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ON UNIQUENESS OF TWO MEROMORPHIC FUNCTIONS SHARING

THREE SETS WITH FINITE WEIGHTS

M. B. Ahamed. On uniqueness of two meromorphic functions sharing three sets with finite
weights, Mat. Stud. 53 (2020), 147–158.

With the help of the notion of weighted sharing of sets, this paper deal with the ques-
tion posed by Yi [17] regarding the uniqueness of meromorphic functions concerning three set
sharing. A result has been proved which improved the recent results of Banerjee–Ahamed [3],
Banerjee–Mukherjee [5] and Banerjee–Majumder [4] by relaxing the nature of sharing. Several
examples have been exhibited to show the sharpness of the cardinalities of the sets S1 and S2

considered in Theorem 1. Moreover, we give some constructive examples to endorse the validity
of our established theorem.

1. Introduction, definitions and results. In this paper by a meromorphic function we
will always mean a meromorphic function in the open complex plane. Let f and g be two
non-constant meromorphic functions and let a ∈ C ∪ {∞}. For standard definitions and
notations of value distribution theory we refer to the reader to see [9]. We denote through
out the paper C∗ = C \ {0}.

If f and g have the same set of a-points with same multiplicities then we say that f and
g share the value a CM (Counting Multiplicities). If we do not take the multiplicities into
account, f and g are said to share the value a IM (Ignoring Multiplicities).

Definition 1. For a non-constant meromorphic function f and any set S ⊂ C, we define

Ef (S) =
⋃
a∈S

{
(z, p) ∈ C× N : f(z) = a with multiplicity p

}
,

Ef (S) =
⋃
a∈S

{
(z, 1) ∈ C× {1} : f(z) = a

}
.

If Ef (S) = Eg(S) (Ef (S) = Eg(S)) then we simply say f and g share S Counting
Multiplicities (CM) (Ignoring Multiplicities (IM)).

Evidently, if S contains one element only, then it coincides with the usual definition of
CM (IM) sharing of values.

Next we explain some definitions and notations which will be used in the paper.

Definition 2 ( [12]). Let p be a positive integer and a ∈ C ∪ {∞}.
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(i) N
(
r, 1

f−a |≥ p
) (

N
(
r, 1

f−a |≥ p
))

denotes the counting function (reduced counting
function) of those a-points of f whose multiplicities are not less than p.

(ii) N
(
r, 1

f−a |≤ p
) (

N
(
r, 1

f−a |≤ p
))

denotes the counting function (reduced counting
function) of those a-points of f whose multiplicities are not greater than p.

Definition 3. Let f and g be two non-constant meromorphic functions such that f and g
share the value a with weight k where a ∈ C ∪ {∞}. Let f and g have same a-points with
respective multiplicities p and q. We denote by N (k+1

E (r, 1
f−a) the counting function of those

a-points of f and g where p = q ≥ k + 1, each point in this counting function counted only
once.

Definition 4 ([16]). For a ∈ C ∪ {∞} and a positive integer p we denote by

Np

(
r,

1

f − a

)
= N

(
r,

1

f − a

)
+N

(
r,

1

f − a
|≥ 2

)
+ . . .+N

(
r,

1

f − a
|≥ p

)
.

It is clear that N1(r,
1

f−a) = N(r, 1
f−a).

Definition 5. Let N1)(r,
1

f−a) denote the counting function of the simple zeros of f − a and
N (2(r,

1
f−a) denote the reduced counting function of the a-points of f of multiplicities ≥ 2.

It follows that

N2

(
r,

1

f − a

)
= N1)

(
r,

1

f − a

)
+ 2N (2

(
r,

1

f − a

)
.

Definition 6 ([19]). For a positive integer p and a ∈ C ∪ {∞}, we put

δp(a; f) = 1− lim sup
r−→∞

Np

(
r, 1

f−a

)
T (r, f)

, Θ(a; f) = 1− lim sup
r−→∞

N
(
r, 1

f−a

)
T (r, f)

Clearly 0 ≤ δ(a; f) ≤ δp(a; f) ≤ δp−1(a; f) ≤ . . . ≤ δ2(a; f) ≤ δ1(a; f) = Θ(a; f).

In 1926, Nevanlinna first showed that a non-constant meromorphic function on the
complex plane C is uniquely determined by the pre-images, ignoring multiplicities, of 5
distinct values (including infinity). A few years latter, he showed that when multiplicities
are taken into consideration, 4 points are enough and in that case either the two functions
coincides or one is the bilinear transformation of the other one.

