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The conditions being necessary and sufficient for maximal accretivity and maximal nonnegati-
vity of some closed linear operators in Hilbert space are announced. The following problem is
proposed: write down these conditions in more convenient form (one of the admissible variants
is indicated).

Let H be a complex Hilbert space equipped with inner product (·|·). The role of the initial
object in this communication is played by a closed linear nonnegative operator L0 : H → H
having the domain D(L0) dense in H. Under L,LF , LK we understand its adjoint, hard
(Friedrichs), and soft (Neumann–Krein) extensions, respectively. Suppose that a fixed boun-
dary value space (G,Γ1,Γ2) of L0 and the corresponding Weyl function M(λ) are given (we
refer a reader to [1, p. 256–264] for the details). We keep the following notations: D(T ), kerT
are the domain and the kernel of (a linear) operator T , respectively; B(T ) is the set of all
linear bounded operators A : G → G such that D(A) = G; for each A ∈ B(T ) where G is a
Hilbert space, A∗ means the adjont of A. The main object of our investigation is the operator
L1 ⊂ L such that

D(L1) = {y ∈ D(L) : A1Γ1y + A2Γ2y = 0},

whereA1, A2 ∈ B(G).We assume below that L0 is not positively definite operator, nevertheless

D(LF ) +D(LK) = D(L), D(LF ) ∩D(LK) = D(L0);

sequently there exists the strong limit s-limλ→−0M(λ) := M0(∈ B(G)). Moreover, we
suppose that D(LF ) = ker Γ2 (the latter suggestion does not lead to the essential loss of
generality).

Remind that a linear operator T : H → H is said to be an accretive if

∀y ∈ D(T ) Re(Ty|y) ≥ 0,

and maximal accretive if, besides, it has no accretive extensions in H.
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Theorem 1. L1 is a maximal accretive (maximal nonnegative) operator if and only if

i) A1M0A
∗
1 + Re(A1A

∗
2) ≤ 0 (A1M0A

∗
1 + A1A

∗
2 ≤ 0);

ii) for some (sequently for each) λ < 0 ker(A1 − A2 − A1M(λ)) = {0}
(compare with [1, p.373–374]).

Problem 1. Is it correct (under the expressed above assumptions) to replace ii) by

ii)′ ker(A1 − A2 − A1M0) = {0}?

In the case when LF is a positively definite operator, it is true.
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