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LOGARITHMIC DERIVATIVE ESTIMATES OF MEROMORPHIC
FUNCTIONS OF FINITE ORDER IN THE HALF-PLANE

I. E. Chyzhykov, A. Z. Mokhon’ko. Logarithmic derivative estimates of meromorphic functions
of finite order in the half-plane, Mat. Stud. 54 (2020), 172-187.

We established new sharp estimates outside exceptional sets for the logarithmic derivatives

k (k)
%kf(z) and its generalizations j‘cmgz;,
half-plane, £k > j > 0 are integers. These estimates improve known estimates due to the
second author in the class of meromorphic functions of finite order. Examples show that size

of exceptional sets are best possible in some sense.

where f is a meromorphic function f in the upper

Estimates of the logarithmic derivative £ F " and its generalizations have many applications
in different branches of analysis and differential equations [12]-[13]. They are of particular

importance in the Nevanlinna theory, where the Lemma of the logarithmic derivative plays
an important role (see [2[, [10], [11], [12], [15], [17],).

While in the mentioned results the integral means log J%‘ is estimated, in differential

fl ‘ and uniform estimates of the logari-
thmic derivatives. The case of meromorphic or entire function f is well studied. For instance,
G. Gundersen [13] proved that for a meromorphic in C function f of finite order p one has

[F'(2)/f(2)] < K[z, 2 € C\E, (1)

where F is the set of disks with finite sum of radii. This result improved an old result of G.
Valiron ([19, p. 87]). Recent sharp uniform estimates of the logarithmic derivative (see e.g.
[3], [4]) are based on deep results due to J. Anderson and V. Eiderman. [1].

A counterpart of (1) for meromorphic functions in the unit disk was obtained in [5].
Similar sharp estimates with applications to complex differential equations can be found in
[6], [7]. One of the most general estimates covering both complex plane and unit disk cases
have been recently obtained in [8].

Let

equations one needs estimates of the mean values of ‘f—

Ci(ro) ={z=re?:0<0<mry<r < +oo},
w(z), z € C4(r9) be a meromorphic function. Consider Nevanlinna’s characteristics of w(z),
z € Ci(rg) [12, p.40]. Denote
Alr,w) = 7 [, (7 — 52) (log™ [w(t)| +log™ [w(-1)|) dt,
B(r w) = % fﬂ og+ |w(7“e )| sin 6 df, (2)
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where log" # = max(log z,0), z > 0,

c(t,w) = c(t,00) = Z sin 6,

T0<‘bl‘<t,0<01<ﬂ'
is the counting function of poles, each pole b; = |b;|e" is counted due to its multiplicity,
S(r,w) = A(r,w) + B(r,w) + C(r,w), o < 1 < +00. (3)

We denote (see (2))
c(t,0,00) = c(t,w) + c(t,1/w), (4)

i.e. ¢(t,0,00) is the counting function of zeros and poles of f.
It is well-known [12, p. 39-41], that

|log | f]| = log™ | f| +log™ |1/ fl;

max{B(r, )+ B(r, %),A(r, f)+ A(r, %),C(r, f)+ C(r, %)} < 25(r, f) + const. (5)

The quantity . Strw)
— log r,w

plel = rginoo log r

(6)
is called the growth order of the function w(z), z € C(ro).

Though the unit disk is conformally equivalent to the half-plane C; = {2z : Im z > 0}, it
is impossible to transfer directly the mentioned results to functions meromorphic even in C, .
In [14] an example is constructed showing that there is no counterpart of the logarithmic
derivative lemma of Nevanlinna [12, p. 116, 137] for functions meromorphic in the upper
half-plane (cf. [10]). In particular, it follows that it is impossible to obtain an estimate of the

modulus of the logarithmic derivatives uniformly in arg z for such functions.
A. Z. Mokhon’ko proved that

['(2)
f(2)

where E' is the set of disks with finite sum of radii, K is some constant.
For meromorphic functions f(z),z € C one can deduce from the inequality (1) the
estimate for | (2)/f(2)|, using the equality

f@)
4

K|Z|2(p+1+€)

, z=re* € C\ E, (7)

sin? ¢

n)

fm—n
f(n=2)

‘L’
17

This method relies implicitly on a theorem stating that the growth category of f is not
less than the growth category of f’ [12, p. 131, Theorem 2.3|. In its turn, in the proof of
this theorem the logarithmic derivative lemma is used, which has no counterpart for the
half-plane (see the previous remark).