The uniqueness problem for entire or meromorphic functions sharing sets was initiated
by a famous question of Gross in [8]. In 1976, Gross [8] asked the following question.

Question 1. Can one find two finite sets Sj, (j = 1, 2) such that any two non-constant entire
functions f and g satisfying Ef (S) = Eg(S), (j = 1, 2) must be identical?

In [8] Gross said that if the answer of Question 1 is affirmative it would be interesting to
know how large both sets would have to be?

In 1994, Yi ( [17]) posed the following question.

Question 2. Can one find three finite sets Sj, (j = 1, 2, 3) such that any two non-constant
meromorphic functions f and g satisfying Ef (S) = Eg(S), (j = 1, 2, 3) must be identical?
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In the same paper [17], Yi answered the Question 2 affirmatively and obtained a result by
showing that there exist three finite sets S1 (with 7 elements), S2 (with 2 elements) and S3

(with 1 element) such that any two non-constant meromorphic functions f and g satisfying
Ef (Sj) = Eg(Sj), (j = 1, 2, 3) must be identical.

In the direction of Question 2, Fang–Xu [7] obtained the following result.

Theorem A ([7]). Let S1 = {0}, S2 = {z : z3 − z2 − 1 = 0} and S3 = {∞}. Let f and
g be two non-constant meromorphic functions such that Θ(∞; f) > 1

2
and Θ(∞; g) > 1

2
. If

Ef (Sj) = Eg(Sj), for j = 1, 2, 3 then f ≡ g.

Dealing with the Question 2, Qiu-Fang ([15]) obtained a result with an extra supposition
that the meromorphic functions f and g both having poles of multiplicity ≥ 2. In the same
paper they also exhibited some examples to show that the condition on the poles of f and
g can not be removed.

In 2004, Yi-Lin ([18]) proved the following results.

Theorem B ([18]). Let S1 = {0}, S2 = {z : zn + bzn−1 + c = 0} and S3 = {∞}, where
a, b are non-zero constants such that zn + bzn−1 + c = 0 has no repeated root and n ≥ 3
is an integer. If for two non-constant meromorphic functions f and g, Ef (Sj) = Eg(Sj), for
j = 1, 2, 3 and δ1(∞; f) > 5

6
, then f ≡ g.

Theorem C ([18]). Let S1 = {0}, S2 = {z : zn + bzn−1 + c = 0} and S3 = {∞}, where
a, b are non-zero constants such that zn + bzn−1 + c = 0 has no repeated root and n ≥ 4
is an integer. If for two non-constant meromorphic functions f and g, Ef (Sj) = Eg(Sj), for
j = 1, 2, 3 and Θ(∞; f) > 0, then f ≡ g.

Progressively the research on Question 1 for meromorphic functions as well as Question 2
gained a valuable space in the literature and now a days it has increasingly become an
impressive branch of the modern uniqueness theory of meromorphic functions. During the
last few years a considerable amount of work has been done to explore the possible answer
to Question 2 by many mathematicians.

In 2001, the introduction of the new notion of sharing which is a scaling between CM
or IM, known as weighted sharing of values and sets by Lahiri [10, 11] further speed up the
research in the direction of Question 2.

Definition 7. Let k ∈ N ∪ {0} ∪ {∞}. For a ∈ C ∪ {∞}, we denote by Ef (a, k) the set
of all a-points of f , where an a-point of multiplicity m is counted m times if m ≤ k and
k + 1 times if m ≥ k + 1. If Ef (a, k) = Eg(a, k), we say that f and g share the value a with
weight k.

Definition 8. Let S ⊂ C ∪ {∞} be non-empty and k ∈ N ∪ {0} ∪ {∞}. We denote by
Ef (S, k) the set Ef (S, k) =

⋃
a∈S Ef (a, k).

Clearly Ef (S) = Ef (S,∞) and E(S, k) = Ef (S, 0).

With the help of wighted sharing of sets, Banerjee–Mukherjee [5] obtained the following
results.

