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We consider a class of vector-valued entire functions F : Cn → Cp. For this class of functions
there is introduced a concept of boundedness of L-index in joint variables.

Let | · |p be a norm in Cp. Let L(z) = (l1(z), . . . , ln(z)), where lj(z) : Cn → R+ is a positive
continuous function. An entire vector-valued function F : Cn → Cp is said to be of bounded
L-index (in joint variables), if there exists n0 ∈ Z+ such that

∀z ∈ G ∀J ∈ Zn
+ :

|F (J)(z)|p
J !LJ(z)

≤ max

{
|F (K)(z)|p
K!LK(z)

: K ∈ Zn
+, ∥K∥ ≤ n0

}
.

We assume the function L : Cn → Rp
+ such that 0 < λ1,j(R) ≤ λ2,j(R) < ∞ for any

j ∈ {1, 2, . . . , p} and ∀R ∈ Rp
+, where λ1,j(R) = inf

z0∈Cp
inf {lj(z)/lj(z0) : z ∈ Dn[z0, R/L(z0)]} ,

λ2,j(R) is defined analogously with replacement inf by sup. It is proved the following theorem:
Let |A|p = max{|aj | : 1 ≤ j ≤ p} for A = (a1, . . . , ap) ∈ Cp. An entire vector-valued function
F has bounded L-index in joint variables if and only if for every R ∈ Rn

+ there exist n0 ∈ Z+,
p0 > 0 such that for all z0 ∈ Cn there exists K0 ∈ Zn

+, ∥K0∥ ≤ n0, satisfying inequality

max

{
|F (K)(z)|p
K!LK(z)

: ∥K∥ ≤ n0, z ∈ Dn[z0, R/L(z0)]

}
≤ p0

|F (K0)(z0)|p
K0!LK0(z0)

,

where Dn[z0, R] = {z = (z1, . . . , zn) ∈ Cn : |z1 − z0,1| < r1, . . . , |zn − z0,n| < rn} is the polydisc
with z0 = (z0,1, . . . , z0,n), R = (r1, . . . , rn). This theorem is an analog of Fricke’s Theorem
obtained for entire functions of bounded index of one complex variable.

1. Introduction. A concept of bounded index for entire function ([14]) draws attention of
many mathematician (see a full bibliography in [7, 17, 18, 11, 8]) to investigations of the
corresponding function class and possible applications of this concept. It is interesting with
its connections to the value distribution theory and analytic theory of differential equation
([11, 18, 4]). For example, every entire function has bounded value distribution if and only
if its derivative has bounded index ([13]).

Recently, F. Nuray and R. Patterson ([16]) proposed a generalization of the concept of
bounded index for entire bivariate functions from C2 into Cn by replacing the absolute value
in the definition of an entire function of bounded index by the maximum of the absolute
values of the components. If the components of a Cn-valued bivariate entire function are
of bounded index, then the function is also of bounded index. They presented sufficient
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conditions providing index boundedness of bivariate vector-valued entire solutions of certain
system of partial differential equations with polynomial coefficients.

In recent papers [1, 2, 3] V. Baksa, A. Bandura, O. Skaskiv considered vector-valued
functions having bounded L-index in joint variables which are analytic in the unit ball.
They also extended previous investigations of analytic functions in the unit ball ([6]).

Our present goal is to give a completed form of investigations of F. Nuray and R. Patterson
from [16]. In particular, they used some propositions without strict proofs for entire bivariate
vector-valued functions. Moreover, there was considered a concept of bounded index for func-
tions from C2 into Cn. Nevertheless, there is known a more general concept of bounded L-
index in joint variables ([8]) with applications to system of partial differential equations ([11]).

Therefore, in our present investigation we will consider entire multivariate vector-valued
functions from Cn into Cp and introduce concept of bounded L-index in joint variables for
these functions.

