln k

= α∗[f ],

i. e. α∗[Dn
l,[S](f ∗ g)] ≥ max{α∗[f ], α∗[f ]} and, similarly, α∗[Dn

l,S](f ∗ g)] ≥ max{α∗[f ], α∗[g]},
whence

%(1)[Dn
l,[S](f ∗ g)] ≥ max{α∗[f ], α∗[g]}

1−max{α∗[f ], α∗[g]}
= max{%(1)[f ], %(1)[g])}

and similarly λ(1)[f ∗ g] ≥ max{λ(1)[f ], λ(1)[g])}, provided |fk/fk+1| ↗ 1, |gk/gk+1| ↗ 1 and
lk−1lk+1/l

2
k ↗ +∞ as k0 ≤ k →∞.

On the other hand, ln |fk| ≤ kα1 and ln |gk| ≤ kα2 for every α1 ∈ (α∗[f ], 1), α2 ∈ (α∗[g], 1)
and all k ≥ k0. Therefore,

α∗[Dn
l,[S](f ∗ g)] ≤ lim

k→∞

ln(nQ ln k) + ln+(kα1 + kα2)

ln k
≤ max{α1, α2},

i. e. in view of the arbitrariness of α1 and α2 we get α∗[Dn
l,[S](f ∗ g)] ≤ max{α∗[f ], α∗[g]}.

Similarly we obtain α∗[Dn
l,[S](f ∗ g)] ≤ max{α∗[f ], α∗[g]}, whence as above we get

%(1)[Dn
l,[S](f ∗ g)] ≤ max{%(1)[f ], %(1)[g]},

λ(1)[Dn
l,[S](f ∗ g)] ≤ min{max{λ(1)[f ], %(1)[g]},max{λ(1)[g], %(1)[f ]}}.

Therefore, in view of (26) and (27) we get the following statement.
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Proposition 2. Let m > n ≥ 1 and (17) hold. Then

(m− n) max{%(1)[f ], %(1)[g])} ≤ lim
r↑1

1

ln(1/(1− r))
ln
µ(r,Dm

l,[S](f ∗ g))

µ(r,Dn
l,[S](f ∗ g))

≤

≤ (m− n)(max{%(1)[f ], %(1)[g])}+ 1).

and if, moreover, |fk/fk+1| ↗ 1, |gk/gk+1| ↗ 1 and lk−1lk+1/l
2
k ↗ +∞ as k0 ≤ k →∞ then

(m− n) max{λ(1)[f ], λ(1)[g])} ≤ lim
r↑1

1

ln(1/(1− r))
ln
µ(r,Dm

l,[S](f ∗ g))

µ(r,Dn
l,[S](f ∗ g))

≤

≤ (m− n)(min{max{λ(1)[f ], %(1)[g]},max{λ(1)[g], %(1)[f ]}}+ 1).

3. Hadamard composition of two Gelfond-Leont’ev-Ruscheweyh derivatives.
Let f ∈ H, g ∈ H and n ∈ N. Suppose that lim

k→∞
k

√
lk−1

lk
= q. Then k

√
lk−1

ln+k−1
→ qn as k →∞

and, as in the proof of Lemma 1, we get the following statement.

Lemma 6. If f ∈ H, g ∈ H, n ∈ N and there exists lim
k→∞

k
√
lk−1/lk = q then R[Dn

l,[R](f ∗g)] ≥

q−n and and if, moreover, lim
k→∞

k
√
|gk| = 1 then R[Dn

l,[R](f ∗ g)] = q−n.

From Lemma 6 it follows that if k
√
lk/lk−1 →∞ as k →∞ then Dn

l,[R](f ∗ g) ∈ E, and if
k
√
lk/lk−1 → 1 as k →∞ then Dn

l,[R](f ∗ g) ∈ H. As in Section 1, we consider only these two
cases.

3.1. The case lim
k→∞

k
√
lk/lk−1 = +∞. Since equation (4) is not satisfied for the Hadamard

composition of Gelfond-Leont’ev-Ruscheweyhen derivatives, more variants arise in the study
of the properties of these compositions. Let us start with an analogue of Theorem 1.

Theorem 3. Let the functions α and β satisfy the assumptions of Theorem 1. Suppose that
lim
k→∞

k
√
|fkgk| > 0 and (7) holds. Then for m > n ≥ 1

lim
r→+∞

1

β(ln r)
α

(
ln
µ(r,Dn

l,[R](f ∗ g))

µ(r,Dm
l,[R](f ∗ g))

)
= lim

k→∞

α(k)

β( 1
k

ln lk
lk−1

)

and if, moreover, |fk/fk+1| ↗ 1, |gk/gk+1| ↗ 1 and lk−1lk+1/l
2
k ↗ +∞ as k0 ≤ k →∞ then

lim
r→+∞

1

β(ln r)
α

(
ln
µ(r,Dn

l,[R](f ∗ g))

µ(r,Dm
l,[R](f ∗ g))

)
= lim

k→∞

α(k)

β( 1
k

ln lk
lk−1

)
.

