V. P. Baksa, A. I. Bandura

ENTIRE MULTIVARIATE VECTOR-VALUED FUNCTIONS OF BOUNDED L-INDEX: ANALOG OF FRICKE'S THEOREM

V. P. Baksa, A. I. Bandura. Entire multivariate vector-valued functions of bounded L-index: analog of Fricke's theorem, Mat. Stud. 54 (2020), 56-63.

We consider a class of vector-valued entire functions $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{p}$. For this class of functions there is introduced a concept of boundedness of \mathbf{L}-index in joint variables.

Let $|\cdot|_{p}$ be a norm in \mathbb{C}^{p}. Let $\mathbf{L}(z)=\left(l_{1}(z), \ldots, l_{n}(z)\right)$, where $l_{j}(z): \mathbb{C}^{n} \rightarrow \mathbb{R}_{+}$is a positive continuous function. An entire vector-valued function $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{p}$ is said to be of bounded L-index (in joint variables), if there exists $n_{0} \in \mathbb{Z}_{+}$such that

$$
\forall z \in G \quad \forall J \in \mathbb{Z}_{+}^{n}: \quad \frac{\left|F^{(J)}(z)\right|_{p}}{J!\mathbf{L}^{J}(z)} \leq \max \left\{\frac{\left|F^{(K)}(z)\right|_{p}}{K!\mathbf{L}^{K}(z)}: K \in \mathbb{Z}_{+}^{n},\|K\| \leq n_{0}\right\}
$$

We assume the function $\mathbf{L}: \mathbb{C}^{n} \rightarrow \mathbb{R}_{+}^{p}$ such that $0<\lambda_{1, j}(R) \leq \lambda_{2, j}(R)<\infty$ for any $j \in\{1,2, \ldots, p\}$ and $\forall R \in \mathbb{R}_{+}^{p}$, where $\lambda_{1, j}(R)=\inf _{z_{0} \in \mathbb{C}^{p}} \inf \left\{l_{j}(z) / l_{j}\left(z_{0}\right): z \in \mathbb{D}^{n}\left[z_{0}, R / \mathbf{L}\left(z_{0}\right)\right]\right\}$, $\lambda_{2, j}(R)$ is defined analogously with replacement inf by sup. It is proved the following theorem: Let $|A|_{p}=\max \left\{\left|a_{j}\right|: 1 \leq j \leq p\right\}$ for $A=\left(a_{1}, \ldots, a_{p}\right) \in \mathbb{C}^{p}$. An entire vector-valued function F has bounded \mathbf{L}-index in joint variables if and only if for every $R \in \mathbb{R}_{+}^{n}$ there exist $n_{0} \in \mathbb{Z}_{+}$, $p_{0}>0$ such that for all $z_{0} \in \mathbb{C}^{n}$ there exists $K_{0} \in \mathbb{Z}_{+}^{n},\left\|K_{0}\right\| \leq n_{0}$, satisfying inequality

$$
\max \left\{\frac{\left|F^{(K)}(z)\right|_{p}}{K!\mathbf{L}^{K}(z)}:\|K\| \leq n_{0}, z \in \mathbb{D}^{n}\left[z_{0}, R / \mathbf{L}\left(z_{0}\right)\right]\right\} \leq p_{0} \frac{\left|F^{\left(K_{0}\right)}\left(z_{0}\right)\right|_{p}}{K_{0}!\mathbf{L}^{K_{0}}\left(z_{0}\right)}
$$

where $\mathbb{D}^{n}\left[z_{0}, R\right]=\left\{z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}:\left|z_{1}-z_{0,1}\right|<r_{1}, \ldots,\left|z_{n}-z_{0, n}\right|<r_{n}\right\}$ is the polydisc with $z_{0}=\left(z_{0,1}, \ldots, z_{0, n}\right), R=\left(r_{1}, \ldots, r_{n}\right)$. This theorem is an analog of Fricke's Theorem obtained for entire functions of bounded index of one complex variable.

1. Introduction. A concept of bounded index for entire function ([14]) draws attention of many mathematician (see a full bibliography in $[7,17,18,11,8]$) to investigations of the corresponding function class and possible applications of this concept. It is interesting with its connections to the value distribution theory and analytic theory of differential equation ([11, 18, 4]). For example, every entire function has bounded value distribution if and only if its derivative has bounded index ([13]).

Recently, F. Nuray and R. Patterson ([16]) proposed a generalization of the concept of bounded index for entire bivariate functions from \mathbb{C}^{2} into \mathbb{C}^{n} by replacing the absolute value in the definition of an entire function of bounded index by the maximum of the absolute values of the components. If the components of a \mathbb{C}^{n}-valued bivariate entire function are of bounded index, then the function is also of bounded index. They presented sufficient

[^0]conditions providing index boundedness of bivariate vector-valued entire solutions of certain system of partial differential equations with polynomial coefficients.

In recent papers [1, 2, 3] V. Baksa, A. Bandura, O. Skaskiv considered vector-valued functions having bounded \mathbf{L}-index in joint variables which are analytic in the unit ball. They also extended previous investigations of analytic functions in the unit ball ([6]).

Our present goal is to give a completed form of investigations of F. Nuray and R. Patterson from [16]. In particular, they used some propositions without strict proofs for entire bivariate vector-valued functions. Moreover, there was considered a concept of bounded index for functions from \mathbb{C}^{2} into \mathbb{C}^{n}. Nevertheless, there is known a more general concept of bounded \mathbf{L} index in joint variables ([8]) with applications to system of partial differential equations ([11]).