Theorem D ([5]). Let S1 = {0}, S2 = {z : zn + bzn−1 + c = 0} and S3 = {∞}, where a,
b are non-zero constants such that zn + bzn−1 + c = 0 has no repeated root and n ≥ 3 is
an integer. If for two non-constant meromorphic functions f and g having no simple pole
satisfying, Ef (S1, 1) = Eg(S1, 1), Ef (S2, 5) = Eg(S2, 5) and Ef (S3,∞) = Eg(S3,∞), then
f ≡ g.
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Theorem E ([5]). Let S1 = {0}, S2 = {z : zn+bzn−1 +c = 0} and S3 = {∞}, where a, b are
non-zero constants such that zn+bzn−1 +c = 0 has no repeated root and n ≥ 3 is an integer.
If for two non-constant meromorphic functions f and g satisfying, Ef (S1, 0) = Eg(S1, 0),
Ef (S2, 6) = Eg(S2, 6), Ef (S3,∞) = Eg(S3,∞) and δ1)(∞; f) + δ1)(∞; g) > 5

n
, then f ≡ g.

Theorem F ([5]). Let S1 = {0}, S2 = {z : zn+bzn−1 +c = 0} and S3 = {∞}, where a, b are
non-zero constants such that zn+bzn−1 +c = 0 has no repeated root and n ≥ 4 is an integer.
If for two non-constant meromorphic functions f and g satisfying, Ef (S1, 0) = Eg(S1, 0),
Ef (S2, 6) = Eg(S2, 6), Ef (S3, 4) = Eg(S3, 4) and δ1)(∞; f) + δ1)(∞; g) > 0, then f ≡ g.

Recently Banerjee–Majumder [4] obtained two results by improving some earlier results
of Banerjee [1, 2] as follows.

Theorem G ([4]). Let S1 = {0}, S2 = {z : zn + azn−1 + b = 0} and S3 = {∞}, where a, b
are non-zero constants such that zn + azn−1 + b = 0 has no repeated root and n(≥ 4) be
an integer. If for two non-constant meromorphic functions f and g, Ef (S1, k1) = Eg(S1, k1),
Ef (S2, k2) = Eg(S2, k2) and Ef (S3, k3) = Eg(S3, k3), where k1 ≥ 0, k2 ≥ 3, k3 ≥ 1 are
integers satisfying

3k1k2k3 > k2 + 3k1 + k3 − 2k2k3 + 4 and Θf + Θg > 0,

where Θh = Θ(∞;h) + Θ(a(1−n)
n

;h), then f ≡ g.

Theorem H ([4]). Let S1 = {0}, S2 = {z : zn + azn−1 + b = 0} and S3 = {∞}, where a, b
are non-zero constants such that zn + azn−1 + b = 0 has no repeated root and n(≥ 3) be
an integer. If for two non-constant meromorphic functions f and g, Ef (S1, k1) = Eg(S1, k1),
Ef (S2, k2) = Eg(S2, k2) and Ef (S3, k3) = Eg(S3, k3), where k1 ≥ 0, k2 ≥ 4, k3 ≥ 1 are
integers satisfying

2k1k2k3 > k2 + 2k1 + k3 − k2k3 + 3 and Θf + Θg > 1,

where Θh = Θ(∞;h) + Θ(a(1−n)
n

;h) then f ≡ g.

Earlier the problem of finding the possible answer of the Question 2 was solved by Lin–
Yi [13] who answered the Question 2 by considering the sets S1 = {0}, S2 = {z : azn−n(n−
1)z2 + 2n(n − 2)bz = (n − 1)(n − 2)b2} and S3 = {∞} for n ≥ 5, where a, b are constants
such that abn−2 6= 0, 2.

In [3], Banerjee–Ahamed modified the sets S1, S2 so that S1 = {0, 1}, and the number of
elements in the new set S2 has decreased by 1 in the optimal case. Moreover the conditions
on the sharing sets Sj, (j = 1, 2, 3) has also been relaxed to the conditions of sharing (Sj, kj),
(j = 1, 2, 3), where (k1, k2, k3) = (0, 3, 2), (0, 4, 1).

From the above discussions, we have the following notes:

Note 1. The lower bound of the cardinality of the main range set S2 is obtained so far in
Theorems A, B, D, E, H and also in the result of Qiu-Fang ( [15]) is 3 with the help of some
extra suppositions.