Proof. Using the definitions of the maximal term and the central index, we have

µ(r,Dn
l,[R](f ∗ g)) =

lnlν(r,Dn
l,[R]

(f∗g))−1

lν(r,Dn
l,[R]

(f∗g))+n−1
|fν(r,Dn

l,[R]
(f∗g)||gν(r,Dn

l,[R]
(f∗g))|rν(r,D

n
l,[R]

(f∗g)) =

=
lnlν(r,Dn

l,[R]
(f∗g))+m−1

lmlν(r,Dn
l,[R]

(f∗g))+n−1

lmlν(r,Dn
l,[R]

(f∗g))−1

lν(r,Dn
l,[R]

(f∗g))+m−1
|fν(r,Dn

l,[S]
(f∗g)||gν(r,Dn

l,[S]
(f∗g))|rν(r,D

n
l,[S]

(f∗g)) ≤
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≤
lnlν(r,Dn

l,[R]
(f∗g))+m−1

lmlν(r,Dn
l,[R]

(f∗g))+n−1
µ(r,Dm

l,[R](f ∗ g)),

µ(r,Dm
l,[R](f ∗ g)) ≤

lmlν(r,Dm
l,[R]

(f∗g))+n−1

lnlν(r,Dm
l,[R]

(f∗g))+m−1
µ(r,Dn

l,[R](f ∗ g)).

Thus,
lnlν(r,Dm

l,[R]
(f∗g))+m−1

lmlν(r,Dm
l,[R]

(f∗g))+n−1
≤
µ(r,Dn

l,[R](f ∗ g))

µ(r,Dm
l,[R](f ∗ g))

≤
lnlν(r,Dn

l,[R]
(f∗g))+m−1

lmlν(r,Dn
l,[R]

(f∗g))+n−1
. (28)

In view of (7) for every 0 < q1 < q ≤ Q < Q1 < +∞ we have kq1 ≤ ln lk − ln lk−1 ≤ kQ1 for
all k ≥ k0(q1, Q1). Therefore,

ln lν(r,Dn
l,[R]

(f∗g))+m−1 − ln lν(r,Dn
l,[R]

(f∗g))+n−1 =

= ln lν(r,Dn
l,[R]

(f∗g))+m−1 − ln lν(r,Dn
l,[R]

(f∗g))+m−2 + · · ·+

+ ln lν(r,Dn
l,[R]

(f∗g))+m−(m−n) − ln lν(r,Dn
l,[R]

(f∗g))+m−(m−n)−1 ≤

≤ (ν(r,Dn
l,[R](f ∗ g)) +m− 1)Q1 + · · ·+ (ν(r,Dn

l,[R](f ∗ g)) +m− (m− n))Q1 =

= (m− n)(1 + o(1))ν(r,Dn
l,[R](f ∗ g))Q1 , r → +∞.

Similarly, as r → +∞

ln lν(r,Dn
l,[R]

(f∗g))+m−1 − ln lν(r,Dn
l,[R]

(f∗g))+n−1 ≥ (m− n)(1 + o(1))ν(r,Dn
l,[R](f ∗ g))q1 .

Therefore, from (28) we obtain (11) with Dl,[R] instead of Dl,[S]. Inequalities (11) imply (12)
and (13) with Dl,[R] instead of Dl,[S]. Finally, if lim

k→∞

k
√
|fkgk| > 0 then by Lemma 2

%α,β[Dn
l,[R](f ∗ g))] = lim

k→∞
α(k)/β

(
1

k
ln
ln+k−1
l1lk−1

+ ln
1

|fk||gk|

)
= lim

k→∞
α(k)/β

(
1

k
ln

lk
lk−1

)
,

and, similarly,

λα,β[Dn
l,[R](f ∗ g))] = lim

k→∞
α(k)/β

(
1

k
ln

lk
lk−1

)
.

Remark 3. Using the proof of Proposition 1 we get the following statement.

Proposition 3. Let m > n ≥ 1, lim
k→∞

k
√
|fkgk| > 0 and (7) hold. Then

q lim
k→∞

k ln k

ln(lk/lk−1)
≤ lim

r→+∞

1

ln r
ln ln

µ(r,Dn
l,[R](f ∗ g))

µ(r,Dm
l,[R](f ∗ g))

≤ Q lim
k→∞

k ln k

ln(lk/lk−1)
,

and if, moreover, |fk/fk+1| ↗ 1, |gk/gk+1| ↗ 1 and lk−1lk+1/l
2
k ↗ +∞ as k0 ≤ k →∞ then

q lim
k→∞

k ln k

ln(lk/lk−1)
≤ lim

r→+∞

1

ln r
ln ln

µ(r,Dn
l,[R](f ∗ g))

µ(r,Dm
l,[R](f ∗ g))

≤ Q lim
k→∞

k ln k

ln(lk/lk−1)
,
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The following theorem is an analogue of Corollary 1.

