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An element (x1, . . . , xn) ∈ En is called a norming point of T ∈ Ls(
nE) if ∥x1∥ = · · · =

∥xn∥ = 1 and |T (x1, . . . , xn)| = ∥T∥, where Ls(
nE) denotes the space of all symmetric conti-

nuous n-linear forms on E. For T ∈ Ls(
nE), we define

Norm(T ) = {(x1, . . . , xn) ∈ En : (x1, . . . , xn) is a norming point of T}.

Norm(T ) is called the norming set of T . We classify Norm(T ) for every T ∈ Ls(
2l2∞).

1. Introduction. Let n ∈ N, n ≥ 2. We write SE for the unit sphere of a Banach space E.
We denote by L(nE) the Banach space of all continuous n-linear forms on E endowed with
the norm ∥T∥ = sup(x1,··· ,xn)∈SE×···×SE

|T (x1, · · · , xn)|. Ls(
nE) denotes the closed subspace

of all continuous symmetric n-linear forms on E. An element (x1, . . . , xn) ∈ En is called a
norming point of T if ∥x1∥ = · · · = ∥xn∥ = 1 and |T (x1, . . . , xn)| = ∥T∥.

For T ∈ L(nE), we define

Norm(T ) = {(x1, . . . , xn) ∈ En : (x1, . . . , xn) is a norming point of T}.

Norm(T ) is called the norming set of T . Notice that (x1, . . . , xn) ∈ Norm(T ) if and only
if (ϵ1x1, . . . , ϵnxn) ∈ Norm(T ) for some ϵk = ±1 (k = 1, . . . , n). Indeed, if (x1, . . . , xn) ∈
Norm(T ), then

|T (ϵ1x1, . . . , ϵnxn)| = |ϵ1 · · · ϵnT (x1, . . . , xn)| = |T (x1, . . . , xn)| = ∥T∥,

which shows that (ϵ1x1, . . . , ϵnxn) ∈ Norm(T ). If (ϵ1x1, . . . , ϵnxn) ∈ Norm(T ) for some ϵk =
±1 (k = 1, . . . , n), then

(x1, . . . , xn) = (ϵ1(ϵ1x1), . . . , ϵn(ϵnxn)) ∈ Norm(T ).

The following examples show that Norm(T ) is either equal to the empty set or it is an infinite
set.

Examples. (a) Let
T ((xi)i∈N, (yi)i∈N) =

∑
i,j∈N

aijxiyj ∈ Ls(
2c0)
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for some aij ∈ R such that ∥T∥ =
∑

i,j∈N |aij|. We claim that if A = {(i, j) ∈ R2 : aij ̸= 0}
is an infinite set, then Norm(T ) = ∅.

Assume that Norm(T ) ̸= ∅. Let ((xi)i∈N, (yi)i∈N) ∈ Norm(T ). Then,

∥T∥ = |T ((xi)i∈N, (yi)i∈N)| ≤
∑

(i,j)∈A

|aij||xiyj| ≤
∑

(i,j)∈A

|aij| = ∥T∥,

which shows that |xiyj| = 1 for all (i, j) ∈ A. Hence, |xi| = 1 for infinitely many i ∈ N
or |yj| = 1 for infinitely many j ∈ N since A is an infinite set. Therefore, (xi)i∈N /∈ c0 or
(yi)i∈N /∈ c0. This is a contradiction. Therefore, Norm(T ) = ∅.

From this, if

T ((xi)i∈N, (yi)i∈N) =
∞∑
i=1

1

2i
xiyi ∈ Ls(

2c0),

then Norm(T ) = ∅.
We do not know whether there is some T ∈ Ls(

2c0) such that Norm(T ) is a nonempty
finite set.

(b) Let
T ((xi)i∈N, (yi)i∈N) = x1y1 ∈ Ls(

2c0).