Therefore, in our present investigation we will consider entire multivariate vector-valued functions from \mathbb{C}^{n} into \mathbb{C}^{p} and introduce concept of bounded L-index in joint variables for these functions.
2. Notations and definitions. Here we use some standard notations (see [1, 8]). Let $\mathbb{R}_{+}=[0 ;+\infty), \mathbf{0}=(0, \ldots, 0) \in \mathbb{R}_{+}^{n}, \mathbf{1}=(1, \ldots, 1) \in \mathbb{R}_{+}^{n}, \mathbf{e}_{j}=(0, \ldots, 0, \underbrace{1}_{j \text {-th place }}, 0, \ldots, 0) \in$ $\mathbb{R}_{+}^{n}, R=\left(r_{1}, \ldots, r_{n}\right) \in \mathbb{R}_{+}^{n},|z|=\sqrt{\left|z_{1}\right|^{2}+\ldots+\left|z_{n}\right|^{2}}, z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$. For $A=$ $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}, B=\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{R}^{n}$, we will use formal notations without violation of the existence of these expressions: $A B=\left(a_{1} b_{1}, \ldots, a_{n} b_{n}\right), A / B=\left(a_{1} / b_{1}, \ldots, a_{n} / b_{n}\right)$, $A^{B}=\left(a_{1}^{b_{1}}, \ldots, a_{n}^{b_{n}}\right)$, and the notation $A<B$ means that $a_{j}<b_{j}, j \in\{1, \ldots, n\}$; the relation $A \leq B$ is defined in the similar way. For $K=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}_{+}^{n}$ let us denote $K!=k_{1}!\ldots \cdot k_{n}!$. Addition, multiplication by scalar and conjugation in \mathbb{C}^{n} are defined componentwise. For $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{C}^{n}, b=\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{C}^{n}$ we define $\langle a, b\rangle=a_{1} \bar{b}_{1}+\ldots+a_{n} \bar{b}_{n}$, where \bar{b}_{j} is the complex conjugate of b_{j}.

For $z_{0}=\left(z_{0,1}, \ldots, z_{0, n}\right) \in \mathbb{C}^{n}$ and $R=\left(r_{1}, \ldots, r_{n}\right) \in \mathbb{R}_{+}^{n}$ we denote by $\mathbb{D}^{n}\left(z_{0}, R\right)=\{z \in$ $\left.\mathbb{C}^{n}:\left|z_{1}-z_{0,1}\right|<r_{1}, \ldots,\left|z_{n}-z_{0, n}\right|<r_{n}\right\}$ the polydisc, by $\mathbb{T}^{n}\left(z_{0}, R\right)=\left\{z \in \mathbb{C}^{n}:\left|z_{1}-z_{0,1}\right|=\right.$ $\left.r_{1}, \ldots,\left|z_{n}-z_{0, n}\right|=r_{n}\right\}$ its skeleton. The closed polydisc $\left\{z \in \mathbb{C}^{n}:\left|z_{1}-z_{0,1}\right| \leq r_{1}, \ldots, \mid z_{n}-\right.$ $\left.z_{0, n} \mid \leq r_{n}\right\}$ is denoted by $\mathbb{D}^{n}\left[z_{0}, R\right], \mathbb{D}^{n}=\mathbb{D}^{n}(\mathbf{0} ; \mathbf{1}), \mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$.

Let $F(z)=\left(f_{1}(z), \ldots, f_{p}(z)\right)$ be an entire vector-valued function in \mathbb{C}^{n}, i.e. $f_{j}: \mathbb{C}^{n} \rightarrow \mathbb{C}$ is an entire function for every $j, 1 \leq j \leq p$. Then at a point $a \in \mathbb{C}^{n}$ the function $F(z)$ has a vector-valued Taylor expansion

$$
F(z)=\sum_{k=0}^{+\infty} \sum_{\|m\|=k} C_{m}(z-a)^{m},
$$

where
$C_{m}=\frac{1}{m!} F^{(m)}(a):=\frac{1}{m!}\left(f_{1}^{(m)}(a), \ldots, f_{p}^{(m)}(a)\right), f_{j}^{(m)}(a):=\frac{\partial^{\|m\|} f_{j}(z)}{\partial z^{m}}=\left.\frac{\partial^{\|m\|} f_{j}(z)}{\partial z_{1}^{m_{1}} \cdot \ldots \cdot \partial z_{n}^{m_{n}}}\right|_{z=a}$
for $m=\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{Z}_{+}^{n}, a \in \mathbb{C}^{n}$.
Let $G \subset \mathbb{C}^{n}$ be some domain and $|\cdot|_{p}$ be a norm in \mathbb{C}^{p}. Let $\mathbf{L}(z)=\left(l_{1}(z), \ldots, l_{n}(z)\right)$, where $l_{j}(z): G \rightarrow \mathbb{R}_{+}$be a positive continuous function. An analytic vector-valued function $F: G \rightarrow \mathbb{C}^{p}$ is said to be of bounded \mathbf{L}-index (in joint variables) in the domain G, if there exists $n_{0} \in \mathbb{Z}_{+}$such that

$$
\forall z \in G \quad \forall J \in \mathbb{Z}_{+}^{n}: \quad \frac{\left|F^{(J)}(z)\right|_{p}}{J!\mathbf{L}^{J}(z)} \leq \max \left\{\frac{\left|F^{(K)}(z)\right|_{p}}{K!\mathbf{L}^{K}(z)}: K \in \mathbb{Z}_{+}^{n},\|K\| \leq n_{0}\right\}
$$

The least such integer n_{0} is called the \mathbf{L}-index in joint variables of the vector-valued function F and is denoted by $N\left(F, \mathbf{L}, G, \mathbb{C}^{p}\right)$. For $G=\mathbb{C}^{p}$ we denote $N(F, \mathbf{L}):=N\left(F, \mathbf{L}, \mathbb{C}^{p}, \mathbb{C}^{p}\right)$, the function F is called an entire vector-valued function of bounded \mathbf{L}-index $N(F, \mathbf{L})$. The concept of boundedness of L-index in joint variables were considered for other classes of analytic functions. They are differed in domains of analyticity: the unit ball ([6]), the polydisc ([9]), the Cartesian product of the unit disc and complex plane ([10]), n-dimensional complex space $([8,11])$, slice analyticity ([5]).