Thus, we skip “quick” proof and start with an estimate for |d" log f(z)/dz"|, which is of
independent interest.

We apply the more powerful method of light points, which allows us to obtain better
results. Using Theorem 2, we deduce an estimate of the logarithmic derivative via growth

ﬁ
- ‘ D)
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characteristics of the function f outside an exceptional set. The estimates and the size of
exceptional set are related via a function-parameter . It is impossible to avoid exceptional
sets, because the logarithmic derivative is unbounded in any neighborhood of a zero or a
pole of the function.

We denote D(z,0) ={( € C:|(—2z| <o}

Theorem 1. Let f(z), z € C,(rg) be a meromorphic function. Let (r,)%2; be an increasing
to +00 sequence and ¢: (0,4+00) — (0,+00) be such that ¥(r,41) = O(r,—1) (v — +00).
Then for z = re’?, 0 < ¢ < T,

d"log f(z)

1(13‘9(1”_’_1,]) ” (Z>
+
dzn

(Fo1 — 12 sin™ L | sin"

, Tyl <r<ry,,

where

c(ry41,0,00)7,41

log - , n=1,

W (2)| < gb(ngl)) o () sing . 2€CL(ro)\E, (8)
Cc(Ty41,U,00
Froi)sing ) n>1,

C(TV-H: Oa OO)

for some set E C |J; D(zj,0;), a locally finite covering {D(zj,0;)};>1, and a constant K
depending on n and ry. Moreover, there exists vy € N such that

v+1
Z o; <12 Z W(ry), v — +oo. 9)
|z5|<ry k=19

Choosing 9 (r) = er”™, where 7 € (0,1], 1 > € > 0, we obtain the following corollary.

Corollary 1. For anye € (0,1],7y>1, 7€ (0,1], z =re®, 0 < o < 7,

d"log f(z) ‘ _ K" 2S8(vyr, f) N W(2)

dz™ (/}/% — 1)”+1r”—1 Sinn+l %) sin” 90’
and
K ¢(vyr,0,00) | c(yr,0,00)r =" ]
— s , n=1,
WEl<ge, o, esin g , 2€Cy(ro) \ E;,  (10)
K c(*y'r,(),oo)) n>1
5 77T sin @ ? ’

where E. C |J; D(2j,0;), the covering { D(z;,0;) };>1 is locally finite, the constant K depends
onn, ro and 7,

Z o; <eKo(v)R", r— 400, (11)
lzj|<R
, 1272 . .
with Ko(v) = e In particular, if S(r, f) has order p, then

dr 10gf<2) ’Z‘p—i-l—r—i-e n
dz" ) = < 2 > , 2 Er

sin® ¢
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Corollary 2. If we write ¢(r) = (logr)™*7%, § > 0, then W (%) allows the following estimate
for z =re" € C,(rg) \ Fy, 0 < ¢ < 7 and some positive constant K(§) > 0:

c(yr, 0, 00)r logH‘; r

KC(F)/?% 07 OO)(IOg 7.)1+5 IOg Sil’l 90 9 - 17
W(z)| < 146, ; (12)
K(C(W, 0,09)(10g7“) > | N1,
sin ¢

where Ey C | ). D(z;,0;), the covering {D(z;,0;)};>1 is locally finite, and
j VRN §2935) 55>
> oj < K(9). (13)
J

In particular, if S(r, f) is of order p, then

O < (BF) s (1
(n) +14+e\ n
’ff(z()Z)‘SUZ'i;w ). =¢E (15)

where E satisfies (13).

Without loss of generality we assume that f(rpe®) # 0,00; 0 < 6 < 7. Otherwise, we
can enlarge a bit ry such that this assumption holds.
The proof of Theorem 1 relies on the following theorem.

Theorem 2. Let f(z), 2 € C,(rg) be a meromorphic function. If z = re™, ry < |z] < s,
Imz > 0, then Vn € N

d"log f(2) Ks*S(s, f) (§>”+
dzn (s —r)mtisin™t o \r
K sin 6, sin 6,
K K= t > 0 16
s 2 (ot ) I K = om0 (16)

ro<l|cq|<s

where S(r, f) is the Nevanlinna characteristic of f(z), z € CL(ro) (3), ¢, = |c4| exp(i,) €
Z; UPy, Py and Z; stand for the set of poles and the zero set of f, respectively.