Then,

Norm(T ) = {((±1, x2, x3, . . .), (±1, y2, y3, . . .)) ∈ c0 × c0 : |xj| ≤ 1, |yj| ≤ 1 for j ≥ 2}.

A mapping P : E → R is a continuous n-homogeneous polynomial if there exists a conti-
nuous n-linear form L on the product E × · · · × E such that P (x) = L(x, . . . , x) for every
x ∈ E. We denote by P(nE) the Banach space of all continuous n-homogeneous polynomials
from E into R endowed with the norm ∥P∥ = sup∥x∥=1 |P (x)|.

An element x ∈ E is called a norming point of P ∈ P(nE) if ∥x∥ = 1 and |P (x)| = ∥P∥.
For P ∈ P(nE), we define

Norm(P ) = {x ∈ E : x is a norming point of P}.

Norm(P ) is called the norming set of P . Notice that Norm(P ) = ∅ or a finite set or an
infinite set.

Recently, Kim [8] classify Norm(P ) for every P ∈ P(2l2∞), where l2∞ = R2 with the
supremum norm.

If Norm(T ) ̸= ∅, T ∈ L(nE) is called a norm attaining n-linear form and if Norm(P ) ̸= ∅,
P ∈ P(nE) is called a norm attaining n-homogeneoue polynomial (see [3]).

For more details about the theory of multilinear mappings and polynomials on a Banach
space, we refer to [5].

Let us introduce a brief history of norm attaining multilinear forms and polynomials on
Banach spaces. In 1961 Bishop and Phelps [2] initiated and showed that the set of norm
attaining functionals on a Banach space is dense in the dual space. Shortly after, attention
was paid to possible extensions of this result to more general settings, specially bounded li-
near operators between Banach spaces. The problem of denseness of norm attaining functions
has moved to other types of mappings like multilinear forms or polynomials. The first result
about norm attaining multilinear forms appeared in a joint work of Aron, Finet and Werner
[1], where they showed that the Radon-Nikodym property is sufficient for the denseness
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of norm attaining multilinear forms. Choi and Kim [3] showed that the Radon-Nikodym
property is also sufficient for the denseness of norm attaining polynomials. Jimenez-Sevilla
and Paya [6] studied the denseness of norm attaining multilinear forms and polynomials on
preduals of Lorentz sequence spaces.

It seems to be natural and interesting to study about Norm(T ) for T ∈ Ls(
nE). For m ∈

N, let lm∞ := Rm with the supremum norm. Notice that for every T ∈ Ls(
nlm∞), Norm(T ) ̸= ∅

since Slm∞ is compact.
In this paper, we classify Norm(T ) for every T ∈ Ls(

2l2∞).

2. Results.

Theorem A ([7]). Let T ((x1, x2), (y1, y2)) = ax1y1+bx2y2+c(x1y2+x2y1) ∈ Ls(
2l2∞). Then,

∥T∥ = max{|a+ b|+ 2|c|, |a− b|}.

Notice that if ∥T∥ = 1, then |a| ≤ 1, |b| ≤ 1, |c| ≤ 1
2
.

Lemma 1. Let T ((x1, x2), (y1, y2)) = ax1y1 + bx2y2 + c(x1y2 + x2y1) ∈ Ls(
2l2∞). Then there

exists (unique) T ′
((x1, x2), (y1, y2)) = a∗x1y1 + b∗x2y2 + c∗(x1y2 + x2y1) ∈ Ls(

2l2∞) such that
a∗, b∗, c∗ ∈ {±a,±b,±c} with a∗ ≥ |b∗| and c∗ ≥ 0 and ∥T∥ = ∥T ′∥.

Proof. If a < 0, taking −T , we assume that a ≥ 0. If |b| > a, let

T
′

1((x1, x2), (y1, y2)) := T ((x2, x1), (y2, y1)) = |b|x1y1 + ax2y2 + c(x1y2 + x2y1).