By \mathbb{Q}^{n} we denote the class of functions $\mathbf{L}: \mathbb{C}^{n} \rightarrow \mathbb{R}_{+}^{n}$ such that for any $j \in\{1,2, \ldots, n\}$

$$
\forall R \in \mathbb{R}_{+}^{n}: 0<\lambda_{1, j}(R) \leq \lambda_{2, j}(R)<\infty,
$$

where $\lambda_{1, j}(R)=\inf _{z_{0} \in \mathbb{C}^{n}} \inf \left\{l_{j}(z) / l_{j}\left(z_{0}\right): z \in \mathbb{D}^{n}\left[z_{0}, R / \mathbf{L}\left(z_{0}\right)\right]\right\}, \lambda_{2, j}(R)$ is defined analogously with replacement inf inf by sup sup. Remark that $\left(\forall R \in \mathbb{R}_{+}^{n}\right): \lambda_{1, j}(R) \leq 1 \leq \lambda_{2, j}(R)$ and
$(\forall j, 1 \leq j \leq n)\left(\forall R_{1}, R_{2} \in \mathbb{R}_{+}^{n}\right): \quad R_{1}<R_{2} \Longrightarrow \lambda_{2, j}\left(R_{1}\right) \leq \lambda_{2, j}\left(R_{2}\right), \lambda_{1, j}\left(R_{1}\right) \geq \lambda_{1, j}\left(R_{2}\right)$.
3. Local behavior of partial derivatives of entire vector-valued functions having bounded L-index in joint variables. The following theorem is basic in the theory of functions of bounded index. For various classes of analytic functions similar theorems are proved in [1, 10, 15, 17].

Theorem 1. Let $\mathbf{L} \in \mathbb{Q}^{n}$ and $|A|_{p}=\max \left\{\left|a_{j}\right|: 1 \leq j \leq p\right\}$ for $A=\left(a_{1}, \ldots, a_{p}\right) \in \mathbb{C}^{p}$. An entire vector-valued function $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{p}$ has bounded \mathbf{L}-index in joint variables if and only if for every $R \in \mathbb{R}_{+}^{n}$ there exist $n_{0} \in \mathbb{Z}_{+}, p_{0}>0$ such that for all $z_{0} \in \mathbb{C}^{n}$ there exists $K_{0} \in \mathbb{Z}_{+}^{n},\left\|K_{0}\right\| \leq n_{0}$, satisfying the inequality

$$
\begin{equation*}
\max \left\{\frac{\left|F^{(K)}(z)\right|_{p}}{K!\mathbf{L}^{K}(z)}:\|K\| \leq n_{0}, z \in \mathbb{D}^{n}\left[z_{0}, R / \mathbf{L}\left(z_{0}\right)\right]\right\} \leq p_{0} \frac{\left|F^{\left(K_{0}\right)}\left(z_{0}\right)\right|_{p}}{K_{0}!\mathbf{L}^{K_{0}}\left(z_{0}\right)} . \tag{1}
\end{equation*}
$$

Proof. Necessity. Let F be an entire vector-valued function of bounded L-index in joint variables with $N=N(F, \mathbf{L})<\infty$. For any $R \in \mathbb{R}_{+}^{n}$ we define

$$
q=q(R)=\left[2(N+1) \prod_{j=1}^{n}\left(\left(\lambda_{2, j}(R)\right)^{N+1}\left(\lambda_{1, j}(R)\right)^{-N}\right)\|R\|\right]+1
$$

where $[x]$ stands for the entire part of a real number x. For $p_{0} \in\{0, \ldots, q\}$ and $z_{0} \in \mathbb{C}^{n}$ we denote:

$$
\begin{aligned}
S_{p_{0}}\left(z_{0}, R\right) & =\max \left\{\frac{\left|F^{(K)}(z)\right|_{p}}{K!\mathbf{L}^{K}(z)}:\|K\| \leq N, z \in \mathbb{D}^{n}\left[z_{0}, p_{0} R /\left(q \mathbf{L}\left(z_{0}\right)\right)\right]\right\}, \\
S_{p_{0}}^{*}\left(z_{0}, R\right) & =\max \left\{\frac{\left|F^{(K)}(z)\right|_{p}}{K!\mathbf{L}^{K}\left(z_{0}\right)}:\|K\| \leq N, z \in \mathbb{D}^{n}\left[z_{0}, p_{0} R /\left(q \mathbf{L}\left(z_{0}\right)\right)\right]\right\}
\end{aligned}
$$

We note that $\mathbb{D}^{n}\left[z_{0}, p_{0} R /\left(q \mathbf{L}\left(z_{0}\right)\right)\right] \subset \mathbb{D}^{n}\left[z_{0}, R / \mathbf{L}\left(z_{0}\right)\right]$, thus for all $z \in \mathbb{D}^{n}\left[z_{0}, p_{0} R /\left(q \mathbf{L}\left(z_{0}\right)\right)\right]$ by the definition of $\lambda_{1, j}(R)$ we have

$$
\frac{\mathbf{L}^{K}\left(z_{0}\right)}{\mathbf{L}^{K}(z)}=\frac{l_{1}^{k_{1}}\left(z_{0}\right)}{l_{1}^{k_{1}}(z)} \cdot \ldots \cdot \frac{l_{n}^{k_{p}}\left(z_{0}\right)}{l_{n}^{k_{p}}(z)} \leq \lambda_{1,1}^{-k_{1}}(R) \cdot \ldots \cdot \lambda_{1, n}^{-k_{n}}(R)=\lambda_{1}^{-K}(R), \quad K=\left(k_{1}, \ldots, k_{n}\right),
$$

