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In this paper we study a special type of pseudo-Riemannian spaces – quasi-Einstein spaces
of constant scalar curvature. These spaces are generalizations of known Einstein spaces. We
obtained a linear form of the basic equations of the theory of geodetic mappings for these
spaces. The studies are conducted locally in tensor form, without restrictions on the sign and
signature of the metric tensor.

1. Introduction. E. Beltrami was the first to consider the question of geodesic mapping
of a surface V2 into a surface Ē2 as early as 1865 ([1]). He sought a solution for classical
problems of cartography known since Lagrange ([15]). In 1869 U. Dini ([2]) posed a general
problem of a possibility of geodesic mapping for a given surface V2 into V̄2. Actually he solved
this problem for Riemannian spaces, however he did it in such a complex way, that the
solution was improved since then on many occasions. In 1896 T. Levi-Civita ([16]) proposed
a particular formulation of the problem (implied by dynamics equations) and obtained main
equations in tensor form ([5]).

Thereafter tensor methods took the leading role in differential geometry. H. Weyl, L. P. Ei-
senhart, V. F. Kagan, G. I. Kruchkovich, A. S. Solodovnikov and others developed a coherent
theory of geodesic mappings of pseudo-Riemannian spaces that was invariant in relation to
the choice of coordinate system.

M. S. Syniukov pushed the research further by reduction of the problem to a study of
linear system of differential equations ([18]).

The linear form of basic equations of theory of geodesic mappings was simplified and
there was a solution found for the problem of cardinalities distribution for a geodesic class
of a given space ([12]).

Significant progress has been achieved in the study of special pseudo-Riemannian spaces,
Einstein spaces in particular ([11, 17]).

It appeared that four-dimensional Einstein spaces that differs from spaces of a constant
curvature, do not permit non-trivial geodesic mappings. This fact underlined the necessity of
a research on more general classes of spaces. The latter were built by adding to the internal
objects (Ricci tensor, Einstein tensor) both constructions made of internal objects ([13, 14]),
and some special vector fields ([7, 8]).
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In this paper, following [6], we study spaces in which the Einstein tensor deviates from
zero by some bivector.

2. Basic equations of the theory of geodesic mappings. The one-to-one correspondence
between the points of pseudo-Riemannian spaces Vn with the metric tensor gij and V n with
a metric tensor ḡij is called a geodesic mapping if any geodesic line in Vn is mapped into
a geodesic line in V n.

If pseudo-Riemannian spaces Vn and V n allow bijective geodesic mapping, we call them
spaces that are in geodesic correspondence, or spaces that belong to the same geodesic class.

A necessary and sufficient condition [16] for the pseudo-Riemannian spaces Vn and V n

to allow geodetic mapping on each other is

Γ̄hij = Γhij + ϕiδ
h
j + ϕjδ

h
i , (1)

or, considering the covariant constancy of the metric tensor

ḡij,k = 2ϕkḡij + ϕiḡjk + ϕj ḡik, (2)

where ϕi is some necessary gradient vector, Γhij, Γ̄
h
ij are Christoffel symbols Vn and V̄n respecti-

vely; δhi are Kronecker symbols; comma “,“ is the sign of the covariant derivative in respect
to connectivity of Vn.

Equations (1) and (2) are equivalent, necessary, and sufficient conditions for pseudo-
Riemannian spaces Vn and V n to be in geodesic correspondence.

A necessary condition for geodesic mapping is given by the equations:

R̄h
ijk = Rh

ijk + ϕijδ
h
k − ϕikδhj , R̄ij = Rij + (n− 1)ϕij, (3)

where ϕij = ϕi, j − ϕiϕj, Rh
ijk, Rijk are Riemann and Ricci tensors.

A geodesic mapping that differs from homothetic is called non-trivial.
The given pseudo-Riemannian space Vn permits a non-trivial geodesic mapping only in

the case when the system of differential equations has a solution in respect to the tensor
aij = aji 6= cgij and the vector λi = λ,i 6= 0. It is a necessary and sufficient condition.