Note 2. Also one may check that the optimal choice for the weights (k1, k2, k3) = (0, 3, 1)
in Theorem G can not be considered as it violates the condition 3k1k2k3 > k2 + 3k1 + k3 −
2k2k3 + 4.
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Note 3. We also see that in Theorem H, it is not possible to consider the weights as
(k1, k2, k3) = (0, 4, 1) and hence as (k1, k2, k3) = (0, 3, 1).

Based on the above observation, for the purpose of improving all the above mentioned
results further, one can ask the following question.

Question 3. Can we obtain a uniqueness result corresponding to Theorems A, B, D, E, H
and Qiu–Fang [15] without the help of any extra suppositions in which the lower bound of
the cardinality of the main range set will be 3?

If the answer of the Question 3 is found to be affirmative, then one natural question is
as follows.

Question 4. Is it possible to reduce further the choice of the weights (k1, k2, k3) to (0, 3, 1)
in all the above mentioned results?

Answering Questions 2, 3 and 4 affirmatively is the main motivation of writing this paper.
In this paper, we have modified the sets S1 = {0} by S1 = {0, δna,b} and S2 by an new one and
obtained two results out of which the second one directly improves all the above mentioned
results.

To this end, we next suppose that δna,b = b(1−n)
na

, where a, b ∈ C∗ and n ≥ 3 be an integer.
We consider here the S1 = {0, δna,b} as the set of zeros of the derivative of the polynomial
azn + bzn−1 + c.

Theorem 1. For n ≥ 3, let S1 = {0, δna,b}, S2 = {z : azn + bzn−1 + c = 0} and S3 = {∞},
where a, b, c ∈ C∗ = C \ {0} be so chosen that azn + bzn−1 + c = 0 has no repeated root, c 6=
− b

2n

(
δna,b
)n−1. If for two non-constant meromorphic functions f and g, Ef (S1, 0) = Eg(S1, 0),

Ef (S2, n) = Ef (S2, n) and Ef (S3, n− 2) = Ef (S3, n− 2), then f ≡ g.

Corollary 1. Let S1 = {0,− 2b
3a
}, S2 = {z : az3 + bz2 + c = 0} and S3 = {∞}, where

a, b, c ∈ C∗ be so chosen that az3 + bz2 + c = 0 has no repeated root, c 6= − 2b3

27a2 . If for two
non-constant meromorphic functions f and g, Ef (S1, 0) = Eg(S1, 0), Ef (S2, 3) = Ef (S2, 3)
and Ef (S3, 1) = Ef (S3, 1), then f ≡ g.

Remark 1. Clearly Corollary 1 directly improves the above mentioned results as we see that
the lower bound of n is 3, with the corresponding weights (k1, k2, k3) = (0, 3, 1).

The following example shows that the conclusions of the Theorems 1 cease to be hold if
we consider c = − b

2n

(
δna,b
)n−1.

Example 1. Let a = 1, b = 3, then − b
2n

(
δna,b
)n−1

= −2. Let c = − b
2n

(
δna,b
)n−1

= −2 and
S2 = {z : z3 + 3z2 − 2 = 0} = {−1,−1 −

√
3,−1 −

√
3} and S3 = {∞}. Hence we must

have S1 = {0, δna,b} = {0,−2}. Let f(z) = φ(z) − 2 and g(z) = −φ(z), where φ(z) is a non-
constant meromorphic function. It is clear that Ef (Sj) = Eg(Sj) for j = 1, 2, 3 and hence
Ef (S1, 0) = Eg(S1, 0), Ef (S2, 3) = Eg(S2, 3) and Ef (S3, 1) = Eg(S3, 1) but note that f 6≡ g.

The next example shows the sharpness of the cardinalities of the set S1 and the main
range set S2 in the Theorem 1.

Example 2. Let S2 = {z : az2 + bz + c = 0} = {γ, δ}, where γ + δ = − b
a
, γδ = c

a
,

a, b, c ∈ C∗, c 6= b2

8a
. Hence S1 = {− b

2a
} = {γ+δ

2
}. Let S3 = {∞} and f(z) = h(z) + γ + δ

and g(z) = −h(z), where h(z) is any non-constant meromorphic function. We see that all
the conditions of Theorem 1 are satisfied but f 6≡ g.
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The following example shows that, the condition b 6= 0, in Theorem 1, can not be
removed.

Example 3. Let b = 0, then δna,b = 0. Thus, we get S1 = {0}.