where $\lambda_{1}(R):=\left(\lambda_{1,1}(R), \ldots, \lambda_{1, n}(R)\right) \in \mathbb{R}_{+}^{n}$. Hence,

$$
S_{p_{0}}\left(z_{0}, R\right)=\max \left\{\frac{\left|F^{(K)}(z)\right|_{p}}{K!\mathbf{L}^{K}(z)}:\|K\| \leq N, z \in \mathbb{D}^{n}\left[z_{0}, p_{0} R /\left(q \mathbf{L}\left(z_{0}\right)\right)\right]\right\}=
$$

$$
\begin{align*}
& =\max \left\{\frac{\left|F^{(K)}(z)\right|_{p}}{K!\mathbf{L}^{K}\left(z_{0}\right)} \cdot \frac{\mathbf{L}^{K}\left(z_{0}\right)}{\mathbf{L}^{K}(z)}:\|K\| \leq N, z \in \mathbb{D}^{n}\left[z_{0}, p_{0} R /\left(q \mathbf{L}\left(z_{0}\right)\right)\right]\right\} \leq \\
& \leq S_{p_{0}}^{*}\left(z_{0}, R\right) \max \left\{\lambda_{1}(R)^{-K}:\|K\| \leq N\right\} \leq S_{p_{0}}^{*}\left(z_{0}, R\right) \prod_{j=1}^{n}\left(\lambda_{1, j}(R)\right)^{-N} \tag{2}
\end{align*}
$$

For all $z \in \mathbb{D}^{n}\left[z_{0}, p_{0} R /\left(q \mathbf{L}\left(z_{0}\right)\right)\right]$ by the definition of $\lambda_{2, j}(R)$, for $K=\left(k_{1}, \ldots, k_{n}\right)$ we have

$$
\begin{equation*}
\frac{\mathbf{L}^{K}(z)}{\mathbf{L}^{K}\left(z_{0}\right)}=\frac{l_{1}^{k_{1}}(z)}{l_{1}^{k_{1}}\left(z_{0}\right)} \cdot \ldots \cdot \frac{l_{n}^{k_{n}}(z)}{l_{n}^{k_{n}}\left(z_{0}\right)} \leq \lambda_{2,1}^{k_{1}}(R) \cdot \ldots \cdot \lambda_{2, n}^{k_{p}}(R)=\lambda_{2}^{K}(R) \tag{3}
\end{equation*}
$$

where $\lambda_{2}(R):=\left(\lambda_{2,1}(R), \ldots, \lambda_{2, n}(R)\right) \in \mathbb{R}_{+}^{n}$. Hence, one has:

$$
\begin{gather*}
\left.S_{p_{0}}^{*}\left(z_{0}, R\right) \leq \max \left\{\frac{\left|F^{(K)}(z)\right|_{p}}{K!\mathbf{L}^{K}(z)} \lambda_{2}(R)^{K}:\|K\| \leq N, z \in \mathbb{D}^{n}\left[z_{0}, p_{0} R /\left(q \mathbf{L}\left(z_{0}\right)\right)\right]\right]\right\} \leq \\
\leq S_{p_{0}}\left(z_{0}, R\right) \prod_{j=1}^{n}\left(\lambda_{2, j}(R)\right)^{N} \tag{4}
\end{gather*}
$$

Let $K_{p_{0}} \in \mathbb{Z}_{+}^{n},\left\|K_{p_{0}}\right\| \leq N$ and $z_{*} \in \mathbb{D}^{n}\left[z_{0}, p_{0} R /\left(q \mathbf{L}\left(z_{0}\right)\right)\right]$ be such that

$$
\begin{equation*}
S_{p_{0}}^{*}\left(z_{0}, R\right)=\frac{\left|F^{\left(K_{p_{0}}\right)}\left(z_{*}\right)\right|_{p}}{K_{p_{0}}!\mathbf{L}^{K_{p_{0}}}\left(z_{0}\right)} . \tag{5}
\end{equation*}
$$

Since by the maximum modulus principle $z_{*} \in \mathbb{T}^{n}\left(z_{0}, p_{0} R /\left(q \mathbf{L}\left(z_{0}\right)\right)\right)$, therefore $z_{*} \neq z_{0}$. We choose $\widetilde{z}=z_{0}+\frac{p_{0}-1}{p_{0}}\left(z_{*}-z_{0}\right)$. Then for $\widetilde{z}=\left(\widetilde{z}^{(1)}, \ldots, \widetilde{z}^{(n)}\right), z_{0}=\left(z_{0}^{(1)}, \ldots, z_{0}^{(n)}\right)$, $z_{*}=\left(z_{*}^{(1)}, \ldots, z_{*}^{(n)}\right), 1 \leq j \leq n$ sequentially we have

$$
\begin{gather*}
\left|\widetilde{z}^{(j)}-z_{0}^{(j)}\right|=\frac{p_{0}-1}{p_{0}}\left|z_{*}^{(j)}-z_{0}^{(j)}\right|=\frac{p_{0}-1}{p_{0}} \frac{p_{0} r_{j}}{q l_{j}\left(z_{0}\right)}, \tag{6}\\
\left|\widetilde{z}^{(j)}-z_{*}^{(j)}\right|=\left|z_{0}^{(j)}+\frac{p_{0}-1}{p_{0}}\left(z_{*}^{(j)}-z_{0}^{(j)}\right)-z_{*}^{(j)}\right|=\frac{1}{p_{0}}\left|z_{0}^{(j)}-z_{*}^{(j)}\right|=\frac{r_{j}}{q l_{j}\left(z_{0}\right)} . \tag{7}
\end{gather*}
$$