Then, ∥T ′
1∥ = ∥T∥. If c < 0, let

T
′

2(((x1, x2), (y1, y2)) := T
′

1((−x1, x2), (−y1, y2)) = |b|x1y1 + ax2y2 + |c|(x1y2 + x2y1).

Then, ∥T ′
2∥ = ∥T∥. Therefore, we can find a bilinear form T

′ which satisfies the conditions
of the theorem.

Lemma 2. Let T ((x1, x2), (y1, y2)) = ax1y1 + bx2y2 + c(x1y2 + x2y1) ∈ Ls(
2l2∞). Then,

((x1, x2), (y1, y2)) ∈ Norm(T ) if and only if ((y1, y2), (x1, x2)), (−(x1, x2), (y1, y2)),
((x1, x2), −(y1, y2)), (−(x1, x2), −(y1, y2)) ∈ Norm(T ).

Let T ((x1, x2), (y1, y2)) = ax1y1+bx2y2+c(x1y2+x2y1) ∈ Ls(
2l2∞). By Lemma 1, without

loss of generality we may assume that a ≥ |b| and c ≥ 0.
We are in position to prove the main result of this paper.

Theorem 1. Let T ((x1, x2), (y1, y2)) = ax1y1 + bx2y2 + c(x1y2 + x2y1) ∈ Ls(
2l2∞) be such

that ∥T∥ = 1 with a ≥ |b| and c ≥ 0. Then,
Case 1: b ≥ 0.
If c = 0 = b, then

Norm(T ) = {(±(1, t),±(1, s)) : −1 ≤ t, s ≤ 1}.

If c = 0, b > 0, then

Norm(T ) = {(±(1, 1),±(1, 1)), (±(1,−1),±(1,−1))}.

If c > 0, then
Norm(T ) = {(±(1, 1),±(1, 1))}.
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Case 2: b < 0
Subcase 1: 1 = |a+ b|+ 2|c| > |a− b|.
If c < 1

2
, then

Norm(T ) = {(±(1, 1),±(1, 1)}.

If c = 1
2
, then

Norm(T ) = {(±(1, 1),±(1, 1)), (±(1,−1),±(1,−1))}.

Subcase 2: |a+ b|+ 2|c| = |a− b| = 1.
If a = 1

2
, then

Norm(T ) = {(±(1,−1),±(s, 1)), (±(s, 1),±(1,−1)), (±(1, t),±(1, 1)),

(±(1, 1),±(1, t)) : −1 ≤ s, t ≤ 1}.

If 1
2
< a, then

Norm(T ) = {(±(1, t),±(1, 1)), (±(1, 1),±(1, t)), (±(1, 1),±(1,−1)),

(±(1,−1),±(1, 1)) : −1 ≤ t ≤ 1}.

Subcase 3: |a+ b|+ 2|c| < |a− b| = 1.

Norm(T ) = {(±(1,−1),±(1, 1)), (±(1, 1),±(1,−1))}.

Proof. Let ((x1, x2), (y1, y2)) ∈ Norm(T ). By Lemma 2, we may assume that (x1 = y1 = 1)
or (x1 = y2 = 1) or (x2 = y2 = 1).
Case 1: b ≥ 0.

By Theorem A,

∥T∥ = 1 = |a+ b|+ 2|c| = a+ b+ 2c > |a− b| = a− |b|.

Let c > 0. Suppose that ((1, t), (1, y)) ∈ Norm(T ) for some t, y ∈ [−1, 1]. Notice that if
c = 0 = b, then a = 1 and T ((x1, x2), (y1, y2)) = x1y1. Hence,

Norm(T ) = {(±(1, t),±(1, s)) : −1 ≤ t, s ≤ 1}.