Theorem 4. Let the functions α and β satisfy the conditions of Theorem 1, n ∈ N and
j ∈ N. Suppose that lim

k→∞

k
√
|fkgk| > 0 and (7) holds. Then

lim
r→+∞

1

β(ln r)
α

(
ln
µ(r,Dn

l,[R]f ∗Dn
l,[R]g)

µ(r,Dn+j
l,[R]f ∗D

n+j
l,[R]g)

)
= lim

k→∞

α(k)

β( 1
k

ln lk
lk−1

)

and if, moreover, |fk/fk+1| ↗ 1, |gk/gk+1| ↗ 1 and lk−1lk+1/l
2
k ↗ +∞ as k0 ≤ k →∞ then

lim
r→+∞

1

β(ln r)
α

(
ln
µ(r,Dn

l,[R]f ∗Dn
l,[R]g)

µ(r,Dn+j
l,[R]f ∗D

n+j
l,[R]g)

)
= lim

k→∞

α(k)

β( 1
k

ln lk
lk−1

)
.

Proof. Since (Dn
l,[R]f ∗Dn

l,[R]g)(z) = z +
∞∑
k=2

(
lk−1ln
ln+k−1

)2
fkgkz

k, we have

µ(r,Dn
l,[R]f ∗Dn

l,[R]g) =

=

(
lν(r,Dn

l,[R]
f∗Dn

l,[R]
g)−1ln

ln+ν(r,Dn
l,[R]

f∗Dn
l,[R]

g)−1

)2

|fν(r,Dn
l,[R]

f∗Dn
l,[R]

g)||gν(r,Dn
l,[R]

f∗Dn
l,[R]

g)|rν(r,D
n
l,[R]

f∗Dn
l,[R]

g) =

=

(
lnlν(r,Dn

l,[R]
f∗Dn

l,[R]
g)+n+j−1

ln+jlν(r,Dn
l,[R]

f∗Dn
l,[R]

g)+n−1

)2(
ln+jlν(r,Dn

l,[R]
f∗Dn

l,[R]
g)−1

lν(r,Dn
l,[R]

f∗Dn
l,[R]

g)+n+j−1

)2

×

×|fν(r,Dn
l,[R]

f∗Dn
l,[R]

g)||gν(r,Dn
l,[R]

f∗Dn
l,[R]

g)|rν(r,D
n
l,[R]

f∗Dn
l,[R]

g) ≤

≤

(
lnlν(r,Dn

l,[R]
f∗Dn

l,[R]
g)+n+j−1

ln+jlν(r,Dn
l,[R]

f∗Dn
l,[R]

g)+n−1

)2

µ(r,Dn+j
l,[R]f ∗D

n+j
l,[R]g)

and, similarly,

µ(r,Dn+j
l,[R]f ∗D

n+j
l,[R]g) ≤

(
ln+jlν(r,Dn+j

l,[R]
f∗Dn+j

l,[R]
g)+n−1

lnlν(r,Dn+j
l,[R]

f∗Dn+j
l,[R]

g)+n+j−1

)2

µ(r,Dn
l,[R]f ∗Dn

l,[R]g).

Thus,(
lnlν(r,Dn+j

l,[R]
f∗Dn+j

l,[R]
g)+n+j−1

ln+jlν(r,Dn+j
l,[R]

f∗Dn+j
l,[R]

g)+n−1

)2

≤
µ(r,Dn

l,[R]f ∗Dn
l,[R]g)

µ(r,Dn+j
l,[R]f ∗D

n+j
l,[R]g)

≤

(
lnlν(r,Dn

l,[R]
f∗Dn

l,[R]
g)+n+j−1

ln+jlν(r,Dn
l,[R]

f∗Dn
l,[R]

g)+n−1

)2

. (29)

Since in view of (7) kq1 ≤ ln lk − ln lk−1 ≤ kQ1 for every 0 < q1 < q ≤ Q < Q1 < +∞ and all
k ≥ k0(q1, Q1), as in the proof of Theorem 3, we obtain

(1 + o(1))jν(r,Dn
l,[R]f ∗Dn

l,[R]g)q1 ≤ ln lν(r,Dn
l,[R]

f∗Dn
l,[R]

g)+n+j−1 − ln lν(r,Dn
l,[R]

f∗Dn
l,[R]

g)+n−1 ≤

≤ (1 + o(1))jν(r,Dn
l,[R]f ∗Dn

l,[R]g)Q1 , r → +∞.