2. Notations and definitions. Here we use some standard notations (see [1, 8]). Let
R+ = [0;+∞), 0 = (0, . . . , 0) ∈ Rn

+, 1 = (1, . . . , 1) ∈ Rn
+, ej = (0, . . . , 0, 1︸︷︷︸

j-th place
, 0, . . . , 0) ∈

Rn
+, R = (r1, . . . , rn) ∈ Rn

+, |z| =
√
|z1|2 + . . .+ |zn|2, z = (z1, . . . , zn) ∈ Cn. For A =

(a1, . . . , an) ∈ Rn, B = (b1, . . . , bn) ∈ Rn, we will use formal notations without violation
of the existence of these expressions: AB = (a1b1, . . . , anbn), A/B = (a1/b1, . . . , an/bn),
AB = (ab11 , . . . , a

bn
n ), and the notation A < B means that aj < bj, j ∈ {1, . . . , n}; the relation

A ≤ B is defined in the similar way. For K = (k1, . . . , kn) ∈ Zn
+ let us denote K! = k1!·. . .·kn!.

Addition, multiplication by scalar and conjugation in Cn are defined componentwise. For
a = (a1, . . . , an) ∈ Cn, b = (b1, . . . , bn) ∈ Cn we define ⟨a, b⟩ = a1b1 + . . .+ anbn, where bj is
the complex conjugate of bj.

For z0 = (z0,1, . . . , z0,n) ∈ Cn and R = (r1, . . . , rn) ∈ Rn
+ we denote by Dn(z0, R) = {z ∈

Cn : |z1 − z0,1| < r1, . . . , |zn − z0,n| < rn} the polydisc, by Tn(z0, R) = {z ∈ Cn : |z1 − z0,1| =
r1, . . . , |zn − z0,n| = rn} its skeleton. The closed polydisc {z ∈ Cn : |z1 − z0,1| ≤ r1, . . . , |zn −
z0,n| ≤ rn} is denoted by Dn[z0, R], Dn = Dn(0;1), D = {z ∈ C : |z| < 1}.

Let F (z) = (f1(z), . . . , fp(z)) be an entire vector-valued function in Cn, i.e. fj : Cn → C
is an entire function for every j, 1 ≤ j ≤ p. Then at a point a ∈ Cn the function F (z) has a
vector-valued Taylor expansion

F (z) =
+∞∑
k=0

∑
∥m∥=k

Cm(z − a)m,

where

Cm=
1

m!
F (m)(a) :=

1

m!

(
f
(m)
1 (a), . . . , f (m)

p (a)
)
, f

(m)
j (a) :=

∂∥m∥fj(z)

∂zm
=

∂∥m∥fj(z)

∂zm1
1 · . . . · ∂zmn

n

∣∣∣
z=a

for m = (m1, . . . ,mn) ∈ Zn
+, a ∈ Cn.

Let G ⊂ Cn be some domain and | · |p be a norm in Cp. Let L(z) = (l1(z), . . . , ln(z)),
where lj(z) : G → R+ be a positive continuous function. An analytic vector-valued function
F : G → Cp is said to be of bounded L-index (in joint variables) in the domain G, if there
exists n0 ∈ Z+ such that

∀z ∈ G ∀J ∈ Zn
+ :

|F (J)(z)|p
J !LJ(z)

≤ max

{
|F (K)(z)|p
K!LK(z)

: K ∈ Zn
+, ∥K∥ ≤ n0

}
.
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The least such integer n0 is called the L-index in joint variables of the vector-valued function
F and is denoted by N(F,L, G,Cp). For G = Cp we denote N(F,L) := N(F,L,Cp,Cp),
the function F is called an entire vector-valued function of bounded L-index N(F,L). The
concept of boundedness of L-index in joint variables were considered for other classes of
analytic functions. They are differed in domains of analyticity: the unit ball ([6]), the polydisc
([9]), the Cartesian product of the unit disc and complex plane ([10]), n-dimensional complex
space ([8, 11]), slice analyticity ([5]).