We obtain $\widetilde{z} \in \mathbb{D}^{n}\left[z_{0},\left(p_{0}-1\right) R /\left(q(R) \mathbf{L}\left(z_{0}\right)\right)\right]$ and thus $S_{p_{0}-1}^{*}\left(z_{0}, R\right) \geq \frac{\left|F^{\left(K_{p_{0}}\right)}(\widetilde{z})\right|_{p}}{K_{p_{0}}!\mathbf{L}^{K_{p_{0}}}\left(z_{0}\right)}$.
Remark that

$$
\frac{d}{d t}\left\|F^{\left(K_{p_{0}}\right)}\left(\widetilde{z}+t\left(z_{*}-\widetilde{z}\right)\right)\right\| \leq \sum_{j=1}^{n}\left(\left|z_{*}^{(j)}-\widetilde{z}^{(j)}\right| \cdot\left\|F^{\left(K_{p_{0}}+\mathbf{e}_{j}\right)}\left(\widetilde{z}+t\left(z_{*}-\widetilde{z}\right)\right)\right\|\right)
$$

Then, from (5) by the mean value theorem we have

$$
\begin{gathered}
0 \leq S_{p_{0}}^{*}\left(z_{0}, R\right)-S_{p_{0}-1}^{*}\left(z_{0}, R\right) \leq \\
\leq \frac{\left|F^{\left(K_{p}\right)}\left(z_{*}\right)\right|_{p}-\left|F^{\left(K_{\left.p_{0}\right)}\right)}(\widetilde{z})\right|_{p}}{K!\mathbf{L}^{K_{p_{0}}}\left(z_{0}\right)}=\frac{1}{K_{p_{0}}!\mathbf{L}^{K_{p_{0}}}\left(z_{0}\right)} \int_{0}^{1} \frac{d}{d t}\left|F^{\left(K_{p_{0}}\right)}\left(\widetilde{z}+t\left(z_{*}-\widetilde{z}\right)\right)\right|_{p} d t \leq \\
\leq \frac{1}{K_{p_{0}}!\mathbf{L}^{K_{p_{0}}}\left(z_{0}\right)} \int_{0}^{1} \sum_{j=1}^{n}\left(\left|z_{*}^{(j)}-\widetilde{z}^{(j)}\right| \cdot \mid F^{\left(K_{p_{0}}+e_{j}\right)}\left(\widetilde{z}+\left.t\left(z_{*}-\widetilde{z}\right)\right|_{p}\right) d t=\right.
\end{gathered}
$$

$$
\begin{equation*}
=\frac{1}{K_{p_{0}}!\mathrm{L}^{K_{p_{0}}}\left(z_{0}\right)} \sum_{j=1}^{n}\left(\left|z_{*}^{(j)}-\widetilde{z}^{(j)}\right| \cdot\left|F^{\left(K_{p_{0}}+e_{j}\right)}\left(\widetilde{z}+t^{*}\left(z_{*}-\widetilde{z}\right)\right)\right|_{p}\right), \tag{8}
\end{equation*}
$$

where $0 \leq t^{*} \leq 1$, and $\left(\widetilde{z}+t^{*}\left(z_{*}-\widetilde{z}\right)\right) \in \mathbb{D}^{n}\left[z_{0}, p_{0} R /\left(q \mathbf{L}\left(z_{0}\right)\right)\right]$.
For $z \in \mathbb{D}^{n}\left[z_{0}, p_{0} R /\left(q \mathbf{L}\left(z_{0}\right)\right)\right]$ and $J=\left(j_{1}, \ldots, j_{n}\right) \in \mathbb{Z}_{+}^{n}:\|J\| \leq N+1$, by the definition of the numbers $N=N(F, \mathbf{L})$ and $\lambda_{2, j}\left(p_{0} R / q\right)$, we have

$$
\begin{aligned}
\frac{\left|F^{(J)}(z)\right|_{p}}{J!\mathbf{L}^{J}\left(z_{0}\right)} & =\frac{\left|F^{(J)}(z)\right|_{p}}{J!\mathbf{L}^{J}\left(z_{0}\right)} \cdot \frac{\mathbf{L}^{J}(z)}{\mathbf{L}^{J}(z)} \leq \frac{\left|F^{(J)}(z)\right|_{p}}{J!\mathbf{L}^{J}(z)} \max \left\{\frac{\mathbf{L}^{J}(z)}{\mathbf{L}^{J}\left(z_{0}\right)}:\|J\| \leq N+1\right\} \leq \\
\leq & \max \left\{\frac{\left|F^{(K)}(z)\right|_{p}}{K!\mathbf{L}^{K}(z)}:\|K\| \leq N\right\} \cdot \prod_{j=1}^{n}\left(\lambda_{2, j}\left(p_{0} R / q\right)\right)^{N+1} \leq \\
& \leq \prod_{j=1}^{n}\left(\lambda_{2, j}(R)\right)^{N+1} \cdot \max \left\{\frac{\left|F^{(K)}(z)\right|_{p}}{K!\mathbf{L}^{K}(z)}:\|K\| \leq N\right\}= \\
= & \prod_{j=1}^{n}\left(\lambda_{2, j}(R)\right)^{N+1} \cdot S_{p_{0}}\left(z_{0}, R\right) \leq \prod_{j=1}^{n}\left(\lambda_{2, j}(R)\right)^{N+1} \cdot S_{p_{0}}^{*}\left(z_{0}, R\right) \cdot \prod_{j=1}^{n}\left(\lambda_{1, j}(R)\right)^{-N}
\end{aligned}
$$