Therefore, (29) yields

(1 + o(1))q1 ln ν(r,Dn+j
l,[R]f ∗D

n+j
l,[R]g)) ≤ ln ln

µ(r,Dn
l,[R]f ∗Dn

l,[R]g)

µ(r,Dn+j
l,[R]f ∗D

n+j
l,[R]g)

≤



128 M. M. SHEREMETA

≤ (1 + o(1))Q1 ln ν(r,Dn
l,[R]f ∗Dn

l,[R]g), r → +∞, (30)

i. e. we obtain (11) with Dn
l,[R]f ∗Dn

l,[R]g instead of Dn
l,[S](f ∗ g). This inequalities imply (12)

and (13) with Dn
l,[R]f ∗ Dn

l,[R]g instead of Dn
l,[S](f ∗ g). Finally, if lim

k→∞

k
√
|fkgk| > 0 then by

Lemma 2

%α,β[Dn
l,[R]f ∗Dn

l,[R]g] = lim
k→∞

α(k)/β

(
2

k
ln
ln+k−1
l1lk−1

+ ln
1

|fk||gk|

)
= lim

k→∞
α(k)/β

(
1

k
ln

lk
lk−1

)
,

and, similarly,

λα,β[Dn
l,[R]f ∗Dn

l,[R]g] = lim
k→∞

α(k)/β

(
1

k
ln

lk
lk−1

)
.

Remark 4. Using (30), as in the proof of Proposition 1 we get the following statement.

Proposition 4. Let n ∈ N, j ∈ N, lim
k→∞

k
√
|fkgk| > 0 and (7) hold. Then

q lim
k→∞

k ln k

ln(lk/lk−1)
≤ lim

r→+∞

1

ln r
ln ln

µ(r,Dn
l,[R]f ∗Dn

l,[R]g)

µ(r,Dn+j
l,[R]f ∗D

n+j
l,[R]g)

≤ Q lim
k→∞

k ln k

ln(lk/lk−1)
,

and if, moreover, |fk/fk+1| ↗ 1, |gk/gk+1| ↗ 1 and lk−1lk+1/l
2
k ↗ +∞ as k0 ≤ k →∞ then

q lim
k→∞

k ln k

ln(lk/lk−1)
≤ lim

r→+∞

1

ln r
ln ln

µ(r,Dn
l,[R]f ∗Dn

l,[R]g)

µ(r,Dn+j
l,[R]f ∗D

n+j
l,[R]g)

≤ Q lim
k→∞

k ln k

ln(lk/lk−1)
.

Theorem 5. Let the functions α and β satisfy the conditions of Theorem 1, n ∈ N and
j ∈ N. Suppose that lim

k→∞

k
√
|fkgk| > 0 and (7) holds. Then

lim
r→+∞

1

β(ln r)
α

(
ln

µ(r,Dn
l,[R](f ∗ g))

µ(r,Dn+j
l,[R]f ∗D

n+j
l,[R]g)

)
= lim

k→∞

α(k)

β( 1
k

ln lk
lk−1

)

and if, moreover, |fk/fk+1| ↗ 1, |gk/gk+1| ↗ 1 and lk−1lk+1/l
2
k ↗ +∞ as k0 ≤ k →∞ then

lim
r→+∞

1

β(ln r)
α

(
ln

µ(r,Dn
l,[R](f ∗ g))

µ(r,Dn+j
l,[R]f ∗D

n+j
l,[R]g)

)
= lim

k→∞

α(k)

β( 1
k

ln lk
lk−1

)
.

Proof. As above, we have

µ(r,Dn
l,[R](f ∗ g)) =

lnlν(r,Dn
l,[R]

(f∗g))−1

lν(r,Dn
l,[R]

(f∗g))+n−1
|fν(r,Dn

l,[R]
(f∗g)||gν(r,Dn

l,[R]
(f∗g))|rν(r,D

n
l,[R]

(f∗g)) =

=
lnl

2
ν(r,Dn

l,[R]
(f∗g))+n+j−1

l2n+jlν(r,Dn
l,[R]

(f∗g))+n−1lν(r,Dn
l,[R]

(f∗g))−1

(
ln+jlν(r,Dn

l,[R]
(f∗g))−1

lν(r,Dn
l,[R]

(f∗g))+n+j−1

)2

×

×|fν(r,Dn
l,[R]

(f∗g)||gν(r,Dn
l,[R]

(f∗g))|rν(r,D
n
l,[R]

(f∗g)) ≤
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≤
lnl

2
ν(r,Dn

l,[R]
(f∗g))+n+j−1

l2n+jlν(r,Dn
l,[R]

(f∗g))+n−1lν(r,Dn
l,[R]

(f∗g))−1
µ(r,Dn+j

l,[R]f ∗D
n+j
l,[R]g).