By Qn we denote the class of functions L : Cn → Rn
+ such that for any j ∈ {1, 2, . . . , n}

∀R ∈ Rn
+ : 0 < λ1,j(R) ≤ λ2,j(R) < ∞,

where λ1,j(R) = inf
z0∈Cn

inf {lj(z)/lj(z0) : z ∈ Dn[z0, R/L(z0)]} , λ2,j(R) is defined analogously

with replacement inf inf by sup sup. Remark that (∀R ∈ Rn
+) : λ1,j(R) ≤ 1 ≤ λ2,j(R) and

(∀j, 1 ≤ j ≤ n)(∀R1, R2 ∈ Rn
+) : R1 < R2 =⇒ λ2,j(R1) ≤ λ2,j(R2), λ1,j(R1) ≥ λ1,j(R2).

3. Local behavior of partial derivatives of entire vector-valued functions having
bounded L-index in joint variables. The following theorem is basic in the theory of
functions of bounded index. For various classes of analytic functions similar theorems are
proved in [1, 10, 15, 17].

Theorem 1. Let L ∈ Qn and |A|p = max{|aj| : 1 ≤ j ≤ p} for A = (a1, . . . , ap) ∈ Cp.
An entire vector-valued function F : Cn → Cp has bounded L-index in joint variables if and
only if for every R ∈ Rn

+ there exist n0 ∈ Z+, p0 > 0 such that for all z0 ∈ Cn there exists
K0 ∈ Zn

+, ∥K0∥ ≤ n0, satisfying the inequality

max

{
|F (K)(z)|p
K!LK(z)

: ∥K∥ ≤ n0, z ∈ Dn[z0, R/L(z0)]

}
≤ p0

|F (K0)(z0)|p
K0!LK0(z0)

. (1)

Proof. Necessity. Let F be an entire vector-valued function of bounded L-index in joint
variables with N = N(F,L) < ∞. For any R ∈ Rn

+ we define

q = q(R) =
[
2(N + 1)

n∏
j=1

((
λ2,j(R)

)N+1(
λ1,j(R)

)−N
)
∥R∥

]
+ 1,

where [x] stands for the entire part of a real number x. For p0 ∈ {0, ..., q} and z0 ∈ Cn we
denote:

Sp0(z0, R)=max
{ |F (K)(z)|p
K!LK(z)

: ∥K∥ ≤ N, z ∈ Dn
[
z0, p0R/(qL(z0))

]}
,

S∗
p0
(z0, R)=max

{ |F (K)(z)|p
K!LK(z0)

: ∥K∥ ≤N, z∈Dn
[
z0, p0R/(qL(z0))

]}
.

We note that Dn[z0, p0R/(qL(z0))] ⊂ Dn[z0, R/L(z0)], thus for all z ∈Dn [z0, p0R/(qL(z0))]
by the definition of λ1,j(R) we have

LK(z0)

LK(z)
=

l1
k1(z0)

l1
k1(z)

· . . . · ln
kp(z0)

ln
kp(z)

≤ λ−k1
1,1 (R) · . . . · λ−kn

1,n (R) = λ−K
1 (R), K = (k1, . . . , kn),

where λ1(R) := (λ1,1(R), . . . , λ1,n(R)) ∈ Rn
+. Hence,

Sp0(z0, R) = max

{
|F (K)(z)|p
K!LK(z)

: ∥K∥ ≤N, z∈Dn [z0, p0R/(qL(z0))]

}
=
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= max

{
|F (K)(z)|p
K!LK(z0)

· L
K(z0)

LK(z)
: ∥K∥ ≤ N, z ∈ Dn[z0, p0R/(qL(z0))]

}
≤

≤ S∗
p0
(z0, R)max{λ1(R)−K : ∥K∥ ≤ N} ≤ S∗

p0
(z0, R)

n∏
j=1

(λ1,j(R))−N . (2)

For all z∈Dn [z0, p0R/(qL(z0))] by the definition of λ2,j(R), for K = (k1, . . . , kn) we have

LK(z)

LK(z0)
=

l1
k1(z)

l1
k1(z0)

· . . . · ln
kn(z)

ln
kn(z0)

