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We consider a class of vector-valued entire functions F': C™ — CP. For this class of functions
there is introduced a concept of boundedness of L-index in joint variables.

Let |- |, be a norm in CP. Let L(z) = (l1(2),...,1n(2)), where [;(z): C" — R, is a positive
continuous function. An entire vector-valued function F': C" — CP is said to be of bounded
L-index (in joint variables), if there exists ng € Z, such that

O] (U (2)] n

We assume the function L: C" — R such that 0 < Ay ;(R) < Ao ;(R) < oo for any
j€{1,2,...,p} and VR € RE, where A\ j(R) = irelép inf {l;(2)/1;(20): z € D20, R/L(20)]},
20

X2 j(R) is defined analogously with replacement inf by sup. It is proved the following theorem:
Let |A], = max{|a;|: 1 < j < p} for A= (a1,...,a,) € CP. An entire vector-valued function
F has bounded L-index in joint variables if and only if for every R € RY} there exist ng € Z,
po > 0 such that for all zg € C™ there exists Ko € 27}, || Ko|| < no, satisfying inequality

[F5(2)]p | n |F50) (20)

max{[(!LK(z). IK|| < mno,z € D"z, R/L(20)] p < Pom,
where D" [z, R] = {z = (z1,.-.,2n) € C": |21 — 20,1| < 7T1,..., |20 — 2o.n| < Tn} is the polydisc
with zo = (20,1,---,%0n), B = (r1,...,7n). This theorem is an analog of Fricke’s Theorem

obtained for entire functions of bounded index of one complex variable.

1. Introduction. A concept of bounded index for entire function ([14]) draws attention of
many mathematician (see a full bibliography in |7, 17, 18, 11, 8|) to investigations of the
corresponding function class and possible applications of this concept. It is interesting with
its connections to the value distribution theory and analytic theory of differential equation
([11, 18, 4]). For example, every entire function has bounded value distribution if and only
if its derivative has bounded index ([13]).

Recently, F. Nuray and R. Patterson ([16]) proposed a generalization of the concept of
bounded index for entire bivariate functions from C? into C"* by replacing the absolute value
in the definition of an entire function of bounded index by the maximum of the absolute
values of the components. If the components of a C"-valued bivariate entire function are
of bounded index, then the function is also of bounded index. They presented sufficient
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conditions providing index boundedness of bivariate vector-valued entire solutions of certain
system of partial differential equations with polynomial coefficients.

In recent papers [1, 2, 3] V. Baksa, A. Bandura, O. Skaskiv considered vector-valued
functions having bounded L-index in joint variables which are analytic in the unit ball.
They also extended previous investigations of analytic functions in the unit ball (|6]).

Our present goal is to give a completed form of investigations of F. Nuray and R. Patterson
from [16]. In particular, they used some propositions without strict proofs for entire bivariate
vector-valued functions. Moreover, there was considered a concept of bounded index for func-
tions from C? into C". Nevertheless, there is known a more general concept of bounded L-
index in joint variables (|8]) with applications to system of partial differential equations (|11]).

Therefore, in our present investigation we will consider entire multivariate vector-valued
functions from C” into CP and introduce concept of bounded L-index in joint variables for
these functions.

2. Notations and definitions. Here we use some standard notations (see [1, 8]). Let

R, = [0;+00),0 = (0,...,0) €RL, 1=(1,....,1) R, e; = (0,...,0, 1 ,0,...,0)€
j-th place

R, R = (r1,...,m) € RY, |2| = /]z1]2+ ...+ |z 2 = (21,...,2,) € C". For A =

(a,...,a,) € R*, B = (by,...,b,) € R" we will use formal notations without violation

of the existence of these expressions: AB = (a1by,...,ab,), A/B = (a1/by,...,a,/by,),

AB = (b, .. ab), and the notation A < B means that a; < bj, 7 €{1,...,n}; the relation

A < Bis defined in the similar way. For K = (ky, ..., k,) € Z7} let us denote K! = ky!-.. -k, !.
Addition, multiplication by scalar and conjugation in C" are defined componentwise. For
a=(a,...,a,) €C" b= (by,...,b,) € C" we define (a,b) = a1b; + ...+ a,b,, where 5]- is
the complex conjugate of b,.