On the other hand,

µ(r,Dn+j
l,[R]f ∗D

n+j
l,[R]g) =

(
ln+jlν(r,Dn+j

l,[R]
f∗Dn+j

l,[R]
g)−1

lν(r,ν(r,Dn+j
l,[R]

f∗Dn+j
l,[R]

g)+n+j−1

)2

×

×|fν(r,Dn+j
l,[R]

f∗Dn+j
l,[R]

g)||gν(r,Dn+j
l,[R]

f∗Dn+j
l,[R]

g)|r
ν(r,Dn+j

l,[R]
f∗Dn+j

l,[R]
g) =

=
l2n+jlν(r,Dn+j

l,[R]
f∗Dn+j

l,[R]
g)−1lν(r,Dn+j

l,[R]
f∗Dn+j

l,[R]
g)+n−1

l2
ν(r,Dn+j

l,[R]
f∗Dn+j

l,[R]
g)+n+j−1

lnlν(r,Dn+j
l,[R]

f∗Dn+j
l,[R]

g)−1

lν(r,Dn+j
l,[R]

f∗Dn+j
l,[R]

g)+n−1
×

×|fν(r,Dn+j
l,[R]

f∗Dn+j
l,[R]

g)||gν(r,Dn+j
l,[R]

f∗Dn+j
l,[R]

g)|r
ν(r,Dn+j

l,[R]
f∗Dn+j

l,[R]
g) ≤

≤
l2n+jlν(r,Dn+j

l,[R]
f∗Dn+j

l,[R]
g)−1lν(r,Dn+j

l,[R]
f∗Dn+j

l,[R]
g)+n−1

lnl2ν(r,Dn+j
l,[R]

f∗Dn+j
l,[R]

g)+n+j−1

µ(r,Dn
l,[R](f ∗ g)).

Therefore,

lnl
2
ν(r,Dn+j

l,[R]
f∗Dn+j

l,[R]
g)+n+j−1

l2n+jlν(r,Dn+j
l,[R]

f∗Dn+j
l,[R]

g)−1lν(r,Dn+j
l,[R]

f∗Dn+j
l,[R]

g)+n−1
≤

≤
µ(r,Dn

l,[R](f ∗ g))

µ(r,Dn+j
l,[R]f ∗D

n+j
l,[R]g)

≤
lnl

2
ν(r,Dn

l,[R]
(f∗g))+n+j−1

l2n+jlν(r,Dn
l,[R]

(f∗g))+n−1lν(r,Dn
l,[R]

(f∗g))−1
(31)

As in the proof of Theorem 3 we have

ln
l2ν(r,Dn

l,[R]
(f∗g))+n+j−1

lν(r,Dn
l,[R]

(f∗g))+n−1lν(r,Dn
l,[R]

(f∗g))−1
= ln lν(r,Dn

l,[R]
(f∗g))+n+j−1 − ln lν(r,Dn

l,[R]
(f∗g))+n−1+

+ ln lν(r,Dn
l,[R]

(f∗g))+n+j−1 − ln lν(r,Dn
l,[R]

(f∗g))−1 ≤ (n+ 2j)(1 + o(1))ν(r,Dn
l,[R](f ∗ g)Q1

and, similarly,

ln
l2
ν(r,Dn+j

l,[R]
f∗Dn+j

l,[R]
g)+n+j−1

lν(r,Dn+j
l,[R]

f∗Dn+j
l,[R]

g)−1lν(r,Dn+j
l,[R]

f∗Dn+j
l,[R]

g)+n−1
≥ (n+ 2j)(1 + o(1))ν(r,Dn+j

l,[R]f ∗D
n+j
l,[R]g)q1

as r → +∞. Therefore, (31) implies

(1 + o(1))q1 ln ν(r,Dn+j
l,[R]f ∗D

n+j
l,[R]g) ≤ ln ln

µ(r,Dn
l,[R](f ∗ g))

µ(r,Dn+j
l,[R]f ∗D

n+j
l,[R]g)

≤

≤ (1 + o(1))Q1 ln ν(r,Dn
l,[R](f ∗ g), r → +∞. (32)

The further proof of Theorem 5 is the same as the proof of Theorems 3 and 4.
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Remark 5. Using (32), as above we get the following statement.