≤ λk1
2,1(R) · . . . · λkp

2,n(R) = λK
2 (R), (3)

where λ2(R) := (λ2,1(R), . . . , λ2,n(R)) ∈ Rn
+. Hence, one has:

S∗
p0
(z0, R)≤max

{|F (K)(z)|p
K!LK(z)

λ2(R)K : ∥K∥ ≤ N, z ∈ Dn[z0, p0R/(qL(z0))]]
}
≤

≤ Sp0(z0, R)
n∏

j=1

(λ2,j(R))N . (4)

Let Kp0 ∈ Zn
+, ∥Kp0∥ ≤ N and z∗ ∈ Dn [z0, p0R/(qL(z0))] be such that

S∗
p0
(z0, R) =

|F (Kp0)(z∗)|p
Kp0 !L

Kp0 (z0)
. (5)

Since by the maximum modulus principle z∗ ∈ Tn (z0, p0R/(qL(z0))), therefore z∗ ̸= z0.

We choose z̃ = z0 +
p0 − 1

p0
(z∗ − z0) . Then for z̃ = (z̃(1), . . . , z̃(n)), z0 = (z

(1)
0 , . . . , z

(n)
0 ),

z∗ = (z
(1)
∗ , . . . , z

(n)
∗ ), 1 ≤ j ≤ n sequentially we have

|z̃(j) − z
(j)
0 | = p0 − 1

p0
|z(j)∗ − z

(j)
0 | = p0 − 1

p0

p0rj
qlj(z0)

, (6)

|z̃(j) − z(j)∗ | = |z(j)0 +
p0 − 1

p0
(z(j)∗ − z

(j)
0 )− z(j)∗ | = 1

p0
|z(j)0 − z(j)∗ | = rj

qlj(z0)
. (7)

We obtain z̃ ∈ Dn [z0, (p0 − 1)R/(q(R)L(z0))] and thus S∗
p0−1(z0, R) ≥ |F (Kp0 )(z̃)|p

Kp0 !L
Kp0 (z0)

.

Remark that

d

dt
∥F (Kp0 )(z̃ + t(z∗ − z̃))∥ ≤

n∑
j=1

(
|z(j)∗ − z̃(j)| · ∥F (Kp0+ej)(z̃ + t(z∗ − z̃))∥

)
Then, from (5) by the mean value theorem we have

0 ≤ S∗
p0
(z0, R)− S∗

p0−1(z0, R) ≤

≤ |F (Kp)(z∗)|p − |F (Kp0 )(z̃)|p
K!LKp0 (z0)

=
1

Kp0 !L
Kp0 (z0)

∫ 1

0

d

dt
|F (Kp0)(z̃ + t(z∗ − z̃))|pdt ≤

≤ 1

Kp0 !L
Kp0 (z0)

∫ 1

0

n∑
j=1

(
|z(j)∗ − z̃(j)| · |F (Kp0+ej)(z̃ + t(z∗ − z̃))|p

)
dt =
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=
1

Kp0 !L
Kp0 (z0)

n∑
j=1

(
|z(j)∗ − z̃(j)| · |F (Kp0+ej)(z̃ + t∗(z∗ − z̃))|p

)
, (8)

where 0 ≤ t∗ ≤ 1, and (z̃ + t∗(z∗ − z̃)) ∈ Dn[z0, p0R/(qL(z0))].
For z ∈ Dn[z0, p0R/(qL(z0))] and J = (j1, . . . , jn) ∈ Zn

+ : ∥J∥ ≤ N + 1, by the definition of
the numbers N = N(F,L) and λ2,j

(
p0R/q

)
, we have

|F (J)(z)|p
J !LJ(z0)

=
|F (J)(z)|p
J !LJ(z0)

· L
J(z)

LJ(z)
≤ |F (J)(z)|p

J !LJ(z)
max

{
LJ(z)

LJ(z0)
: ∥J∥ ≤ N + 1

}
≤

≤max

{
|F (K)(z)|p
K!LK(z)

: ∥K∥ ≤N

}
·

n∏
j=1

(
λ2,j

(
p0R/q

))N+1≤

≤
n∏

j=1

(
λ2,j

(
R
))N+1 ·max

{
|F (K)(z)|p
K!LK(z)

: ∥K∥ ≤ N

}
=

=
n∏

j=1

(
λ2,j

(
R
))N+1 · Sp0(z0, R) ≤

n∏
j=1

(
λ2,j

(
R
))N+1 · S∗

p0
(z0, R) ·

n∏
j=1

(
λ1,j

(
R
))−N

.