Hence, and from (8), (6) we obtain

$$
\begin{gathered}
0 \leq S_{p_{0}}^{*}\left(z_{0}, R\right)-S_{p_{0}-1}^{*}\left(z_{0}, R\right) \leq \\
\leq \sum_{j=1}^{n}\left(\left|z_{*}^{(j)}-\widetilde{z}^{(j)}\right| \cdot \frac{\left(K_{p_{0}}+e_{j}\right)!\mathbf{L}^{K_{p_{0}}+e_{j}}\left(z_{0}\right)}{K_{p_{0}}!\mathbf{L}^{K_{p_{0}}}\left(z_{0}\right)} \cdot \frac{\left\|F^{\left(K_{p_{0}}+e_{j}\right)}\left(\widetilde{z}+t^{*}\left(z_{*}-\widetilde{z}\right)\right)\right\|}{\left(K_{p_{0}}+e_{j}\right)!\mathbf{L}^{K_{p_{0}}+e_{j}}\left(z_{0}\right)}\right) \leq \\
\leq \prod_{j=1}^{n}\left(\left(\lambda_{2, j}(R)\right)^{N+1}\left(\lambda_{1, j}(R)\right)^{-N}\right) S_{p_{0}}^{*}\left(z_{0}, R\right) \times \sum_{j=1}^{n}\left|z_{*}^{(j)}-\widetilde{z}^{(j)}\right|\left\langle e_{j}, K_{p_{0}}+e_{j}\right\rangle \mathbf{L}^{e_{j}}\left(z_{0}\right) .
\end{gathered}
$$

From (7) we have $\sum_{j=1}^{n}\left|z_{*}^{(j)}-\widetilde{z}^{(j)}\right|\left\langle e_{j}, K_{p_{0}}+e_{j}\right\rangle \mathbf{L}^{e_{j}}\left(z_{0}\right)=\frac{1}{q(R)} \sum_{j=1}^{n}\left\langle e_{j}, K_{p_{0}}+e_{j}\right\rangle R^{e_{j}}$, but $\sum_{j=1}^{n}\left\langle e_{j}, K_{p_{0}}+e_{j}\right\rangle R^{e_{j}} \leq(N+1) \sum_{j=1}^{n} R^{e_{j}}=(N+1)\|R\|$. Therefore, using the of choice of $q(R)$ we get

$$
S_{p_{0}}^{*}\left(z_{0}, R\right)-S_{p_{0}-1}^{*}\left(z_{0}, R\right) \leq \prod_{j=1}^{n}\left(\left(\lambda_{2, j}(R)\right)^{N+1}\left(\lambda_{1, j}(R)\right)^{-N}\right) \frac{S_{p_{0}}^{*}\left(z_{0}, R\right)}{q(R)}(N+1)\|R\| \leq \frac{S_{p_{0}}^{*}\left(z_{0}, R\right)}{2}
$$

It follows that $S_{p_{0}}^{*}\left(z_{0}, R\right) \leq 2 S_{p_{0}-1}^{*}\left(z_{0}, R\right)$ and in view of (2) and (4) one has

$$
S_{p_{0}}\left(z_{0}, R\right) \leq 2 \prod_{j=1}^{n}\left(\lambda_{1, j}(R)\right)^{-N} S_{p_{0}-1}^{*}\left(z_{0}, R\right) \leq 2 \prod_{j=1}^{n}\left(\left(\lambda_{1, j}(R)\right)^{-N}\left(\lambda_{2, j}(R)\right)^{N}\right) S_{p_{0}-1}\left(z_{0}, R\right)
$$

Then we consequently obtain

$$
\begin{aligned}
& S_{q}\left(z_{0}, R\right) \leq 2^{q} \prod_{j=1}^{n}\left(\left(\lambda_{1, j}(R)\right)^{-N}\left(\lambda_{2, j}(R)\right)^{N}\right)^{q} S_{0}\left(z_{0}, R\right) \\
& \max \left\{\frac{\left|F^{(K)}(z)\right|_{p}}{K!\mathbf{L}^{K}(z)}:\|K\| \leq N, z \in \mathbb{D}^{p}\left[z_{0}, R / \mathbf{L}\left(z_{0}\right)\right]\right\}=
\end{aligned}
$$

$$
\begin{align*}
= & \max \left\{\frac{\left|F^{(K)}(z)\right|_{p}}{K!\mathbf{L}^{K}(z)}:\|K\| \leq N, z \in \mathbb{D}^{p}\left[z_{0}, q R /\left(q \mathbf{L}\left(z_{0}\right)\right)\right]\right\}=S_{q}\left(z_{0}, R\right) \leq \\
& =2^{q} \prod_{j=1}^{n}\left(\left(\lambda_{1, j}(R)\right)^{-N}\left(\lambda_{2, j}(R)\right)^{N}\right)^{q} \max \left\{\frac{\left|F^{(K)}\left(z_{0}\right)\right|_{p}}{K!\mathbf{L}^{K}\left(z_{0}\right)}:\|K\| \leq N\right\} . \tag{9}
\end{align*}
$$

This inequality implies (1) with $p_{0}=2^{q} \prod_{j=1}^{n}\left(\left(\lambda_{1, j}(R)\right)^{-N}\left(\lambda_{2, j}(R)\right)^{N}\right)^{q}$ and some K_{0} such that $\left\|K_{0}\right\| \leq N$. The necessity of condition (1) is proved.
Sufficiency. Assume that for every $R \in \mathbb{R}_{+}^{n}$ there exist $n_{0} \in \mathbb{Z}_{+}, p_{0}>1$, such that for every $z_{0} \in \mathbb{C}_{+}^{n}$ and for some $K_{0} \in \mathbb{Z}_{+}^{n},\left\|K_{0}\right\| \leq n_{0}$), inequality (1) holds. By Cauchy's integral formula we have $\left(\forall z_{0} \in \mathbb{C}^{n}\right),\left(\forall K \in \mathbb{Z}_{+}^{n}\right),\left(\forall S \in \mathbb{Z}_{+}^{n}\right)$:

$$
\frac{F^{(K+S)}\left(z_{0}\right)}{S!}=\frac{1}{(2 \pi i)^{p}} \int_{\mathbb{T}^{p}\left(z_{0}, R / \mathbf{L}\left(z_{0}\right)\right)} \frac{F^{(K)}(z)}{\left(z-z_{0}\right)^{S+1}} d z
$$