Let c = 0 and b > 0. Suppose that ((1, t), (1, y)) ∈ Norm(T ) for some t, y ∈ [−1, 1]. It follows
that

1 = |T ((1, t), (1, y))| ≤ |a+ bty| ≤ a+ b |t| |y| ≤ a+ b = 1,

which implies that 1 = ty. Hence, ((1, 1), (1, 1)), ((1,−1), (1,−1)) ∈ Norm(T ).
Suppose that ((1, t), (y, 1)) ∈ Norm(T ) for some t, y ∈ [−1, 1]. It follows that

1 = |T ((1, t), (y, 1))| ≤ |ay + bt| ≤ a|y|+ b|t| ≤ a+ b = 1,

which implies that t = y = ±1. Hence, ((1, 1), (1, 1)), ((1,−1), (−1, 1)) ∈ Norm(T ).
Suppose that ((t, 1), (y, 1)) ∈ Norm(T ) for some t, y ∈ [−1, 1]. It follows that

1 = |T ((t, 1), (y, 1))| ≤ |aty + b| ≤ a|t| |y|+ b ≤ a+ b = 1,

which implies that 1 = ty. Hence, ((1, 1), (1, 1)), ((−1, 1), (−1, 1)) ∈ Norm(T ). By Lemma 2,

Norm(T ) = {(±(1, 1),±(1, 1)), (±(1,−1),±(1,−1))}.
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It follows that

1 = |T ((1, t), (1, y))| ≤ |a+ bty + c(t+ y)| ≤ a+ b |t| |y|+ c(|t|+ |y|) ≤ a+ b+ 2c = 1,

which implies that 1 = ty = t = y. Hence, ((1, 1), (1, 1)) ∈ Norm(T ).
Suppose that ((1, t), (y, 1)) ∈ Norm(T ) for some t, y ∈ [−1, 1]. It follows that

1 = |T ((1, t), (y, 1))| ≤ |ay + bt+ c(1 + ty)| ≤ a|y|+ b|t|+ c(1 + |t| |y|) ≤ a+ b+ 2c = 1,

which implies that 1 = ty = t = y. Hence, ((1, 1), (1, 1)) ∈ Norm(T ).
Suppose that ((t, 1), (y, 1)) ∈ Norm(T ) for some t, y ∈ [−1, 1]. It follows that

1 = |T ((t, 1), (y, 1))| ≤ |aty + b+ c(1 + ty)| ≤ a|t| |y|+ b+ c(1 + |t| |y|) ≤ a+ b+ 2c = 1,

which implies that 1 = ty = t = y. Hence, ((1, 1), (1, 1)) ∈ Norm(T ). By Lemma 2,

Norm(T ) = {(±(1, 1),±(1, 1))}.

Case 2: b < 0
Subcase 1: 1 = |a+ b|+ 2|c| > |a− b|.

By Theorem A,

∥T∥ = 1 = |a+ b|+ 2|c| = a+ b+ 2c > |a− b| = a− b.

Notice that c > |b| > 0 and a ≥ |b| > 0.
Let c < 1

2
. Suppose that ((1, t), (1, y)) ∈ Norm(T ) for some t, y ∈ [−1, 1]. Then,

1 = |T ((1, t), (1, y))| = |a+ bty + c(t+ y)| = |y(c− |b|t) + a+ ct|.

Notice that c− |b|t ̸= 0 because c > |b|. Suppose that 1 = T ((1, t), (1, y)). Then

y =
1− a− ct

c− |b|t
, 1 =

1− a− c

c− |b|
≤ t.

Hence, t = 1 = y and ((1, 1), (1, 1)) ∈ Norm(T ). Suppose that −1 = T ((1, t), (1, y)). Then,

y =
−1− a− ct

c− |b|t
, t ≤ −1− a+ c

c+ |b|
= −1.

Hence,

t = −1, y =
−1− a+ c

c+ |b|
< −1,

a contradiction. Hence, there are no norming points of T in this case.
Suppose that ((1, t), (y, 1)) ∈ Norm(T ) for some t, y ∈ [−1, 1]. Then,

1 = |T ((1, t), (y, 1))| = |ay + bt+ c(1 + ty)| = |y(a+ ct) + c+ bt|.