Remark 1. If f(z), 2 € C,(ry) has finite order p, then for arbitrary ¢ > 0 the previous
theorem implies
d"log f(2)

K|z| D+ 142)
<
dzm

, 2 ¢ E, (17)

sin?"
where E = [, D(cqg, |cg| #7717 sinf,), is a set of disks with finite sum of radii centered at
zeros and poles of f, n € N.

Combining (17) and Lemma 1, it is not hard to get
‘f " (2)
/()

K’z‘Qn(p—f—l—f—a)

< , 2 ¢ E. (18)

sin?" ¢
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Remark 2. If n = 1 both estimates (17), (18) coincide. If n = 2,3,4, ..., then they are
different.

Remark 3. For a meromorphic function f(z) in the angular domain {z : a < argz < f,
|z| > r1}, relationships similar to (16)—(18) can be obtained by application Theorem 2 to the
function fy(z) = f(z'/*¢®), k = /(3 — ), meromorphic in the closed domain {z : Imz > 0,
|z| = ro} (see [12, p. 41]). Note that estimates (16), (18) depend on ¢ = arg z.

One can apply estimate (18) in complex differential equations as Valiron’s inequality
([19]) was applied. Estimate (18) can be also used for investigation of asymptotic properties
of solutions in a neighborhood of a logarithmic singularity or in an angular domain.

Remark 4. Unlike estimates (17) and (18) interplay between the system of disks D(z;, 0;)
covering an exceptional set from Theorem 1 on one hand and the set of zeros and poles
Z;UP; of f, on the other hand, is more complicated. In particular, z; not necessary belongs
to Zy U P;. However, we can always assume that every connected component of the open
set U = J; D(zj,0;) contains a point from Z; U Py (see [3, p.123]).

1. Preliminaries. We need some lemmas.

Lemma 1. Let f(z), z € D be a meromorphic function in a domain D. Then we have for
n=23...

fME) (e S (dlog f(2)\" | d"log f(2)
/) ‘(f(z)) *EZB ( = )* e W)

=)

where we sum up over all iy, ..., i, such that 0 < iy,...,0,—1 < n, > qiy = liy + 2iy +
<o+ (n—1)i,_1 =n; B;, i, _, are nonnegative.

Proof of Lemma 1. Branches of the multivalued analytic function Log f(z), z € D, are
holomorphic in some small neighborhood of z, z # ¢, € Z; UP;. If a disk {5 : |n| < §} is
such that {n : [n| < §} N (Z; UPs) = @, then any branch log f(z) of Log f(#) in this disk
can be represented as a convergent series

1 dlog f(2)

log f(z +n) —log f(2) = ; Ao (20)
Thus ,
B — 1 d'log f(2) ;
fz+m) = f(2) eXp{;ﬁTn bl <. (21)
Counsider the series .
Fe) = )+ 3 P (22)
=17
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Direct computations show that A1 = (z)/f(z) For n = 2,3, 4, e

1)) T (dlog f(2)\" | 1 d"log f(2)
A"_H<f(z)) + Z By, 1n1H(T) +HT’ (24)

015y in—1 g=1

where we sum up over all integers 7y, s, ...,7,_1 satisfying 0 < 4y,19,..., 1,1 <mn, 1li; +
2ip + -+ + (n — 1)i,—1 = n; the constants B;, ; , are nonnegative. Relations (22), (23)
imply A, f(z) = # f™(2), consequently, (24) (after the reassignment of the coefficients)
vields (19). O

Suppose that f(z) z € C4(r¢) is meromorphic, ¢, = |¢,| exp(if,) € Z¢ U P;.