Hence, and from (8), (6) we obtain

0 ≤ S∗
p0
(z0, R)− S∗

p0−1(z0, R) ≤

≤
n∑

j=1

(
|z(j)∗ − z̃(j)| · (Kp0 + ej)!L

Kp0+ej(z0)

Kp0 !L
Kp0 (z0)

· ∥F
(Kp0+ej)(z̃ + t∗(z∗ − z̃))∥
(Kp0 + ej)!LKp0+ej(z0)

)
≤

≤
n∏

j=1

((
λ2,j(R)

)N+1(
λ1,j(R)

)−N
)
S∗
p0
(z0, R)×

n∑
j=1

|z(j)∗ − z̃(j)|⟨ej, Kp0 + ej⟩Lej(z0).

From (7) we have
∑n

j=1 |z
(j)
∗ − z̃(j)|⟨ej, Kp0 + ej⟩Lej(z0) = 1

q(R)

∑n
j=1⟨ej, Kp0 + ej⟩Rej , but∑n

j=1⟨ej, Kp0 + ej⟩Rej ≤ (N + 1)
∑n

j=1 R
ej = (N + 1)∥R∥. Therefore, using the of choice of

q(R) we get

S∗
p0
(z0, R)−S∗

p0−1(z0, R)≤
n∏

j=1

((
λ2,j(R)

)N+1(
λ1,j(R)

)−N
)S∗

p0
(z0, R)

q(R)
(N+1)∥R∥≤

S∗
p0
(z0, R)

2
.

It follows that S∗
p0
(z0, R) ≤ 2S∗

p0−1(z0, R) and in view of (2) and (4) one has

Sp0(z0, R) ≤ 2
n∏

j=1

(λ1,j(R))−NS∗
p0−1(z0, R) ≤ 2

n∏
j=1

(
(λ1,j(R))−N(λ2,j(R))N

)
Sp0−1(z0, R).

Then we consequently obtain

Sq(z0, R) ≤ 2q
n∏

j=1

(
(λ1,j(R))−N(λ2,j(R))N

)q

S0(z0, R),

max

{
|F (K)(z)|p
K!LK(z)

: ∥K∥ ≤N, z ∈ Dp [z0, R/L(z0)]

}
=
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= max

{
|F (K)(z)|p
K!LK(z)

: ∥K∥ ≤N, z ∈ Dp [z0, qR/(qL(z0))]

}
= Sq(z0, R) ≤

= 2q
n∏

j=1

(
(λ1,j(R))−N(λ2,j(R))N

)q

max

{
|F (K)(z0)|p
K!LK(z0)

: ∥K∥ ≤N

}
. (9)

This inequality implies (1) with p0 = 2q
∏n

j=1

(
(λ1,j(R))−N(λ2,j(R))N

)q

and some K0 such
that ∥K0∥ ≤ N . The necessity of condition (1) is proved.
Sufficiency. Assume that for every R ∈ Rn

+ there exist n0 ∈ Z+, p0 > 1, such that for every
z0 ∈ Cn

+ and for some K0 ∈ Zn
+, ∥K0∥ ≤ n0), inequality (1) holds. By Cauchy’s integral

formula we have (∀z0 ∈ Cn), (∀K ∈ Zn
+), (∀S ∈ Zn

+):

F (K+S)(z0)

S!
=

1

(2πi)p

∫
Tp(z0,R/L(z0))

F (K)(z)

(z − z0)S+1
dz.