Therefore,
$\frac{\left|F^{(K+S)}\left(z_{0}\right)\right|_{p}}{S!} \leq \frac{1}{(2 \pi)^{n}} \int_{\mathbb{T}^{n}\left(z_{0}, R / \mathbf{L}\left(z_{0}\right)\right)} \frac{\left|F^{(K)}(z)\right|_{p}}{\left|\left(z-z_{0}\right)^{S+\mathbf{1}}\right|}|d z| \leq \int_{\mathbb{T}^{n}\left(z_{0}, R / \mathbf{L}\left(z_{0}\right)\right)}\left|F^{(K)}(z)\right|_{p} \frac{\mathbf{L}^{S+\mathbf{1}}\left(z_{0}\right)}{(2 \pi)^{n} R^{S+\mathbf{1}}}|d z|$,
where $|d z|=\left|d z_{1}\right| \cdot \ldots \cdot\left|d z_{n}\right|$. Hence, in view of (1), we obtain that

$$
\frac{\left|F^{(K+S)}\left(z_{0}\right)\right|_{p}}{S!} \leq \frac{p_{0} K!}{K_{0}!(2 \pi)^{n}}\left|F^{\left(K_{0}\right)}\left(z_{0}\right)\right|_{p} \frac{\mathbf{L}^{S+1}\left(z_{0}\right)}{\mathbf{L}^{K_{0}}\left(z_{0}\right) R^{S+1}} \int_{\mathbb{T}^{n}\left(z_{0}, R / \mathbf{L}\left(z_{0}\right)\right)} \mathbf{L}^{K}(z)|d z| .
$$

But, for all $z \in \mathbb{D}^{n}\left[z_{0}, R / \mathbf{L}\left(z_{0}\right)\right]$ by the definition of $\lambda_{2, j}(R)$ we have

$$
\begin{gathered}
\mathbf{L}^{K}(z)=\mathbf{L}^{K}\left(z_{0}\right) \cdot \frac{\mathbf{L}^{K}(z)}{\mathbf{L}^{K}\left(z_{0}\right)}=\mathbf{L}^{K}\left(z_{0}\right) \cdot \frac{l_{1}^{k_{1}}(z)}{l_{1}^{k_{1}}\left(z_{0}\right)} \cdot \ldots \cdot \frac{l_{n}^{k_{n}}(z)}{l_{n}^{k_{n}}\left(z_{0}\right)} \leq \\
\leq \mathbf{L}^{K}\left(z_{0}\right) \lambda_{2,1}^{k_{1}}(R) \cdot \ldots \cdot \lambda_{2, n}^{k_{n}}(R)=\mathbf{L}^{K}\left(z_{0}\right) \lambda_{2}^{K}(R), \quad K=\left(k_{1}, \ldots, k_{p}\right),
\end{gathered}
$$

Hence,

$$
\begin{equation*}
\frac{\left|F^{(K+S)}\left(z_{0}\right)\right|_{p}}{(K+S)!\mathbf{L}^{K+S}\left(z_{0}\right)} \leq \frac{\left|F^{\left(K_{0}\right)}\left(z_{0}\right)\right|_{p}}{K_{0}!\mathbf{L}^{K_{0}}\left(z_{0}\right)} \frac{p_{0} K!S!}{(K+S)!} \frac{\lambda_{2}^{K}(R)}{R^{S}} \tag{10}
\end{equation*}
$$

We note that $\frac{K!S!}{(K+S)!} \leq 1\left(\forall K, S \in \mathbb{Z}_{+}^{n}\right)$, and $R^{S} \rightarrow+\infty$ as $\|S\| \rightarrow+\infty$ for every $R \in$ $(1,+\infty)^{n}$. Therefore, for each fixed $R \in(1,+\infty)^{n}$ and every $K \in \mathbb{Z}_{+}^{n},\|K\| \leq n_{0}$, there exists $s_{0} \in \mathbb{N}$ such that for every $S \in \mathbb{Z}_{+}^{n},\|S\| \geq s_{0}$, the inequality

$$
\frac{p_{0} K!S!}{(K+S)!} \frac{\lambda_{2}^{K}(R)}{R^{S}} \leq 1
$$

holds. Then, in view of (10), one has

$$
\frac{\left|F^{(K+S)}\left(z_{0}\right)\right|_{p}}{(K+S)!\mathbf{L}^{K+S}\left(z_{0}\right)} \leq \frac{\left|F^{\left(K_{0}\right)}\left(z_{0}\right)\right|_{p}}{K_{0}!\mathbf{L}^{K_{0}}\left(z_{0}\right)}
$$

for all K, S such that $\left\|K_{0}\right\| \leq n_{0},\|S\| \geq s_{0}$. It implies that $\forall z \in \mathbb{C}^{n} \forall J \in \mathbb{Z}_{+}^{n}$:

$$
\frac{\left|F^{J}(z)\right|_{p}}{J!\mathbf{L}^{J}(z)} \leq \max \left\{\frac{\left|F^{K}(z)\right|_{p}}{K!\mathbf{L}^{K}(z)}: K \in \mathbb{Z}_{+}^{p},\|K\| \leq s_{0}+n_{0}\right\}
$$

where s_{0} and n_{0} do not depend on z_{0}. Then the entire vector-valued function F has bounded \mathbf{L}-index in joint variables $N(F, \mathbf{L}) \leq s_{0}+n_{0}$. The proof of theorem is complete.

Theorem 1 implies the following corollary.
Corollary 1. Let $\mathbf{L} \in \mathbb{Q}^{p}$ and $\|\cdot\|_{0}$ be some norm in \mathbb{C}^{p}. An entire vector-function $F: \mathbb{C}^{p} \rightarrow$ \mathbb{C}^{p} has bounded \mathbf{L}-index in joint variables in sup-norm if and only if it has bounded \mathbf{L}-index in joint variables in the norm $\|\cdot\|_{0}$.