For zp = (201,...,%0n) € C* and R = (11,...,7,) € R’} we denote by D"(z, R) = {z €
C": |21 —201| <71,y |20 — 20| < 15} the polydisc, by T"(29, R) = {z € C™: |21 — 21| =
Ty -y |2n — 20| = rn} its skeleton. The closed polydisc {z € C*: |21 — 201| < ry1,..., |20 —
Zon| < 7n}is denoted by D[z, R], D" =D"(0;1), D = {2z € C: |2| < 1}.

Let F(2) = (fi(2),..., fo(#)) be an entire vector-valued function in C", ie. f;: C* — C
is an entire function for every j, 1 < j < p. Then at a point a € C" the function F'(z) has a
vector-valued Taylor expansion

F(z) :Z Z Cin(z —a)™,

k=0 [|ml=k
where
1 1 ol £5(2) ol :(2)
- pm — (M o fm) (m) — J _ J
O = 0) =0 (f vo(@) fy (“)>’ fi ) 9o 92 - ... 92 aea
for m = (m4,...,my,) € Z%, a € C".

Let G C C" be some domain and | - |, be a norm in C?. Let L(z) = (I1(2),...,0.(2)),
where [;(z): G — Ry be a positive continuous function. An analytic vector-valued function
F: G — C? is said to be of bounded L-index (in joint variables) in the domain G, if there
exists ng € Z, such that

n. FOR) [FH(2)] n
Vze G VJ€Z+ J'L—J<Z>p§max WI((/Z/)I)KEZ—i_"’KHSnO .



58 V. P. BAKSA, A. I. BANDURA

The least such integer ny is called the L-index in joint variables of the vector-valued function
F and is denoted by N(F,L,G,CP). For G = CP we denote N(F,L) := N(F,L,CP CP),
the function F is called an entire vector-valued function of bounded L-index N(F,L). The
concept of boundedness of L-index in joint variables were considered for other classes of
analytic functions. They are differed in domains of analyticity: the unit ball (|6]), the polydisc
(19]), the Cartesian product of the unit disc and complex plane ([10]), n-dimensional complex
space ([8, 11]), slice analyticity ([5]).
By Q" we denote the class of functions L: C* — R” such that for any j € {1,2,...,n}
VR € Ri 0< )\17]‘(R) < )\27]‘(R) < 00,
where A\ j(R) = in(f: inf {l;(2)/1;(20): z € D"[20, R/L(20)]}, A2,;(R) is defined analogously
zoeCn
with replacement inf inf by supsup. Remark that (VR € R} ): A ;(R) <1< X\ ;(R) and
(Vj, 1< j < TL)(VRl,RQ - Rz) Rl < RQ — )\2J<R1) < )\Zj(RQ), )‘l,j(Rl) > /\17j(R2).

3. Local behavior of partial derivatives of entire vector-valued functions having
bounded L-index in joint variables. The following theorem is basic in the theory of
functions of bounded index. For various classes of analytic functions similar theorems are
proved in [1, 10, 15, 17].

Theorem 1. Let L € Q" and |A|, = max{|a;[: 1 < j < p} for A = (aq,...,q,) € CP.
An entire vector-valued function F': C" — CP has bounded L-index in joint variables if and
only if for every R € R’} there exist ng € Z,, po > 0 such that for all zy € C" there exists
Ky € 7, || Ko|| < no, satisfying the inequality

|[FE) (z0),

() (
IH&X{M: K| < ng,z € D”[zo,R/L(ZO)]} < pom. (1)

KILE(2)

Proof. Necessity. Let F' be an entire vector-valued function of bounded L-index in joint
variables with V = N(F,L) < oo. For any R € R} we define

q=q(R) = [2<N +1) f[ ((Ag,j(R))N“(Al,j(R))*N> ||R||] +1,

j=1
where [z]| stands for the entire part of a real number x. For pg € {0, ...,¢q} and zy € C" we
denote:

[F5 ()
KILE(2)
[FY ()]
KILX(2)

We note that D"[zg, poR/(qL(z0))] C D"[z0, R/L(z0)], thus for all z € D" [z, poR/(qL(20))]
by the definition of A ;(R) we have

Spo(zo,R):maX{ || K| < N,z e D" [ZO,pOR/(qL(zo))] },

S;O(ZO,R)ZIH&X{ C||K|| <N, zeD" [zo,poR/(qL(zo))}}.