Lemma 2. Let R > s > ry. Then

R*sC(R,0,0)
C(S’O’OO)<2(R—3)(R+S)' (25)
Proof of Lemma 2. 1t follows from the definition of C(r, f) that
B ‘ 11
C(R,0,00) =C(R, f)+C(R, f77) = 2/c(t,0, 00) (— R2) dt >
n S
2¢(s,0, oo)/ (tl? + %) dt = 2R _;)QER il 8>c(s, 0, 00).
[
Let 3 3

F(z,¢) =log[(s* = 20)(z = ()(2 = ()7 (s* = 2¢) 7], (26)

2, e U={z:1r9 < |z] <s,Imz > 0}, z # (, be a branch of the multivalued function,
which will be specified in each case.

The derivation operator by internal normal to the boundary of U applied to Re F(z, ()
and f(¢) with respect to the variable { is denoted by 9/dn.

The following Nevanlinna formula was established in [18].

Lemma 3. Let f(z) # 0 be meromorphic in U = {z : 19 < |z| < s, Imz > 0}, and
f(2) # 0,00 for |z| = r9. Then, for any simply connected open set V. C U satistying
VN (Z;UPs) =2 and any branch log f of Log f in V there exists a real constant C such
that for all z € V' we have

logf(2)=% [ el

—s,—19]U[r0,9]

—/ {“Z §+1 do — (27)
< ¢—=z (=se?

- Z F(zam)+ Y F(z,b) +Q(z5),

ro<lam|<s ro<|by|<s

—+

t+2 $24+tz] dt
t—2z s2—tz
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Qles) = 2 / o 71 2E24) — e, 28

where a,, are zeros, b, poles of f(z), counted according their multiplicities.

9 + iC, (28)

¢=roet?

Remark 5. In (27) F(z,a,,) and F(z,b;) denote some branches in V. In the integral (28)
we first choose an arbitrary branch F(z,rq), z € V, then choose a branch on the semi-circle
IC| = 1o, 0 < arg( < 7 which coincides with the previous one at ¢ = rq. It is possible, because

f(¢) # 0,00 when |¢| = ro.

2. Proofs of the theorems.

Proof of Theorem 2. We differentiate (27) n times by z:

i =5 1og|f<t>|[t”—52+ﬂ d,

dzm 27 t—z s2—tz|, t
[=s,—70]U[ro,s]

s — (n)
1 (+z (+=z
+%0/10g|f<4“)| ([C_Z - Z—z]we)z a6

— Y FMzan)+ Y FM(zb) + QM (z,s). (29)

ro<|am|<s ro<|bj|<s

The following equalities are valid:

ttz 24t 2tn! 252"
{t — 2 82— tZ:|Z - (t — z)n+1 - (s2 — zt)ntl’ (30)
c+z C+2\" 2wl 9Tn) .
(C_Z_ZTZ>Z _(C—z)”“_@_z)nﬂ’ (31)
(F(z,0)™ = _(O:(” )L e VL et D IO S ] )

(s2 =20 (C—2m (C—2) (2=
On the arc {¢ : ( = roexp(i6),0 < 6 < w} the derivative by the internal normal at the point
¢ = pe'? has the form OF(z,¢)/dn = OF (2, pexp(if))/0p. Therefore,

OF —Z 1 z 1
On G200 R Ry T : (33)
O Joppeio %€ —2zmg  ze™® —1rg  s%e™® — 21y ze? — g
Differentiating (33) n times by z we arrive to
1 (OF(z,1r9e") e _ st e~ in? N
n! on B (s2e — zrg)ntl  (rg — ze~W)ntl
§2p—i0pn—1 oind
+ > (34)

(s2e—1 — zpg)ntl T (ro — zeif)n 1’
Let
ro+1<|z| <s, s>max(2rg,79+ 1). (35)
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0 — 2ro| > 82 —srg; [ro— 27| > 1, |rg — 2ze?| > 1. These inequalities

OF (z,10e%) )
on B

Suppose that (35) holds and || = ro. Then |z — | > 1, [z — ¢| > 1; |s? — 2C| > s® — s1p =
s(s —ro) > sro, |$* — 2| > s — srg > srg, and (32) allows the estimate

[(F(2,0)] L, < 4(n—1)! (37)

Since f(roe™) # 0,00, we have |log|f(roe™)|| < K, |01log|f()]/ON|¢capperr < K, 0 < 6 <
7, K = const. Thus, (28), (36), (37), imply

Then |s%e% — 2|, |s%e
and (34) yield

< 4n!. (36)