We claim that a+ct ̸= 0 for all t ∈ [−1, 1]. Otherwise, there is t ∈ [−1, 1] such that a+ct = 0.
Then,

±1 = c+ bt = c+ b
(−a

c

)
= c+

a|b|
c

.
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Hence, c = | ± c| = c2 + a|b| = c2 + a(a+ 2c− 1), so

0 = c2 + (2a− 1)c+ a(a− 1) = (c+ a)(c+ a− 1),

which shows that c = 1− a. It follows that 1 = a+ b+ 2c = a+ b+ 2(1− a) = 2− a+ b, so
a− b = 1, a contradiction.

Suppose that 1 = T ((1, t), (y, 1)). Then, y = 1−c−bt
a+ct

. If a+ ct > 0, then 1− c− bt ≤ a+ ct,

which implies that t ≥ 1−a−c
b+c

= 1. Hence, t = 1 = y. Hence, ((1, 1), (1, 1)) ∈ Norm(T ). Let
a+ ct < 0. Then, −1 < t < 0 and 1− c− bt ≤ −a− ct. It follows that

2a+ b+ c = 1 + a− c ≤ (b− c)t ≤ |(b− c)t| < |b− c| = |b|+ c,

which implies that a < |b|, a contradiction. Hence, there are no norming points of T in this
case. Suppose that −1 = T ((1, t), (y, 1)). Then, y = −1−c−bt

a+ct
. If a + ct > 0, then −a − ct ≤

−1− c− bt, which implies that t ≥ 1−a+c
−b+c

> 1, a contradiction. Hence, there are no norming
points of T in this case. Let a + ct < 0. Then, −1 < t < 0 and −1 − c − bt ≥ a + ct. It
follows that −(b+ c) = −|b+ c| < (b+ c)t < −1− a− c, which implies that 1 < b− a < 0,
a contradiction. Hence, there are no norming points of T in this case.

Suppose that ((t, 1), (y, 1)) ∈ Norm(T ) for some t, y ∈ [−1, 1]. Then,

1 = |T ((t, 1), (y, 1))| = |aty + b+ c(t+ y)| = |y(c+ at) + b+ ct|.

We claim that c+at ̸= 0 for all t ∈ [−1, 1]. Otherwise, there is t ∈ [−1, 1] such that c+at = 0.
Then,

1 ≥ |t| = c

a
, ±1 = b+ ct = b+ c

(−c

a

)
,

so a2 ≥ c2 = a(b±1), which implies that a ≥ max{b+1, b−1} = b+1, a contradiction since
a− b < 1. Suppose that 1 = T ((t, 1), (y, 1)). Then, y = 1−b−ct

c+at
. If c+at > 0, then 1− b− ct ≤

c + at, which implies that t ≥ 1−b−c
a+c

= 1. Hence, t = 1 = y and ((1, 1), (1, 1)) ∈ Norm(T ).

If c + at < 0, then c + at ≤ 1 − b − ct, which implies that t ≤ 1−b−c
a+c

= 1. Thus, t = 1 and
0 < c+a = c+at < 0, a contradiction. Hence, there are no norming points of T in this case.

Suppose that −1 = T ((t, 1), (y, 1)). Then, y = −1−b−ct
c+at

. If c+at > 0, then −c−at ≤ −1−
b−ct, which implies that (c−a)t ≤ −1−b+c. It follows that −|c−a| ≤ (c−a)t ≤ −1−b+c,
so a ≤ |b|, c = 1

2
, a contradiction. Hence, there are no norming points of T in this case. If

c+at < 0, then c+at ≤ −1−b−ct, which implies that t ≤ −1−b−c
a+c

< −1, a contradiction. Thus,
there are no norming points of T in this case. Therefore, Norm(T ) = {(±(1, 1),±(1, 1)}. Let
c = 1

2
. Then,

T ((x1, x2), (y1, y2)) = ax1y1 − ax2y2 +
1

2
(x1y2 + x2y1)

for some 0 < a < 1
2
. We will show that

Norm(T ) = {(±(1, 1),±(1, 1)), (±(1,−1),±(1,−1))}.