Let S2 = {z : az3 + c = 0} =

{
3

√
− c
a
, 3

√
− c
a
ω, 3

√
− c
a
ω2

}
,

a, c ∈ C∗, where ω is a cube roots of unity and S3 = {∞}. Let f(z) be a non-constant
meromorphic function and g(z) = ω f(z), where ω is a non-real cube root of unity. It is clear
that Ef (S1, 0) = Eg(S1, 0), Ef (S2, 3) = Eg(S2, 3) and Ef (S3, 1) = Eg(S3, 1) but f 6≡ g.

The next two examples show that the set S2 considered in Theorem 1 can not be replaced
by any arbitrary set.

Example 4. Let S1 = {6−
√

3
3
, 6+

√
3

3
},

S2 =

{
z : z3 − 6z2 + 11z − 6 = 0

}
= {1, 2, 3}

and S3 = {∞}. Let f(z) = h(z) + 4 and g(z) = −h(z), where h(z) is a non-constant
meromorphic function. Although we se that Ef (S1, 0) = Eg(S1, 0), Ef (S2, 3) = Eg(S2, 3)
and Ef (S3, 1) = Eg(S3, 1) but f 6≡ g.

Example 5. Let S1 = {15−
√

3
3

, 15+
√

3
3
},

S2 =

{
z : z3 − 15z2 + 74z − 120 = 0

}
= {4, 5, 6}

and S3 = {∞}. Let f(z) = φ(z) + 10 and g(z) = −φ(z), where φ(z) is a non-constant
meromorphic function. Although we se that Ef (S1, 0) = Eg(S1, 0), Ef (S2, 3) = Eg(S2, 3)
and Ef (S3, 1) = Eg(S3, 1) but f 6≡ g.

Note 4. One can find many examples by considering S1 as th set of roots of the derivative
of the polynomial of degree 3 whose roots formed the set S2, where S2 = {m,m+ 1,m+ 2},
where m ∈ N, and by choosing the functions f(z) = h(z) + 2(m + 1) and g(z) = −h(z),
where h(z) is a non-constant meromorphic function.

2. Some lemmas. In this section, we are going to discuss some lemmas which will be needed
later to prove our main results. We define, for two non-constant meromorphic functions f
and g,

F =
fn−1(af + b)

−c
, G =

gn−1(ag + b)

−c
. (1)

Associated to F and G, we next define H as follows:

H =

(
F ′′

F ′
− 2F ′

F − 1

)
−
(
G ′′

G ′
− 2G ′

G − 1

)
(2)

and

Ψ =
F ′

F − 1
− G ′

G − 1
. (3)
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Lemma 1 ([14]). Let h be a non-constant meromorphic function and let

R(h) =

∑n
i=1 aih

i∑m
j=1 bjh

j
,

be an irreducible rational function in g with constant coefficients {ai}, {bj}, where an 6= 0
and bm 6= 0. Then

T (r,R(h)) = max{n,m} T (r, h) + S(r, h).

Lemma 2. Let F and G be given by (1) satisfying EF (1, q) = EG(1, q), 0 ≤ q < ∞ with
H 6≡ 0, then

N
1)
E

(
r,

1

F − 1

)
= N

1)
E

(
r,

1

G − 1

)
≤ N(r,H) + S(r,F) + S(r,G).

Proof. Since EF (1, q) = EG(1, q). It is clear that any simple 1-point of F and G is a zero of
H. From the construction of H, we know that m(r,H) = S(r,F) +S(r,G). Therefore by the
First Fundamental Theorem, we get

N
1)
E

(
r,

1

F − 1

)
= N

1)
E

(
r,

1

G − 1

)
≤ N

(
r,

1

H

)
≤ N(r,H) + S(r,F) + S(r,G).

Lemma 3. Let the set S2 be given as in Theorem 1 and Ψ is given by (3). If Ef (S2, n) =
Eg(S2, n) and Ef (S3, n− 2) = Eg(S3, n− 2) and Ψ 6≡ 0, then

N

(
r,

1

f

)
+N

(
r,

1

f − δna,b

)
≤ N

(
r,

1

F − 1
|≥ n+ 1

)
+N(r, f |≥ n− 1) + S(r, f).