1(Q(z,5) ™| < 4roKn!, K = const, (38)

where K does not depend on z and s.
Using the binomial formula and elementary calculation, we rewrite (31) in the form

1 (g+z_z+z)<”) S €y (=) (¢ —CCJ) (39)

w\C—z (-2 (€= 2) (¢ -2

Since " —y" = (z —y)(z" ' + 2" 2y + - - + 2y 2 +y" 1), the numerator in the right-hand
side of (39) can be represented as follows

n+1 )
(—2)" =)+ Y Ol () AT — ¢ =
j=2
n+1

=<<—Z< Zczﬂ 2R Zw“). (40)

If ¢ = se, then ¢ — ¢ = 2i|(| sin @. Therefore, combining (40) and the formulas

zn:jc,{ =n2" !, zn: Cl=2" (41)
§=0 j=0

we estimate the numerator in the right-hand side of (39) (|z| < |(] = s),

n+1
. el —i .
DO (=) HCRET - <
=0
n+1 '
< 25infs™+? (1 +3 00,6 - 1)) < 25infs"2(n2" + 2).
=2

Hence, taking into account (39), and the inequalities |¢ — z| > ssing, |[¢ — 2| > s —r, we

have B
<§—|—z_§+z>(n) Kssinf
g—Z Z_Z z

(s — r)mtlsin™ o

, (42)

¢=sei?
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K = 4n!(n2™ + 2) does not depend on s. The expression (30) is estimated similarly:

1 (t+z s2+t\™ (8% — at)" T — St — 2)" ]
t—z s2—tz B (

onl N t— 2)nHl(s2 — zt)ntl
We write the numerator on the right-hand side of (43) in the form

n+1 n+1

tz Cy];+1(_zt)n+1*j82j 2tn Z Cr,JH_l n+1 Jt] —
7=0

n+1
— E C%+1 n+1 ](tn+2 ]82] Qtn+]) —

= 5" (Z O e (Co <t2>9‘-1>> — (=) (R - ) =

n+1 Jj—2
= (s> — 17 (ts D O (=2t I (SPY TR — (- z)"“t”). (44)

j=2 k=0
Since |z| < s,|t| < s, using (44), (41), we deduce

t(s% — 2)" T — 2t (t — 2)" T < (87 — t2)[t|s* (n2" + 2). (45)
For z = re’?,t € R, |t| < s, we obtain
|82 — zt| > s(s—71), |z —t| =rsing, |z—t| > |tsine. (46)

Thus, (43), (45), (46) imply
t+z S+tz =)
t—z s2—tz),
We write (32) in the following form

(Fe) (¢ 1
(n—1) _<<82—2<>" <s?—zz>">+(<<—z>n (Z—zw)‘ )

We reduce the expressions on the right-hand side of (48) to common denominator. Since
— |¢|exp(if); = = rexp(i); |C], 2] < s, we get

[#]s7+22n] (n2" + 2) (1 1). (47)

~X . o o
(s —r)ntlsin®ttp \ 2 $2

|s? — 2¢|, |s* — 2(| > s(s — 1), |C — 2| > rsinp. (49)
We then show that at least one of the inequalities
|57 — 2(| > s?sing, |s* — 2(| > s%sing

holds. In fact, since 0 < p < 7, 0 < @ < m, the points z{ = r[(|e!**?) | 2{ = r[¢|e*~9 lie in
different half-planes with respect to the line A = {z : z = te'?, ¢ = const, —o0o <1 < +oo}.
Without loss of generality, we may assume that the points s? and z( lie from both sides of the
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line A. Then |s%— 2| is greater than the distance from s? to A. Therefore, |s? —2(| > s?sin .
Combining this with (49) and with the equalities 2" — 3" = (z — y)(z"' + 2"y +--- +
xy" 2 +y" 1), ¢ — ¢ = 2i|(|sinh, we obtain the following estimate for (48)

sin @ 1 1
1om .
< (<s—r>n s z|n) (50)

(P00

It follows from (29), (38), (42), (47), (50) that

d"log f(z) s 2 / 1 1
< 1 O =——=|dt
(s — ) sin™ | log [ f(t)]| ORI +

dz"
[=s,—70]U]ro,s]