L) _ U"(20) L (20)

. —k1 . O\ =\ K =
TG = e L) <SMPR) oM R) =AME(R), K= (k... k),

where A\ (R) := (A1(R),..., A n(R)) € R} Hence,

[FE )],

Spo (Zo, R) = max{m

H|[K|| <N, zeD"® [ZO>POR/(CIL(ZO))]} -
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. { ()], L¥(z0)
KILK(z)  LE(z)

K <N,z e D”[zo,poR/<qL<zo>>]} <
< 53, (o By max{0(R)™ K| < N} < 8, (o, ) [ TOws (B @

For all z€D™ [z, poR/(qL(20))] by the definition of Ay ;(R), for K = (ky, ..., k,) we have

LGz  WMGe) L)
LE(z)  L"(z0) T 1" (20)

<A (R) - A (R) = A (R), (3)
where A\2(R) := (A21(R),..., Aon(R)) € R7. Hence, one has:

S5 o ) <ma{ 1SNl () ) < .2 € B o L)} <

n

< Spo (20, R) [ J Mo (R))™. (4)

=1
Let K, € ZT, || Kp, || £ N and z, € D" [29, poR/(qL(29))] be such that

| F ) (2,)],

Spo(ZO?R) N Kpo!LK”O (z0) ©)

Since by the maximum modulus principle z, € T™ (2, poR/(qL(29))), therefore z, # 2.

~ - ]- ~ ~ ~ n
We choose z = zg + o (2. — 20). Then for z = (ZW, ... Z(M), 2, = (zél),...,zé )),

Zy (Zil), e zin)), 1 < j < n sequentially we have
j j po—1, j po— 1 por;
79 — ) = 2ol — o) = 2= (6)
Do po  qlj(20)
. —1 . . . 1 . . s
50 _ 0 = )9 PO 200 _ 0y L0 = 20 0 = T 7
| | | 0 0 ( * 0 ) * | p0| 0 * | C]ZJ(ZO) ( )

(Kpg)
o R) > ALy

We obtain z € D" [zo, (po — 1)R/(q(R)L(z0))] and thus S > m.

po—1

Remark that

SN0 (3 4 1(z, Z (129 = 200 [ E S0t (2 4 t(z, — D))

Then, from (5) by the mean value theorem we have

0 S S;() (Z()? R) - S;o—l(z[b R) S
[FUD (), — [PEw @), [ e
< = F o) _ <
B KL% (z) Koy 'L570 (20) Jg dt| Yt e = 2))lpdt <

Kp €)% _ _
_K lLKpo (20) / Z ’z |- 1F Ffot )(Z+t(z* El))|p)dt—
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n

1 ( ) ) _
- - () 2] . F (Kpo ) * )
E 2y z 2+t (24 zZ , 8
K‘pO” KPO(ZO> = | | | ( ( N))|p ( )

where 0 < ¢* <1, and (Z+ t*(z. — 2)) € D"[20, poR/(qL(20))]-
For z € D"[zy,poR/(qL(20))] and J = (j1,...,Jn) € Z7%: ||J|| < N + 1, by the definition of
the numbers N = N(F,L) and A, ; (poR/q), we have

FOEL _ [FVR), L) [FY()), L7(2)
N () T (z0) LI(2) = JILI() maX{LJ(ZO)- 171l §N+1} <
|

n

< {150 e <} T s /)<

7=1

N+1 (%)
SH(Az,j(R)) * ~max{% HKH<N}

= [T O (B)" - Spuo. B) < TT (s (R) Y- 85, (0, B) - T (Vv (R

j=1 j=1 j=1

Hence, and from (8), (6) we obtain

0 < Sy (20, R) = Spy_1(20, R) <
<71OAﬂ_ng(Km+QmLM“ﬁ@@,”W&WﬂNZ+ﬁ@* DY <
> j=1 * K !LKPO (Zo) <Kp0 +e ) LKPO+e] (ZO) ~
- N+1 §
=1l ((AZJ(R)) i) > (20, 1 Z |2 (5, Kpo + €)1 (20).