Suppose that ((1, t), (1, y)) ∈ Norm(T ) for some t, y ∈ [−1, 1]. Then,

1 = |T ((1, t), (1, y))| =
∣∣∣y(1

2
− at

)
+ a+

1

2
t
∣∣∣.

Hence,

y =
±1− a− 1

2
t

1
2
− at

.
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Notice that if 1 = T ((1, t), (1, y)), then t = 1 = y and that if −1 = T ((1, t), (1, y)), then
t = −1 = y. Hence,

((1, 1), (1, 1)), ((1,−1), (1,−1)) ∈ Norm(T ).

Suppose that ((1, t), (y, 1)) ∈ Norm(T ) for some t, y ∈ [−1, 1]. Then,

1 = |T ((1, t), (y, 1))| =
∣∣∣y(a+ 1

2
t
)
+

1

2
− at

∣∣∣.
Observe that a+ 1

2
t ̸= 0 for all t ∈ [−1, 1]. Otherwise. a+ 1

2
t = 0 for some t ∈ [−1, 1]. Then,

±1 = 1
2
+ 2a2 < 1, a contradiction. Therefore,

y =
±1− 1

2
+ at

a+ 1
2
t

.

Suppose that 1 = T ((1, t), (y, 1)). If a+ 1
2
t > 0, then t = 1 = y and that if a+ 1

2
t < 0, then

t = −1 = y. Hence,
((1, 1), (1, 1)), ((1,−1), (1,−1)) ∈ Norm(T ).

Notice that if −1 = T ((1, t), (y, 1)), there are no norming points of T.
Suppose that ((t, 1), (y, 1)) ∈ Norm(T ) for some t, y ∈ [−1, 1]. Then,

1 = |T ((t, 1), (y, 1))| =
∣∣∣y(1

2
+ at

)
− a+

1

2
t
∣∣∣.

Hence,

y =
±1 + a− 1

2
t

1
2
+ at

.

Notice that if 1 = T ((t, 1), (y, 1)), then t = 1 = y and that if −1 = T ((t, 1), (y, 1)), then
t = −1 = y. Thus,

Norm(T ) = {(±(1, 1),±(1, 1)), (±(1,−1),±(1,−1))}.

Subcase 2: |a+ b|+ 2|c| = |a− b| = 1.
Notice that T ((x1, x2), (y1, y2)) = ax1y1−(1−a)x2y2+(1−a)(x1y2+x2y1) with 1

2
≤ a < 1.

If a = 1
2
, then T ((x1, x2), (y1, y2)) =

1
2
x1y1 − 1

2
x2y2 +

1
2
(x1y2 + x2y1). Hence,

Norm(T ) = {(±(1,−1),±(s, 1)), (±(s, 1),±(1,−1)), (±(1, t),±(1, 1)),

(±(1, 1),±(1, t)) : −1 ≤ s, t ≤ 1}.

Let 1
2
< a. Suppose that ((1, t), (1, y)) ∈ Norm(T ) for some t, y ∈ [−1, 1]. Then,

1 = |T ((1, t), (1, y))| = |a− (1− a)ty + (1− a)(t+ y)| = |y(1− a)(1− t) + a+ (1− a)t|.

Therefore, y = ±1−a−(1−a)t
(1−a)(1−t)

. Suppose that 1 = T ((1, t), (1, y)). Then, y = 1 for all t ∈ [−1, 1].