Proof. Since Ψ 6≡ 0, so in view of the lemma of the logarithmic derivative, we have m(r,Ψ) =
S(r, f). Again since Ef (S2, n) = Eg(S2, n) and Ef (S3, n− 2) = Eg(S3, n− 2), then one can
note that

N(r,Ψ) ≤ N

(
r,

1

F − 1
|≥ n+ 1

)
+N(r, f |≥ n− 1) + S(r, f). (4)

Let z0 be a point such that f(z0) = 0 or f(z0) = δna,b. Then since Ef (S1, 0) = Eg(S1, 0),
we must have Ψ(z0) = 0. Thus we see that

N

(
r,

1

f

)
+N

(
r,

1

f − δna,b

)
≤ N

(
r,

1

Ψ

)
. (5)

Applying the First Fundamental Theorem, we get from (4) and (5),

N

(
r,

1

f

)
+N

(
r,

1

f − δna,b

)
≤ N

(
r,

1

Ψ

)
≤

≤ T (r,Ψ) + S(r, f) = N(r,Ψ) +m(r,Ψ) + S(r, f) =

= N(r,Ψ) + S(r, f) ≤ N

(
r,

1

F − 1
|≥ n+ 1

)
+N(r, f |≥ n− 1) + S(r, f).
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Lemma 4 ([6]). Let a1, a2, a3, a4 be four distinct complex numbers. If Ef (aj,∞) =

Eg(aj,∞), (j=1, 2, 3, 4), then f(z) = α g(z)+β
γ g(z)+δ

, where αδ − βγ 6= 0.

Lemma 5 ([6]). If Ef∗(1,∞) = Eg∗(1,∞) with δ2(0; f ∗)+δ2(0; g∗)+δ2(∞, f ∗)+δ2(∞, g∗) >
3, then either f ∗g∗ ≡ 1 or f ∗ ≡ g∗.

3. Proof of the theorem.

Proof of Theorem 1. Let F and G be given by (1) andH, by (2). We now discuss the following
cases.
Case 1. Let H 6≡ 0. Therefore it is clear that F 6≡ G and hence Ψ 6≡ 0. By the lemma of

the logarithmic derivative, one can easily get that m(r,H) = S(r, f) + S(r, g) = m(r,Ψ).
Since Ef (S1, 0) = Eg(S1, 0), Ef (S2, n) = Eg(S2, n) and Ef (S3, n − 2) = Eg(S3, n − 2) from
the construction of H, one can easily get that

N(r,H) ≤ N

(
r,

1

F − 1
|≥ n+ 1

)
+N(r, f |≥ n− 1) +N

(
r,

1

f

)
+N

(
r,

1

f − δna,b

)
+

+N0

(
r,

1

f ′

)
+N0

(
r,

1

g′

)
+ S(r, f) + S(r, g) (6)

where N0(r,
1
f ′

) denotes the counting function of those zeros of f ′ which are not the zeros of
f(f − δna,b)(F − 1). Similarly, N0(r,

1
g′

) can be defined.
By applying the Second Fundamental Theorem, we get

(n+ 1)

{
T (r, f) + T (r, g)

}
(7)

≤ N

(
r,

1

F − 1

)
+N(r, f) +N

(
r,

1

f

)
+N

(
r,

1

f − δna,b

)
+N

(
r,

1

G − 1

)

+N(r, g) +N

(
r,

1

g

)
+N

(
r,

1

g − δna,b

)
−N0

(
r,

1

f ′

)
−N0

(
r,

1

g′

)
+S(r, f) + S(r, g).

Now by using Lemmas 2, 3 and (6), we get from (7)

(n+ 1)

{
T (r, f) + T (r, g)

}
≤

≤ N

(
r,

1

F − 1
|≥ n+ 1

)
+Nn−1(r, f) +N

(
r,

1

G − 1

)
+N

(
r,

1

F − 1
|≥ 2

)
,

N(r, g) + 3

{
N(r, f |≥ n− 1) +N

(
r,

1

F − 1
|≥ n+ 1

)}
+ S(r, f) + S(r, g) ≤

≤ Nn−1(r, f) +Nn−1(r, g) +
1

n− 1
N(r, f) +

1

n− 1
N(r, g)+

+

{
2N

(
r,

1

F − 1
|≥ n+ 1

)
+N

(
r,

1

F − 1
|≥ 2

)}
+

+

{
N

(
r,

1

G − 1

)
+ 2N

(
r,

1

F − 1
|≥ n+ 1

)}
+ S(r, f) + S(r, g). (8)
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Next, we see that