1
K

82 1 r 60 .
T (S _ r)nJrl Sinn—f—l 90% / ‘ 108; |f(5€ )|| sin 60d6-+
0
— Z Sin q + Sin q + ]‘7 K = Const' (51)
S @ (S—T)" ’Z—Cq‘"
ro<l|cq|<s

By the definition of the Nevanlinna characteristic (3), (5), and (51) we obtain (16). O

Proof of Theorem 1. We denote

K sin 6 sin 6
Wi(z) = 1 1 K
&= gy 2 <<s—r>n+|z—cq|n)+ |

ro<|cq|<s

where K is the constant from (16). Then, according to Theorem 2 we have

d"log f()
dzn

Ks2S(s, f) (s

(s —r)tlsin™t o ;)n + W), (52)

z=re¥ €Cy(ry), r<s 0<ep<m.
We define
G; = {C € C+(7"0) cTy—1 S ’Cl S rwImC Z O},
GI/ = {C € C—F(TO) Ty—9 < Kl S T,,+1,IH1C 2 O}a 14 2 ,
where 1y is the least natural satisfying the inequality 20 > rq. For a fixed z we denote
also GF(2) = {C € G, : p1/2 < arg( < 7 — 1/2}, where p; = min{p, ™ — ¢}, z = re'?,
G, (2) =G, \GJ(2).

We then define a discrete measure \,, v > 1 on C in the following way

M(F) = Z sin g,

cq€FNG,
where F' C C. A point z € G}, is called light, if for an arbitrary o > 0

M) END(z o)=Y sinb < by, (53)
lcx—z|<o
cL€Gy



182 I. E. CHYZHYKOV, A. Z. MOKHON’KO

where b, = % We may suppose that A, (G,) > 0, otherwise all points of G are light.

If 2 is not light, we say that it is heavy, i.e. for some o, > 0 one has \,(D(z,0.)) > b,0..

Next, we show that the set of light points in G is open in in G. For fixed v € N,
z € G¥ consider the function \,(o0). Since ), is a discrete measure with supp A, C G,
and z € G}, X\, (0) is a nondecreasing step function with finitely many jumps at points
O0<oy <09 < -+ <oy <r,+ 1,41, where the number of jumps m depends only on z, v
and f. Moreover, A, is continuous from the right, and A,(c) =0, 0 < 0 < 07 provided that
z is light.

Therefore, by (53) and the definition of ¢;, 1 < j <m,

)\z(a) )\Z(aj)

sup = max ———= =D, <b,.
o>0 O 1<j<m 0;j

We choose 6 € (0, (1 — %))01,
we have

s < g—”z. Then for any w € D(z,d) and o > 0

M (D(w, o)) - M(D(z,040)) Ao +6) <

o o o
< sup M(o+06)o+6 <D Ty
>0 o+ g 0'1—5

So, w is a light point, and consequently the set of light points from G} is open in GJ.

We cover all heavy points z by open disks of the radius 20, centered at z. Then, by
Ahlfors-Landkof lemma [16, Chap.III, Lemma 3.2, p.246], there exists an at most countable
subcovering of multiplicity not greater than 6 by disks D(z4,, 20, ). Taking into account
that the set of heavy points is closed in G, as the complement to an open set, we conclude
that the set of heavy points is compact. Therefore, there exists a finite subcovering
{D(zk., 20%”)}&1. Further, by the definition of a light point we deduce

_ 6
>0 S 5 D WD) € b—yxy(U D(20, 202, )) <
k=1 k=1 k=1
6 §
< b_Ay(Gy> < b—C(Tu+170 00) = 6v(ry11)

Let us estimate the exceptional set of heavy points. For R € (r,,_1, 7], m € N we have

m Ny
Z Ukl/ S Z Zazk < Z 6’17D 711/+1 (54)
|2k, <R v=vgy k=1 v=ug

Let z be light. We write the sum
sin 6, sin 0,
55
Yt (Z e ¥ )ty )
ce€Gy cq€GE (2)

It follows from the definition of a light point from G, that sinf, < b,|z — ¢,|. Thus, in
the first sum in (55) we have

2ryp1 2 [z — ¢l 2 81210(1 > 51n(;)01/2).
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Since A, (t) < b,t, by properties of the Stieltjes integral

(56)

). (57)