Proof. Recall that ([12]) if $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ are two norms in \mathbb{C}^{p}, then there exist constants $C_{1}, C_{2} \in(0,+\infty)$ such that $C_{1}\|w\|_{1} \leq\|w\|_{2} \leq C_{2}\|w\|_{1}$ for every $w \in \mathbb{C}^{p}$. Thus, for all $K \in \mathbb{Z}_{+}^{p}$ and for all $z \in \mathbb{C}^{p}$ we obtain

$$
C_{1}\left\|F^{(K)}(z)\right\| \leq\left\|F^{(K)}(z)\right\|_{0} \leq C_{2}\left\|F^{(K)}(z)\right\|,
$$

where $\|\cdot\|$ is the sup-norm. Using the given inequalities and repeating arguments from Theorem 1 for the case of the Euclidean norm we can verify the equivalence of these norms for vector-functions having bounded \mathbf{L}-index in joint variables.

From Corollary 1, in particular, it follows that instead of the sup-norm $\|A\|=\max _{1 \leq j \leq p}\left|a_{j}\right|$ one can consider in Theorem 1 the Euclidean norm $\|A\|_{E}=\sqrt{\left|a_{1}\right|^{2}+\ldots+\left|a_{p}\right|^{2}}$, where $A=\left(a_{1}, \ldots, a_{p}\right) \in \mathbb{C}^{p}$.

REFERENCES

1. V.P. Baksa, Analytic vector-valued functions in the unit ball having bounded L-index in joint variables, Carpathian Math. Publ., 11 (2019), №2, 213-227. doi:10.15330/cmp.11.2.213-227
2. V.P. Baksa, A.I. Bandura, O.B. Skaskiv, Analogs of Fricke's theorems for analytic vector-valued functions in the unit ball having bounded \mathbf{L}-index in joint variables, Proceedings of IAMM of NASU, $\mathbf{3 3}$ (2019), 16-26. doi: 10.37069/1683-4720-2019-33-1
3. V. Baksa, A. Bandura, O. Skaskiv, Growth estimates for analytic vector-valued functions in the unit ball having bounded L-index in joint variables, Constructive Math. Analysis, 3 (2020), №1, 9-19. doi: 10.33205/cma. 650977
4. Bandura A., Skaskiv O. Boundedness of the L-index in a direction of entire solutions of second order partial differential equation, Acta Comment. Univ. Tartu. Math., 2018, 22, №2: 223-234. doi: 10.12697/ACUTM.2018.22.18
5. A. Bandura, O. Skaskiv, L. Smolovyk, Slice holomorphic solutions of some directional differential equations with bounded L-index in the same direction, Demonstr. Math., 52 (2019), №1, 482-489. doi: 10.1515/dema-2019-0043.
6. A. Bandura, O. Skaskiv, Sufficient conditions of boundedness of L-index and analog of Hayman's Theorem for analytic functions in a ball, Stud. Univ. Babeş-Bolyai Math., 63 (2018), №4, 483-501. doi:10.24193/subbmath.2018.4.06
7. A. Bandura, O. Skaskiv, Entire functions of several variables of bounded index, Lviv: Publisher I.E.Chyzhykov, 2016, 128 p.
8. A. Bandura, O. Skaskiv, Asymptotic estimates of entire functions of bounded \mathbf{L}-index in joint variables, Novi Sad J. Math., 48 (2018) №1, 103-116. doi: 10.30755/NSJOM. 06997
9. A. Bandura, N. Petrechko, O. Skaskiv, Maximum modulus in a bidisc of analytic functions of bounded L-index and an analogue of Hayman's theorem, Mat. Bohemica, 143 (2018), №4, 339-354. doi: 10.21136/MB.2017.0110-16
10. A.I. Bandura, O.B. Skaskiv, V.L. Tsvigun, Some characteristic properties of analytic functions in $\mathbb{D} \times \mathbb{C}$ of bounded L-index in joint variables, Bukovyn. Mat. Zh., 6 (2018), №1-2, 21-31.
11. A. Bandura, O. Skaskiv, Analog of Hayman's Theorem and its application to some system of linear partial differential equations, J. Math. Phys., Anal., Geom., 15 (2019), №2, 170-191. doi: 10.15407/mag15.02.170
12. Lelong P., Gruman L. Entire functions of several complex variables, Springer Verlag, Berlin-Heidelberg, New York-Tokyo, 1986.
13. W.K. Hayman, Differential inequalities and local valency, Pacific J. Math., 44 (1973), №1, 117-137.
14. B. Lepson, Differential equations of infinite order, hyperdirichlet series and entire functions of bounded index, Proc. Sympos. Pure Math., (1968) 2, 298-307.
15. R.F. Patterson, F. Nuray, A characterization of holomorphic bivariate functions of bounded index, Math. Slov., 67 (2017), №3, 731-736. doi: 10.1515/ms-2017-0005
16. F. Nuray, R.F. Patterson, Vector-valued bivariate entire functions of bounded index satisfying a system of differential equations, Mat. Stud., 49 (2018), №1, $67-74$. doi: $10.15330 / \mathrm{ms} .49 .1 .67-74$
17. M. Sheremeta, Analytic functions of bounded index, Lviv: VNTL Publishers, 1999, 141 p.
18. M. Sheremeta, Geometric properties of analytic solutions of differential equations, Lviv: Publisher I. E. Chyzhykov, 2019, 164 p.

Ivan Franko National University of Lviv
Lviv, Ukraine
vitalinabaksa@gmail.com
Ivano-Frankivsk National Technical University of Oil and Gas
Ivano-Frankivsk, Ukraine
andriykopanytsia@gmail.com

[^0]: 2010 Mathematics Subject Classification: 32A10, 32A17, 32A37.
 Keywords: bounded index; bounded L-index in joint variables; entire function; maximum modulus; sup-norm; vector-valued function.
 doi:10.30970/ms.54.1.56-63