1

2
N

(
r,

1

F
|≤ 1

)
+N

(
r,

1

F
|≥ 2

)
+ 2N

(
r,

1

F
|≥ n+ 1

)
≤

≤ 1

2
N

(
r,

1

F − 1

)
+N

(
r,

1

F − 1
≥ n+ 1

)
≤

≤
(

1

2
+

1

n+ 1

)
N

(
r,

1

F − 1

)
=

n+ 3

2(n+ 1)
N

(
r,

1

F − 1

)
. (9)

Similarly, we get

1

2
N

(
r,

1

G
|≤ 1

)
+N

(
r,

1

G
|≥ 2

)
+ 2N

(
r,

1

G
|≥ n+ 1

)
≤

≤ n+ 3

2(n+ 1)
N

(
r,

1

G − 1

)
. (10)

Therefore, using (9) and (10), we obtain from (8)

(n+ 1)

{
T (r, f) + T (r, g)

}
≤
(

1 +
1

n− 1
+
n(n+ 3)

2(n+ 1)

){
T (r, f) + T (r, g)

}
,

which contradicts n ≥ 3.
Case 2. Let H ≡ 0. Then on integrating, we get from (2)

1

F − 1
≡ A
G − 1

+ B, where A(6= 0),B ∈ C. (11)

From (11), we obtain in view Lemma 1 that

T (r, f) = T (r, g) + S(r, f) + S(r, g).

Let ∞ be a Picard exceptional value of f . Then we must have N(r, f) = S(r, f).
From the proof of Lemma 3, we already have

N

(
r,

1

f

)
+N

(
r,

1

f − δna,b

)
≤ N

(
r,

1

F − 1
|≥ n+ 1

)
+N(r, f |≥ n− 1) + S(r, f) ≤

≤ 1

n+ 1
N

(
r,

1

F − 1

)
+

1

n− 1
N(r, f) + S(r, f) ≤ n

n+ 1
T (r, f) + S(r, f) (12)

By the Second Fundamental Theorem and (12), we obtain

T (r, f) ≤ N

(
r,

1

f

)
+N

(
r,

1

f − δna,b

)
+N(r, f) + S(r, f) ≤ n

n+ 1
T (r, f) + S(r, f),

which is a contradiction.
Suppose that ∞ is not a Picard exceptional value of f . So there must exits z0 ∈ C such

that f(z0) =∞. Since Ef (S3, n− 2) = Eg(S3, n− 2), we get from (11) that B = 0.
Therefore, we have A(F − 1) ≡ (G − 1), i.e.

A(afn + bfn−1 + c) ≡ (agn + bgn−1 + c). (13)

Since Ef (S1, 0) = Eg(S1, 0), we have the following two possibilities.
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(i) Ef (0, 0) = Eg(0, 0) and Ef (δ
n
a,b, 0) = Eg(δ

n
a,b, 0), or

(ii) Ef (0, 0) = Eg(δ
n
a,b, 0) and Ef (δ

n
a,b, 0) = Eg(0, 0).

Subcase 2.1. Suppose Ef (0, 0) = Eg(0, 0) and Ef (δ
n
a,b, 0) = Eg(δ

n
a,b, 0). Then there exist

z0, z1 ∈ C such that f(z0) = 0 = g(z0) and f(z1) = δna,b = g(z1). In both the cases, we get
from (13) that A = 1. Then (13) reduces to

afn + bfn−1 ≡ agn + bgn−1. i.e., fn−1(af + b) ≡ gn−1(ag + b) (14)

Since Ef (0, 0) = Eg(0, 0), from (14), we get Ef
(
− b
a
, 0
)

= Eg
(
− b
a
, 0
)
. Again since

Ef (S3, n− 2) = Eg(S3, n− 2), we see that

Ef (0, 0) = Eg(0, 0), Ef
(
δna,b, 0

)
= Eg

(
δna,b, 0

)
,

Ef

(
− b
a
, 0

)
= Eg

(
− b
a
, 0

)
, Ef (∞, n− 2) = Eg(∞, n− 2).

Then by Lemma 4, one must have

f(z) =
α g(z) + β

γ g(z) + δ
, (15)

where αδ − βγ 6= 0. Therefore, equations (14) and (15) combinedly give f ≡ g.

Subcase 2.2. Suppose Ef (0, 0) = Eg(δ
n
a,b, 0) and Ef (δ

n
a,b, 0) = Eg(0, 0).