The linear form of the basic equations of the theory of geodesic mappings can be written
down as follows ([18, p.121])

aij,k = λigjk + λjgik. (4)

nλi,j = µgij + aαiR
α
j − aαβR

α β
. ij . , (5)

here µ = λα,βg
αβ; Ri

j = Rαjg
αi; Rh k

ij = Rh
ijαg

α k
. .

From the latter we will have ([18, p.123]):

(n− 1)µ,i = 2(n+ 1)λαR
α
i + aαβ(2Rα β

. i, . −R
αβ
,i). (6)

Solutions (2) and (4) are connected by relations

aij = e2ϕḡαβgαigβj; λi = −e2ϕḡαβgαiϕβ.

The system of equations (4), (5) and (6) gives a fundamental possibility to answer the
question: does a given pseudo-Riemannian space Vn allow geodesic mapping to pseudo-
Riemannian space V̄n. The question is reduced to a study of integrability conditions of these
differential equations and their differential extensions ([12]).
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The purpose of our work is to obtain the form of basic equations of the theory of geodesic
mappings for quasi-Einstein spaces.

3. Basic equations of the theory of geodesic mappings of quasi-Einstein spaces.
Let us consider a geodesic mapping of quasi-Einstein spaces, namely pseudo-Riemannian
spaces Vn(n > 2) which satisfy the following condition

Rij =
R

n
gij + UiUj, (7)

where Ui is a gradient vector by definition, i.e. Ui = U,i = ∂iU. It follows from the definition
that the vector Ui is, by necessity, an isotropic vector. Given (7), equation ([18, p.138])

aαlR
α
h − aαkRα

l = 0,

will take the form UlU
αaαi = UiaαlU

α.
From the last equality we have

Uαaαi = ρUi, (8)

where ρ def
=aαβU

αξβ, ξi is some vector such that Uαξα = 1.
Thus, we are proved

Theorem 1. If quasi-Einstein space Vn permits non-trivial geodesic mapping, then the
vector Ui is the eigenvector of the tensor matrix aij.

Let us prove the following theorem.

Theorem 2. If quasi-Einstein space Vn permits non-trivial geodesic mapping, then the
vectors Ui and λi are mutually orthogonal, that is Uαλα = 0.

Proof. Differentiating (8) with respect to (4) we obtain

Uα
,jaαi + Uαλαgij + λiUj = ρ,jUi + ρUi, j. (9)

Because of the isotropy of the vector Ui, by multiplying (9) on it and contracting it, we have
2UαλαUi = 0, since Ui is not a zero vector, then the theorem is proved.

Let us now consider the question about non-trivial geodesic mapping of quasi-Einstein
spaces of constant scalar curvature.

Let us prove the following theorem.

Theorem 3. If the quasi-Einstein space of constant scalar curvature allows non-trivial
geodesic mapping, the vector λi satisfies the conditions

λ α
αj, = τλj, (10)

here λ α
iα, = λ α

i,α = λi,αβg
αβ, and τ is some invariant.

Proof. Differentiating

aαiR
α
jkl + aαjR

α
ikl = λligjk + λljgik − λkjgil − λkigjl, (11)
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where λij = λi,j, according to (4), we obtain

λαR
α
jklgim + λiRmjkl + λαR

α
iklgjm + λjRmikl + aαiR

α
jkl,m + aαjR

α
ikl,m =

= λli,mgjk + λlj,mgik − λki,mgjl − λkj,mgil.

Contracting the latter by l and m, we have

λαR
α
jki + λαR

α
ikj + λiRjk + λjRik + aαi R

β
kjα,β + aαjR

β
kiα,β =

= λ α
αi, gjk + λ α

αj, gik − λki,j − λkj,i.