2ry 41
Z sin g, < / d\,(T) / dA.(t)
~ |z —cq|™ — |7 —z|* — tn
C‘IGGV (Z) G;"(z) sin %
¥
o tn o |sin SL g+l (27ay+1)n—1 tr ’
by sin 1 sin 1
2 2
by by
If n > 1 the last estimate yields
3 sin 6, b, no b, |7 n N
n — n—1 n— = . -1 >~
verdll |z — ¢4l (2ry4)"t n—1tnt SHZVT n—1lsin"" 2
< 2 (C(TV_H,O,OO))"
~ sin" ! o W(rys1) '
If n =1, then
9 2by v v ,O; 2 14 v 707
Z sinfy, _ b, 4 b1 r(;lrl < c(ry41,0,00) (1 log ryprc(r L <p?0)
ot |2 — ¢4 in 5 Y(ru+1) Y(ry41) sin 5t
cq€GY (2
The second sum in (55) allows the following estimate
sin 6, 1 _ c(ry41,0,00)
< 0, <
ecz()‘z_c(ﬂ" ~ rmsin” £ Z e =
cq€Gy (2

rnsin™ £t
2 Gy (2) 2

Observe, that sin £+ = Lsingl

2cos £L

> |sinp|/2. Then
Inequalities (56)—(58), the assumptions ¥(r,.1) = O(r,—1) (v — o0) and n >
that for the light points from G%, (r,_; < r,) we have

Z 4 <¢(7"u+1)

C"(T,,+1,0,00) < . QOl ) ) < K Cn(’]”l,+1,0,00)
cq€Gy 2 r B (w(

K rm) sy o))"
Finally, taking into account Lemma 2 and (5) we obtain

sin 0,

B Cq‘n N

Z |Sln—0qn < Z sin eq _ = C(TV_Q,O, oo)n <
Wo el T e )t )
o 1C(r,1,0,00) - 2 (2S(ry_1, f) + O(1))
I (Ty—l _T,V_2)n+1 =

(TV—I - TV—2>n+1
The statement of Theorem 1 now follows from (52), (54), (59) and (60)
Proof of Corollary 1. Let v > 1, r, = /2.

(58)

1 imply

(59)

183
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Taking into account that r, 3 = yr,—1 < r, r/y < r,_; for z € G, we obtain
Wi <K—— = —
W)l < esin"p €
K 0
S - C(/}/T’ T’ (X))

b K rc(yr,0 oo))n
X - > 1
( rTsing / b

c(vyr, 0, 00)

W (z)| n=1.

log

€ T sin

We estimate the exceptional set for R € (ry—1,7m], m > vy,

rm

Z Ok < i 1257% < 1251 ve

|Zk,u|§R v=ro N ’7

12e~2
7 R

_ <
T <

1—7_5

]

Proof of Corollary 2. Inequalities (12) and (13) can be obtained similar to that in
Corollary 1. Further (12) implies (14). It follows from (14) that (> qi, = n, |z| =71, 2 ¢ E),

n—1 ! n—1 . .

d11 ’q a(p+1+e)iq (p+1+e) 3" qiq (p+1+e)n
H( ng(z)) <KHT- 2qi KT' > 2gi Kr- 2n . °
1 dz4 =1 S p (sin )2 2diq sm=" @

An application of Lemma 1 and (61) yield
f"(2)
f(z)

n(pt1+e)
< K.

JZ¢E7

sin?" ¢
where E satisfies (13).

3. Examples.

(61)

]

Ezample 1. Consider the function fi(z) = e¢*, 2 € C, (1), where p > 1, and the branch
of the power function is chosen such that i” = ¢”™/2. Since f; is nonvanishing, C(r, f;) = 0,

and standard calculations yield S(r, f1) ~ Ki(p)r*~!, r — 400 (cf. Example 2).
Obviously,

d" log f .
TN oo 1) (- DlP pg (23, n 1),

On the other hand, Theorem 1 gives the estimate

d"log fi
dzn

TP

n+1 o’ z=re¥ e Ci(D).

\SK.
S1n

Ezample 2. Consider the Mittag-Leffler function E,(z), for p € (3, +00) \ {1} (see e.g.