Proposition 5. Let n ∈ N, j ∈ N, lim
k→∞

k
√
|fkgk| > 0 and (7) hold. Then

q lim
k→∞

k ln k

ln(lk/lk−1)
≤ lim

r→+∞

1

ln r
ln ln

µ(r,Dn
l,[R](f ∗ g))

µ(r,Dn+j
l,[R]f ∗D

n+j
l,[R]g)

≤ Q lim
k→∞

k ln k

ln(lk/lk−1)
,

and if, moreover, |fk/fk+1| ↗ 1, |gk/gk+1| ↗ 1 and lk−1lk+1/l
2
k ↗ +∞ as k0 ≤ k →∞ then

q lim
k→∞

k ln k

ln(lk/lk−1)
≤ lim

r→+∞

1

ln r
ln ln

µ(r,Dn
l,[R](f ∗ g))

µ(r,Dn+j
l,[R]f ∗D

n+j
l,[R]g)

≤ Q lim
k→∞

k ln k

ln(lk/lk−1)
.

3.2. The case lim
k→∞

k
√
lk/lk−1 = 1. As above, we will consider that

lim
k→∞
|fk| = +∞, lim

k→∞
|gk| = +∞, |fk| > 1 and |gk| > 1 for all k ≥ k0.

Theorem 6. Let m > n ≥ 1 and the functions α and β satisfy the conditions of Theorem 2.
Suppose that (17) holds. Then

lim
r↑1

1

β(1/(1− r))
α

(
m−n

√
µ(r,Dm

l,[R](f ∗ g))

µ(r,Dn
l,[R](f ∗ g))

)
= max{%(1)α,β[f ], %

(1)
α,β[g]}

and if, moreover, |fk/fk+1| ↗ 1, |gk/gk+1| ↗ 1 and lk−1lk+1/l
2
k ↗ 1 as k0 ≤ k →∞ then

max{λ(1)α,β[f ], λ
(1)
α,β[g]} ≤ lim

r↑1

1

β(1/(1− r))
α

(
m−n

√
µ(r,Dm

l,[R](f ∗ g))

µ(r,Dn
l,[R](f ∗ g))

)
≤

≤ min{max{λ(1)α,β[f ], %
(1)
α,β[g]},max{λ(1)α,β[g], %

(1)
α,β[f ]}}.

Proof. In view of (17) there exist 0 < q ≤ Q < +∞ such that qk ≤ lk−1/lk ≤ Qk. From (28)
we obtain

lmlν(r,Dn
l,[R]

(f∗g))+n−1

lnlν(r,Dn
l,[R]

(f∗g))+m−1
≤
µ(r,Dm

l,[R](f ∗ g))

µ(r,Dn
l,[R](f ∗ g))

≤
lmlν(r,Dm

l,[R]
(f∗g))+n−1

lnlν(r,Dm
l,[R]

(f∗g))+m−1
,

whence

(1 + o(1))
lm
ln

(qν(r,Dn
l,[R](f ∗ g)))(m−n) ≤

µ(r,Dm
l,[R](f ∗ g))

µ(r,Dn
l,[R](f ∗ g))

≤

≤ (1 + o(1))
lm
ln

(Qν(r,Dm
l,[R](f ∗ g)))(m−n), r ↑ 1,

q1ν(r,Dn
l,[R](f ∗ g)) ≤ m−n

√
µ(r,Dm

l,[R](f ∗ g))

µ(r,Dn
l,[R](f ∗ g))

≤ Q1ν(r,Dm
l,[R](f ∗ g)) (33)

for some 0 < q1 ≤ Q1 < +∞ and r ∈ [r0, 1), that is (20) holds with q1, Q1 instead of q,Q and
Dn
l,[R](f ∗ g) instead of Dn

l,[S](f ∗ g). Therefore, (21) and (22) hold with Dn
l,[R](f ∗ g) instead

of Dn
l,[S](f ∗ g).
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Since lk−1/lk ≥ qk ≥ 1, |fk| > 1 and |gk| > 1 for all k ≥ k0, we have lnlk−1

lk+n−1
|fk||gk| ≥

ln(qk)n|fk| ≥ |fk| and, similarly, lnlk−1

lk+n−1
|fk||gk| ≥ |gk| for all k ≥ k0. Therefore, as in the proof

of Theorem 2 we get (23) with Dn
l,[R](f ∗ g) instead of Dn

l,[S](f ∗ g).
On the other hand, for %1 > %

(1)
α,β[f ] and %2 > %

(1)
α,β[g], as in the proof of Theorem 2 we

have

ln
lnlk−1
lk+n−1

+ ln |fk|+ ln |gk| ≤ ln(ln(Qk)n) +
k

β−1(α(k)/%1)
+

k

β−1(α(k)/%2)
≤

≤ (2 + o(1))k

β−1(α(k)/max{%1, %2})
, k →∞,

whence, as above we get (24) and, similarly, (25) with Dn
l,[R](f ∗ g) instead of Dn

l,[S](f ∗ g).
Thus, in (18) and (19) you can put Dn

l,[R](f ∗ g) instead of Dn
l,[S](f ∗ g).