We now discuss the following subcases.

Subcase 2.2.1. Let both Ef (0, 0) = Eg(δ
n
a,b, 0) = ∅ and Ef (δ

n
a,b, 0) = Eg(0, 0) = ∅. Since

Ef (∞, n− 2) = Eg(∞, n− 2), so we must have Ef∗(1, n− 2) = Eg∗(1, n− 2), where f ∗(z) =
f(z)

f(z)−δn
a,b
6= 0,∞ and g∗(z) =

g(z)−δn
a,b

g(z)
6= 0,∞. Again we note that

δ2(0; f ∗) + δ2(0; g∗) + δ2(∞, f ∗) + δ2(∞, g∗) = 4 > 3.

Therefore, by using Lemma 5, we have f ∗ ≡ g∗ or f ∗g∗ ≡ 1.

Subcase 2.2.1.1. Suppose f ∗g∗ ≡ 1. Then we have f ≡ g.

Subcase 2.2.1.2. Suppose f ∗ ≡ g∗. Then we have

f + g = δna,b. (16)

Thus from (13) and (16), we see that f is a constant, which is absurd.

Subcase 2.2.2. Let Ef (0, 0) = Eg(δ
n
a,b, 0) = ∅ or Ef (δna,b, 0) = Eg(0, 0) = ∅.

Subcase 2.2.2.1. Suppose Ef (0, 0) = Eg(δ
n
a,b, 0) = ∅ and Ef (δ

n
a,b, 0) = Eg(0, 0) 6= ∅. This

implies that there exists z0 ∈ C such that f(z0) = δna,b and g(z0) = 0. So from (13), we get

A =
a
(
δna,b
)n

+ b
(
δna,b
)n−1

+ c

c
. (17)
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It follows from (17) that

−a
(
δna,b
)n − b (δna,b) = c (1−A) . (18)

Clearly, one root of the equation (18) is δna,b of multiplicity 2. Equation (13) can be written
as

afn + bfn−1 + c− c

A
=

1

A
(
agn + bgn−1

)
. (19)

We must have c− c
A 6= c (1−A) , otherwise we will have A = ±1, which is a contradiction

as c 6= − b
2n

(
δna,b
)n−1, δna,b 6= − b

a
, 0.

Now, equation (19) can be written as

a
n∏
j=1

(f − ζj) =
1

A
gn−1(ag + b), (20)

where ζj (j = 1, 2, . . . , n) are distinct roots of the polynomial afn + bfn−1 + c − c
A . From

(20), it is clear that 0 is a Picard exceptiona value of g, which contradicts our assumption
Ef (δ

n
a,b, 0) = Eg(0, 0) 6= ∅.

Subcase 2.2.2.2. Suppose Ef (0, 0) = Eg(δ
n
a,b, 0) 6= ∅ and Ef (δ

n
a,b, 0) = Eg(0, 0) = ∅. This

implies that there exists z1 ∈ C, such that f(z1) = 0 and g(z1) = δna,b. Then from (13), we
get

A =
c

a
(
δna,b
)n

+ b
(
δna,b
)n−1

+ c
. (21)

Next proceeding exactly same way as done in Subcase 2.2.2.1, we get a contradiction.

Subcase 2.2.3. Suppose both Ef (0, 0) = Eg(δ
n
a,b, 0) 6= ∅ and Ef (δna,b, 0) = Eg(0, 0) 6= ∅. Then

we get

A =
a
(
δna,b
)n

+ b
(
δna,b
)n−1

+ c

c
and A =

c

a
(
δna,b
)n

+ b
(
δna,b
)n−1

+ c
.

Thus we see that A = ±1, which contradicts c 6= − b
2n

(
δna,b
)n−1

.

4. Concluding remarks and a question. In this paper, we proved a result with the best
possible cardinalities of the three sets sharing problems till now by answering the question
posed by Yi ([17]) without the help of any extra suppositions. We have also abled to relax
the nature of sharing of the sets compare to other results mentioned in the introduction. But
we do not know whether the choice of the weights (k1, k2, k3) = (0, 3, 1) associated with the
corresponding sets Sj, j = 1, 2, 3, in our main result is the best possible or not. So we have
the following quarry for the future investigation in this direction.

Question 5. Keeping all other conditions intact in Theorem 1, is it possible to relax the
nature of sharing of the sets further?
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