[9]). A. A. Gol’dberg proved (|11]) that for all ¢ > 0 there exists P > 0 such that
’EL(Z)
Ep(z)

| <P 2] = 00,2 ¢ | DO gl ),
k

where {)\ : £ € N} is the zero sequence of E,(z) ordered according to increasing moduli. It

is known ([9, p.156]) that A, satisfies the following asymptotics (o = 1/p)

. 1 logn . logn . 1
— ima/2 = il
A, = e (27m)"‘<1 1 2n+0*( 2 )—H 5 n—l—zO*(n)), n — 090,

N 1 log” n
[Anf = (2mm) (1_4p2n+0< n? ))’ n oo

(62)

(63)
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where O, (-) = O(-) stand for real values. The following asymptotics of E,(z) is well-known.

+O<Z>, |arg 2| < I,
E,(z) = % Z — 00.
O<l)7 2—§]argz[§7r,

p

z

It allows us to compute its characteristics

A(r,E,) ! / T(t—Q L 2 — + (64)
r ~ = —r =—— T 00
)~ ), TP 1) ’
2 (% ; 2rP7t % _
B(r,E,) ~ Re(re”?) sin 0 df) = cos pfsinfdh, r— +oo. (65)
T Jo n 0
The equality (62) implies c(r, E,) ~ —2~
sin o~ [T 2psin o=
C(r,E,) ~ 2 / <tp 2 2) dt = 2—2’)7"’_1, r— o0.
T )1 7" m(p* — 1)

So, S(r, f) ~ Kor?™! as r — oo, where Ky = K5(p) is a positive constant.
Following A. A. Gol'dberg, for a given n € (0, min{m — 7a/2,7/2}), we consider the
angle W ={z : ma/2 —n < argz < ma/2 + n}. For z € W the following asymptotics

e oa 1 B 1
Ep(z)—pe —;‘FO(;), a—m, Z—>OO, (66)
and 1
E\(z) = p*z e’ + O(;), Z — 00 (67)

hold. It follows from (62) that given gy > 0 there exists Ry > 0 such that for |\,| > Ry (62)
holds and the disks D(\,, ¢|A\.|'77), 0 < ¢ < qo are pairwise disjoint. Let ng € N be such that
| Ano| > Ro. Let {q,} be a decreasing sequence of positive numbers with ¢, < qo, which will
be specified later. At the moment we assume that max{|\,|72, |\,| ™"} = o(g,) as n — oo.
For a point ¢ € dD(\,, q|\n|177) we have ¢ = A\, + g|\.|* 7€, 6 € [0,27], 0 < ¢ < @, Using
the relation ([11])

1
)\—2), n — oo,

and the fact that |exp{pge?® + O(\;?)}| > K3 for n > ngy, 0 < ¢ < q,, 0 < 0 < 27, where
K3 = Kj3(p) is a positive constant, we deduce

C”ll <”+O(<2)‘ >
= p°|¢|Pexp{ A2 + pge + O(\,”)} + O(|¢| ) =

*O()M“Mmﬂ+0@pm+omw%zg%%i,

pett = Ain+0(

|E,(O)] =

=p*lCl

An

where K, is a positive constant.
On the other hand, |exp{pge? + O(\;*)} — 1] = O(¢,), 0 < ¢ < gn. A. Gol’dberg proved
([11, p.24]) that

E,(¢) = %n (exploge” + OO} 1) + O<A )+ O<Ap1+1>

n
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The latter relationships imply |E,(¢)| = O(%» 0 < q< qn C € IDMN,qla|'™") as
n — 0o.
Combining this with (68) we obtain

B(0)
702 Kf’%

Let now {¢,} be chosen such that ¢, — 0 and max{|\,|™2, |\,| ™"} = o(¢,) as n — co.
Consider the set

, CE€ D, qulAa]' ™), n— 00 (69)

E(
Ep(

¢t 1
¢ 2

1
P = {C 10> Ro [ 20 2 B lE L+ ) <161 < 5001+ P

Then F D U2 DM, qulXn|'™?), and

n=ng

n(r)
1

_ 1p 1 o
D @l =D (g +0(1))27n 5 ~ 27 pgury (n(r)) 7 ~ (21)' guiryr, T — 00,

[An|<r n=mng

Note that g, can be tend to zero arbitrarily slow, which shows sharpness of the estimate of
exceptional set in Corollary 1 for ¢(r) = r.
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