Hence, ((1, t), (1, 1)) ∈ Norm(T ) for −1 ≤ t ≤ 1. Suppose that −1 = T ((1, t), (1, y)). Then,

y =
−1− a− (1− a)t

(1− a)(1− t)
< −1,

which is a contradiction. Thus, there are no norming points of T in this case.
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Suppose that ((1, t), (y, 1)) ∈ Norm(T ) for some t, y ∈ [−1, 1]. Then,

1 = |T ((1, t), (y, 1))| = |y(a+ (1− a)t) + (1− a)(1− t)|.

Notice that a+(1−a)t ̸= 0 for all t ∈ [−1, 1] because a > 1
2
. Hence, y = ±1−(1−a)(1−t)

a+(1−a)t
. Suppose

that 1 = T ((1, t), (y, 1)). Then, y = 1 for all x ∈ [−1, 1]. Thus, ((1, t), (1, 1)) ∈ Norm(T ) for
−1 ≤ t ≤ 1.

Suppose that −1 = T ((1, t), (y, 1)). Then,

y = 1− 2

a+ (1− a)t
≤ 1− 2

a+ (1− a)|t|
≤ 1− 2

a+ (1− a)
= −1.

Then, y = −1, t = 1 Hence, ((1, 1), (−1, 1)) ∈ Norm(T ).
Suppose that ((t, 1), (y, 1)) ∈ Norm(T ) for some t, y ∈ [−1, 1]. Then,

1 = |T ((t, 1), (y, 1))| = |y(at+ (1− a))− (1− a)(1− t)|.

We claim that that at + (1 − a) ̸= 0 for all t ∈ [−1, 1]. Otherwise, there is t ∈ [−1, 1] such
that at+ (1− a) = 0. Then,

t =
−(1− a)

a
, ±1 + (1− a)

(
1 +

1− a

a

)
= 0,

which is impossible. Hence,

y =
±1 + (1− a)(1− t)

(1− a) + at
.

Suppose that 1 = T ((t, 1), (y, 1)). Then,

y =
1 + (1− a)(1− t)

at+ (1− a)
.

If at + (1 − a) > 0, then 1 + (1 − a)(1 − t) ≤ at + (1 − a). Hence, t = 1 = y. Therefore,
((1, 1), (1, 1)) ∈ Norm(T ). If at+(1− a) < 0, then −at− (1− a) ≥ 1+ (1− a)(1− t). Hence,
t ≤ 3−2a

1−2a
< −1 a contradiction. Thus, there are no norming points of T in this case.

Suppose that −1 = T ((t, 1), (y, 1)). Then,

y =
at− (a+ t)

at− (a− 1)
≥ 1,

so y = 1, t = −1. Hence, ((−1, 1), (1, 1)) ∈ Norm(T ). Therefore,

Norm(T ) = {(±(1, t),±(1, 1)), (±(1, 1),±(1, t)), (±(1, 1),±(1,−1)),

(±(1,−1),±(1, 1)) : −1 ≤ t ≤ 1}.

Subcase 3: |a+ b|+ 2|c| < |a− b| = 1.
By Theorem A,

|a+ b|+ 2|c| = a− |b|+ 2c < |a− b| = a+ |b| = 1 = ∥T∥.

Notice that a ≥ |b| > c. Suppose that ((1, t), (1, y)) ∈ Norm(T ) for some t, y ∈ [−1, 1]. Then,

1 = |T ((1, t), (1, y))| = |a+ bty + c(t+ y)| = |y(c− |b|t) + a+ ct|.
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We claim that c − |b|t ̸= 0. Otherwise, there is t ∈ [−1, 1] such that c − |b|t = 0. Then,
t = c

|b| , ±1− a− ct = 0. Hence,

0 =
(
± 1− a− c

( c

|b|

))
|b|,

so 0 = |b|2 − c2 or − (1 + a)|b| = c2, which imply that |b| = c or c2 < 0. These are
contradictions.