From (7) we have Y0 |2 — 20)[(e;, Ky + )L (20) = s S0, (€5, Ky + €5) R, but

> i1 leg, Kpy + )R < (N + 1) 377 | R% = (N + 1)||R||. Therefore, using the of choice of
q(R) we get

N+1 —n\ Sy (20, R Sy (20, R
Spaz0: B) =5, (z0. R <II(MJ (M (R)) )—%ETLN+”WmS—47—l

It follows that S (2, R) < 2S5

-~ _1(20, ) and in view of (2) and (4) one has

S (20, B) < 2 [(Ag (R)7VS}, (20, R) <2 II(AM N (BN ) Sy (20, R).
j=1 j=1
Then we consequently obtain

Se(z0, R) < 2] ((Al,j(R))_N(M,j(R))N)qSO(Zoa R),

7j=1

max{% |K|| <N,z € DP[ZO,R/L(ZO)]} =
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= max{% |K|| <N,z eDP [zo,qR/(qL(zg))]} = 9,(20, R) <

- - [F(z0)l
= 2T (OB g0 e { Tl ) < )
j=1
This inequality implies (1) with py = 27]]}_, ((Al,j(R))_N()\QJ(R))N)q and some K; such
that || Ky|| < N. The necessity of condition (1) is proved.
Sufficiency. Assume that for every R € R’} there exist ng € Z, po > 1, such that for every

29 € C7 and for some Ky € Z", ||Ky|| < ng), inequality (1) holds. By Cauchy’s integral
formula we have (Vzy € C"), (VK € Z%), (VS € Z}):

i I FOE)
St (270)P S v (0, R/1(20)) (2 — 20)5TE
Therefore,
[FE) ()] 1 [F5(2)] L (20)
T ST el < [FE) (2)], =m0 d2)
! (27)"™ Jn (20, R/L(z0)) |(2 = 20)5F Tn (20, R/L(z0)) (2m)"R
where |dz| = |dz| - ... |dz,|. Hence, in view of (1), we obtain that
|FE+9) (20)], < po k! | (Ko) ()| L5+ (z) / LX (2)(ds].
S| — Kol(2m)" TLE0 (20) RS Jpn (2, /L (z0))
But, for all zeD" [zy, R/L(z)] by the definition of A, ;(R) we have
LE(2) L7 (2) 1" (2)
L% (2) = L% (%) - =L%(2) - o <
( ) ( 0) LK(ZQ) ( 0) llkl(Z()) lnk"(ZO) >~
< L¥(z0) A4 (R) - ... A5 (R) = L% (20)AS(R), K = (k... ky),
Hence,
[FES )l PR (20)]p poK1ST AF(R) (10)
(K+ S)!LK+S(2’0) - K()!LKO(Z()) (K+ S)' RS
We note that II((E;), <1 (VK,S € Z7), and R® — +o0 as |S|| — 400 for every R €

(1, +00)™. Therefore, for each fixed R € (1, +00)" and every K € Z, || K|| < ng, there exists
so € N such that for every S € Z, ||S|| > so, the inequality

poK!S! \X(R) <1
(K+S)! RS —
holds. Then, in view of (10), one has
[FES ()l [FE (z0)],
(K + S)ILE+9(29) = Ko!L¥o(z)
for all K, S such that || Ky|| < ng, ||S]| > so. It implies that V2 € C* VJ € Z7 :
[F7(2)]p (X ()l .
< = \=ip
LI (z) = "\ KILE ()

where sy and ng do not depend on z5. Then the entire vector-valued function F' has bounded
L-index in joint variables N(F, L) < sq + ng. The proof of theorem is complete. n

KEZ HK’|§SO—|‘HQ}
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Theorem 1 implies the following corollary.

Corollary 1. Let L € QP and || -||o be some norm in CP. An entire vector-function F': CP —
CP has bounded L-index in joint variables in sup-norm if and only if it has bounded L-index
in joint variables in the norm || - ||o.

Proof. Recall that ([12]) if || - || and || - ||z are two norms in CP, then there exist constants
C1,Cy € (0,400) such that Cy|lwl; < JJw|lz < Csl|wl|y for every w € CP. Thus, for all
K € 78 and for all z € CP we obtain

CLlFE ) < [FM(2)llo < ColEE ()],

where || - || is the sup-norm. Using the given inequalities and repeating arguments from
Theorem 1 for the case of the Euclidean norm we can verify the equivalence of these norms
for vector-functions having bounded L-index in joint variables. m

From Corollary 1, in particular, it follows that instead of the sup-norm ||A|| = max |a;]
SJSp

one can consider in Theorem 1 the Euclidean norm ||Allp = /|ai]? + ... + |apy]?, where
A:(al,...,ap) e Cr.
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