Remark 6. For the usual orders the following proposition is true.

Proposition 6. Let m > n ≥ 1 and (17) hold. Then

(m− n) max{%(1)[f ], %(1)[g])} ≤ lim
r↑1

1

ln(1/(1− r))
ln
µ(r,Dm

l,[R](f ∗ g))

µ(r,Dn
l,[R](f ∗ g))

≤

≤ (m− n)(max{%(1)[f ], %(1)[g])}+ 1).

and if, moreover, |fk/fk+1| ↗ 1, |gk/gk+1| ↗ 1 and lk−1lk+1/l
2
k ↗ +∞ as k0 ≤ k →∞ then

(m− n) max{λ(1)[f ], λ(1)[g])} ≤ lim
r↑1

1

ln(1/(1− r))
ln
µ(r,Dm

l,[R](f ∗ g))

µ(r,Dn
l,[R](f ∗ g))

≤

≤ (m− n)(min{max{λ(1)[f ], %(1)[g]},max{λ(1)[g], %(1)[f ]}}+ 1).

The proof of Proposition 6 is the same as that proof of Proposition 2. We just note
that, since ln(lnqk)n ≤ lnlk−1

lk+n−1
≤ ln(lnQk)n, we get α∗[Dn

l,[R](f ∗ g)] = max{α∗[f ], α∗[f ]} and
α∗[D

n
l,[R](f ∗ g)] = max{α∗[f ], α∗[g]}.

The following theorem holds for Dn
l,[R]f ∗Dn

l,[R]g).

Theorem 7. Let the functions α and β satisfy the assumptions of Theorem 2, n ∈ N and
j ∈ N. Suppose that (17) holds. Then

lim
r↑1

1

β(1/(1− r))
α

 2j

√√√√µ(r,Dn+j
l,[R]f ∗D

n+j
l,[R]g)

µ(r,Dn
l,[R]f ∗Dn

l,[R]g)

 = max{%(1)α,β[f ], %
(1)
α,β[g]}

and if, moreover, |fk/fk+1| ↗ 1, |gk/gk+1| ↗ 1 and lk−1lk+1/l
2
k ↗ 1 as k0 ≤ k →∞ then

max{λ(1)α,β[f ], λ
(1)
α,β[g]} ≤ lim

r↑1

1

β(1/(1− r))
α

 2j

√√√√µ(r,Dn+j
l,[R]f ∗D

n+j
l,[R]g)

µ(r,Dn
l,[R]f ∗Dn

l,[R]g)

 ≤
≤ min{max{λ(1)α,β[f ], %

(1)
α,β[g]},max{λ(1)α,β[g], %

(1)
α,β[f ]}}.



132 M. M. SHEREMETA

Proof. From (29) we get(
ln+jlν(r,Dn

l,[R]
f∗Dn

l,[R]
g)+n−1

lnlν(r,Dn
l,[R]

f∗Dn
l,[R]

g)+n+j−1

)2

≤
µ(r,Dn+j

l,[R]f ∗D
n+j
l,[R]g)

µ(r,Dn
l,[R]f ∗Dn

l,[R]g)
≤

(
ln+jlν(r,Dn+j

l,[R]
f∗Dn+j

l,[R]
g)+n−1

lnlν(r,Dn+j
l,[R]

f∗Dn+j
l,[R]

g)+n+j−1

)2

.

whence in view of (17) as usual we get

(1 + o(1))
l2n+j
l2n

(qν(r,Dn
l,[R]f ∗Dn

l,[R]g)2j ≤
µ(r,Dn+j

l,[R]f ∗D
n+j
l,[R]g)

µ(r,Dn
l,[R]f ∗Dn

l,[R]g)
≤

≤ (1 + o(1))
l2n+j
l2n

(qν(r,Dn+j
l,[R]f ∗D

n+j
l,[R]g)2j, r ↑ 1,

i. e.

q1ν(r,Dn
l,[R]f ∗Dn

l,[R]g) ≤ 2j

√√√√µ(r,Dn+j
l,[R]f ∗D

n+j
l,[R]g)

µ(r,Dn
l,[R]f ∗Dn

l,[R]g)
≤ Q1ν(r,Dn+j

l,[R]f ∗D
n+j
l,[R]g)

for some 0 < q1 ≤ Q1 < +∞ and r ∈ [r0, 1). The further proof of Theorem 7 is the same as
the proof of Theorem 6.

We also note that by the usual method it is not difficult to prove the following statement.