Suppose that 1 = T ((1, t), (1, y)) = a+ bty + c(t+ y). If c− |b|t > 0, then

y =
1− a− ct

c− |b|t
, t ≤ min

{1− a− c

c− |b|
,
1− a+ c

c+ |b|

}
= min{−1, 1} = −1.

Hence, t = −1, y = 1, and ((1,−1), (1, 1)) ∈ Norm(T ). If c− |b|t < 0, then

y =
1− a− ct

c− |b|t
, 1 =

1− a+ c

c+ |b|
≤ t ≤ 1− a− c

c− |b|
= −1,

a contradiction. Hence, there are no norming points of T in this case.
Suppose that −1 = T ((1, t), (1, y)). If c− |b|t > 0, then

y =
−1− a− ct

c− |b|t
, t ≤ min

{−1− a− c

c− |b|
,
−1− a+ c

c+ |b|

}
=

−1− a+ c

c+ |b|
< −1,

a contradiction. Hence, there are no norming points of T in this case. If c − |b|t < 0, then
y = −1−a−ct

c−|b|t > 1 because (|b| − c)t ≤ |b| − c ≤ |b| < 1 + a + c. This is a contradiction.
Therefore, there are no norming points of T in this case.

Suppose that ((1, t), (y, 1)) ∈ Norm(T ) for some t, y ∈ [−1, 1]. Then,

1 = |T ((1, t), (y, 1))| = |ay + bt+ c(1 + ty)| = |y(a+ ct) + c+ bt|.

Since a > c, a+ ct ̸= 0. Suppose that 1 = T ((1, t), (y, 1)). Then,

y =
1− c− bt

a+ ct
, t ≤ 1− a− c

c− |b|
= −1.

Hence, t = −1, y = 1, and ((1,−1),±(1, 1)), (−(1, 1),±(1,−1)) ∈ Norm(T ).
Suppose that −1 = T ((1, t), (y, 1)). Then,

y =
−1− c− bt

a+ ct
, 1 =

−1− a+ c

c+ |b|
≤ t.

Therefore, t = 1, y = −1, and ((1, 1), (−1, 1)) ∈ Norm(T ). We claim that c + at ̸= 0 for all
t ∈ [−1, 1]. Indeed, assume that c+at = 0 for some t ∈ [−1, 1]. Then, ±1 = b+ct = b−c

(
c
a

)
,

which implies that ±a = ab−c2. Hence, a = |±a| = |ab−c2| = a|b|+c2, so a2 = a(1−|b|) = c2,
so a = c, which is impossible since a > c. Suppose that ((t, 1), (y, 1)) ∈ Norm(T ) for some
t, y ∈ [−1, 1]. Then,

1 = |T ((t, 1), (y, 1))| = |aty + b+ c(t+ y)| = |y(c+ at) + b+ ct|.
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Suppose that 1 = T ((t, 1), (y, 1)) = aty+ b+ c(t+ y). Let c > 0. Then, y = 1−b−ct
c+at

. Note that
if c + at > 0, then t ≥ 1−b−c

a+c
> 1. Hence, there are no norming points of T in this case. Let

c+ at < 0. Then, t ≤ 1−b+c
c−a

< −1. Thus, there are no norming points of T in this case.
Suppose that −1 = T ((t, 1), (y, 1)). Then, y = −1−b−ct

c+at
. If c+ at > 0, then

t ≥ max
{1 + b− c

a− c
,
−1− b− c

a+ c

}
= max{1,−1} = 1.

Hence, t = 1, y = −1, and ((1, 1), (−1, 1)) ∈ Norm(T ). If c+ at < 0, then

t ≤ min
{1 + b− c

a− c
,
−1− b− c

a+ c

}
= min{1,−1} = −1.

Therefore, t = −1, y = 1, and ((−1, 1), (1, 1)) ∈ Norm(T ). By Lemma 2,

Norm(T ) = {(±(1,−1),±(1, 1)), (±(1, 1),±(1,−1))}.
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