Given that Rα
ijk,α = Rij,k −Rik,j and (7), we obtain

λαR
α
jki + λαR

α
ikj + λiRjk + λjRik + Uj(ρkUi + ρUi,k − λiUk)− ρUiUk,j+

+Ui(ρkUj + ρUj,k − λjUk)− ρUjUk,i = λ α
αi, gjk + λ α

αj, gik − λki,j − λkj,i.

Or, just like that,

λαR
α
jki + λαR

α
ikj + λiRjk + λjRik + Uj(ρkUi − λiUk) + Ui(ρkUj − λjUk) =

= λ α
αi, gjk + λ α

αj, gik − λki,j − λkj,i.

Alternating the last equality by j, k, we obtain

4λαR
α
ikj + 2UjUiρk − 2UiUkρj +

R

n
(λjgik − λkgji) = λ α

αj, gik − λ α
αk, gij. (12)

Multiplying (12) by λi and contracting by i, we get

λ α
αj, λk − λ α

αk, λj = 0.

This implies (10), where τ is some invariant such that τ = λ α
βα, η

β; and ηi is a vector,
which satisfies the condition λαηα = 1.

Given (10), equation (12) takes the form

4λαR
α
ikj + 2UjUiρk − 2UiUkρj +

(
R

n
− τ

)
(λjgik − λkgij) = 0. (13)

Multiplying (11) by λl, and contracting by l with respect to (13), we obtain

2aαi ραUkUj − 2ρρjUkUi +

(
R

n
− τ

)
(λjaik − λαaαi gjk) + 2aαj ραUkUi − 2ρρiUkUj+

+

(
R

n
− τ

)
(λiajk − λαaαj gik) = 4λαλαigjk + 4λαλαjgik − 4λkiλj − 4λkjλi. (14)

Let us alternate the last equality by j and k. Then we replace the indices i ←→ k in the
resulting expression and summarize the result with (14). We have

2(aαi ρα − ρρi)UkUj + λi

((
R

n
− τ

)
ajk + 4λkj

)
= (4λαλαi +

(
R

n
− τ

)
λαa

α
i )gjk. (15)
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We contract with gjk, then

4λαλαi +

(
R

n
− τ

)
λαa

α
i = 4µλi,

where
4µ =

1

n

((
R

n
− τ

)
aαβ + 4λαβ

)
gαβ.

Given this, we write (15) in the form

2(aαi ρα − ρρi)UkUj + λi

((
R

n
− τ

)
ajk + 4λkj − 4µ gkj

)
= 0.

Contracting the latter equality with ηi, we obtain(
R

n
− τ

)
ajk + 4λkj − 4µ gkj − 4

1
c UkUj = 0. (16)

Here
2(aαβρα − ρρβ)ηβ

def
= − 4

1
c.

It is easy to see that

τ =
R(n+ 3)

n(n− 1)
.

And then (16) will take the final form

λkj = µgkj +
R

n(n− 1)
akj+

1
c UkUj. (17)

Differentiating (17), we have

λi,jk = µ,kgij +
R

n(n− 1)
(λigjk + λjgik)+

1
c,k UiUj+

1
c Ui,kUj+

1
c UiUj,k.

Contracting by i, j, we obtain

gαβλα,βk = nµ,k +
2R

n(n− 1)
λk.

After using the Ricci identity for quasi-Einstein spaces

gαβ(λα,βk − λα,kβ) =
R

n
λk,

we get

µ,i =
2R

n(n− 1)
λi. (18)

Thus, the theorem is true

Theorem 4. If quasi-Einstein space Vn of constant scalar curvature permits non-trivial
geodesic mappings, then conditions (17), (18) are satisfied.

Conclusions. We defined a form of a system of basic equations for geodesic mappings of
quasi-Einstein spaces.

The developed methods of research can be applied in the theory of conformal mappings
([3]) and in the theory of holomorphically projective mappings of Kählerian spaces ([4, 9]).

A further research is needed in order to shed new light on the pseudo-Riemannian spaces
that result from geodesic mapping of a quasi-Einstein space.
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