Proposition 7. Let n ∈ N, j ∈ N and (17) hold. Then

2jmax{%(1)[f ], %(1)[g])} ≤ lim
r↑1

1

ln(1/(1− r))
ln
µ(r,Dn+j

l,[R]f ∗D
n+j
l,[R]g)

µ(r,Dn
l,[R]f ∗Dn

l,[R]g)
≤

≤ 2j(max{%(1)[f ], %(1)[g])}+ 1).

and if, moreover, |fk/fk+1| ↗ 1, |gk/gk+1| ↗ 1 and lk−1lk+1/l
2
k ↗ 1 as k0 ≤ k →∞ then

2jmax{λ(1)[f ], λ(1)[g])} ≤ lim
r↑1

1

ln(1/(1− r))
ln
µ(r,Dn+j

l,[R]f ∗D
n+j
l,[R]g)

µ(r,Dn
l,[R]f ∗Dn

l,[R]g)
≤

≤ 2j(min{max{λ(1)[f ], %(1)[g]},max{λ(1)[g], %(1)[f ]}}+ 1).

Finally, from (31) we obtain

l2n+jlν(r,Dn
l,[R]

(f∗g))+n−1lν(r,Dn
l,[R]

(f∗g))−1

lnl2ν(r,Dn
l,[R]

(f∗g))+n+j−1
≤
µ(r,Dn+j

l,[R]f ∗D
n+j
l,[R]g)

µ(r,Dn
l,[R](f ∗ g))

≤

≤
l2n+jlν(r,Dn+j

l,[R]
f∗Dn+j

l,[R]
g)−1lν(r,Dn+j

l,[R]
f∗Dn+j

l,[R]
g)+n−1

lnl2ν(r,Dn+j
l,[R]

f∗Dn+j
l,[R]

g)+n+j−1

,

whence in view of (17)

(1 + o(1))
l2n+j
ln

(qν(r,Dn
l,[R](f ∗ g)))n+2j ≤

µ(r,Dn+j
l,[R]f ∗D

n+j
l,[R]g)

µ(r,Dn
l,[R](f ∗ g))

≤
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≤
l2n+j
ln

(Qν(r,Dn+j
l,[R]f ∗D

n+j
l,[R]g)n+2j, r ↑ 1,

i. e.

q1ν(r,Dn
l,[R](f ∗ g)) ≤ n+2j

√√√√µ(r,Dn+j
l,[R]f ∗D

n+j
l,[R]g)

µ(r,Dn
l,[R](f ∗ g))

≤≤ Q1ν(r,Dn+j
l,[R]f ∗D

n+j
l,[R]g)

for some 0 < q1 ≤ Q1 < +∞ and r ∈ [r0, 1).
Therefore, using the applied methodology above, we easily arrive at the correctness of

the following two statements.

Theorem 8. Let the functions α and β satisfy the assumptions of Theorem 2, n ∈ N and
j ∈ N and (17) hold. Then

lim
r↑1

1

β(1/(1− r))
α

 n+2j

√√√√µ(r,Dn+j
l,[R]f ∗D

n+j
l,[R]g)

µ(r,Dn
l,[R](f ∗ g))

 = max{%(1)α,β[f ], %
(1)
α,β[g]}

and if, moreover, |fk/fk+1| ↗ 1, |gk/gk+1| ↗ 1 and lk−1lk+1/l
2
k ↗ 1 as k0 ≤ k →∞ then

max{λ(1)α,β[f ], λ
(1)
α,β[g]} ≤ lim

r↑1

1

β(1/(1− r))
α

 n+2j

√√√√µ(r,Dn+j
l,[R]f ∗D

n+j
l,[R]g)

µ(r,Dn
l,[R](f ∗ g))

 ≤
≤ min{max{λ(1)α,β[f ], %

(1)
α,β[g]},max{λ(1)α,β[g], %

(1)
α,β[f ]}}.

Proposition 8. Let n ∈ N, j ∈ N and (17) hold. Then

(n+ 2j) max{%(1)[f ], %(1)[g])} ≤ lim
r↑1

1

ln(1/(1− r))
ln
µ(r,Dn+j

l,[R]f ∗D
n+j
l,[R]g)

µ(r,Dn
l,[R](f ∗ g))

≤

≤ (n+ 2j)(max{%(1)[f ], %(1)[g])}+ 1).

and if, moreover, |fk/fk+1| ↗ 1, |gk/gk+1| ↗ 1 and lk−1lk+1/l
2
k ↗ 1 as k0 ≤ k →∞ then

(n+ 2j) max{λ(1)[f ], λ(1)[g])} ≤ lim
r↑1

1

ln(1/(1− r))
ln
µ(r,Dn+j

l,[R]f ∗D
n+j
l,[R]g)

µ(r,Dn
l,[R](f ∗ g))

≤

≤ (n+ 2j)(min{max{λ(1)[f ], %(1)[g]},max{λ(1)[g], %(1)[f ]}}+ 1).
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