Therefore,

|F (K+S)(z0)|p
S!

≤ 1

(2π)n

∫
Tn(z0,R/L(z0))

|F (K)(z)|p
|(z − z0)S+1|

|dz|≤
∫
Tn(z0,R/L(z0))

|F (K)(z)|p
LS+1(z0)

(2π)nRS+1
|dz|,

where |dz| = |dz1| · . . . · |dzn|. Hence, in view of (1), we obtain that

|F (K+S)(z0)|p
S!

≤ p0K!

K0!(2π)n
|F (K0)(z0)|p

LS+1(z0)

LK0(z0)RS+1

∫
Tn(z0,R/L(z0))

LK(z)|dz|.

But, for all z∈Dn [z0, R/L(z0)] by the definition of λ2,j(R) we have

LK(z) = LK(z0) ·
LK(z)

LK(z0)
= LK(z0) ·

l1
k1(z)

l1
k1(z0)

· . . . · ln
kn(z)

ln
kn(z0)

≤

≤ LK(z0)λ
k1
2,1(R) · . . . · λkn

2,n(R) = LK(z0)λ
K
2 (R), K = (k1, . . . , kp),

Hence,

|F (K+S)(z0)|p
(K + S)!LK+S(z0)

≤ |F (K0)(z0)|p
K0!LK0(z0)

p0K!S!

(K + S)!

λK
2 (R)

RS
. (10)

We note that K!S!
(K+S)!

≤ 1 (∀K,S ∈ Zn
+), and RS → +∞ as ∥S∥ → +∞ for every R ∈

(1,+∞)n. Therefore, for each fixed R ∈ (1,+∞)n and every K ∈ Zn
+, ∥K∥ ≤ n0, there exists

s0 ∈ N such that for every S ∈ Zn
+, ∥S∥ ≥ s0, the inequality

p0K!S!

(K + S)!

λK
2 (R)

RS
≤ 1

holds. Then, in view of (10), one has

|F (K+S)(z0)|p
(K + S)!LK+S(z0)

≤ |F (K0)(z0)|p
K0!LK0(z0)

for all K,S such that ∥K0∥ ≤ n0, ∥S∥ ≥ s0. It implies that ∀z ∈ Cn ∀J ∈ Zn
+ :

|F J(z)|p
J !LJ(z)

≤ max

{
|FK(z)|p
K!LK(z)

: K ∈ Zp
+, ∥K∥ ≤ s0 + n0

}
.

where s0 and n0 do not depend on z0. Then the entire vector-valued function F has bounded
L-index in joint variables N(F,L) ≤ s0 + n0. The proof of theorem is complete.
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Theorem 1 implies the following corollary.

Corollary 1. Let L ∈ Qp and ∥ ·∥0 be some norm in Cp. An entire vector-function F : Cp →
Cp has bounded L-index in joint variables in sup-norm if and only if it has bounded L-index
in joint variables in the norm ∥ · ∥0.

Proof. Recall that ([12]) if ∥ · ∥1 and ∥ · ∥2 are two norms in Cp, then there exist constants
C1, C2 ∈ (0,+∞) such that C1∥w∥1 ≤ ∥w∥2 ≤ C2∥w∥1 for every w ∈ Cp. Thus, for all
K ∈ Zp

+ and for all z ∈ Cp we obtain

C1∥F (K)(z)∥ ≤ ∥F (K)(z)∥0 ≤ C2∥F (K)(z)∥,

where ∥ · ∥ is the sup-norm. Using the given inequalities and repeating arguments from
Theorem 1 for the case of the Euclidean norm we can verify the equivalence of these norms
for vector-functions having bounded L-index in joint variables.

From Corollary 1, in particular, it follows that instead of the sup-norm ∥A∥ = max
1≤j≤p

|aj|

one can consider in Theorem 1 the Euclidean norm ∥A∥E =
√
|a1|2 + . . .+ |ap|2, where

A = (a1, . . . , ap) ∈ Cp.
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