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A coarse structure E on a set X is called finitary if, for each entourage E ∈ E , there exists a

natural number n such that E[x] < n for each x ∈ X. By a finitary approximation of a coarse
structure E ′, we mean any finitary coarse structure E such that E ⊆ E ′. If E ′ has a countable
base and E[x] is finite for each x ∈ X then E ′ has a cellular finitary approximation E such that
the relations of linkness on subsets of (X, E ′) and (X, E) coincide. This answers Question 6
from [8]: the class of cellular coarse spaces is not stable under linkness. We define and apply
the strongest finitary approximation of a coarse structure.

1. Introduction. Given a set X, a family E of subsets of X ×X is called a coarse structure
on X if

• each E ∈ E contains the diagonal 4X , 4X = {(x, x) ∈ X : x ∈ X};
• if E, E ′ ∈ E then E ◦ E ′ ∈ E and E−1 ∈ E , where E ◦ E ′ = {(x, y) : ∃z((x, z) ∈
E, (z, y) ∈ E ′)}, E−1 = {(y, x) : (x, y) ∈ E};
• if E ∈ E and 4X ⊆ E ′ ⊆ E then E ′ ∈ E ;
•

⋃
E = X ×X.

A subfamily E ′ ⊆ E is called a base for E if, for every E ∈ E , there exists E ′ ∈ E ′ such
that E ⊆ E ′. For x ∈ X, A ⊆ X and E ∈ E , we denote

E[x] = {y ∈ X : (x, y) ∈ E}, E[A] =
⋃
a∈A

E[a], EA[x] = E[x] ∩ A

and say that E[x] and E[A] are balls of radius E around x and A.
The pair (X, E) is called a coarse space [10] or a ballean [7], [9].
For a coarse space (X, E), a subset B ⊆ X is called bounded if B ⊆ E[x] for some E ∈ E

and x ∈ X. The family B(X,E) of all bounded subsets of (X, E) is called the bornology of
(X, E). We recall that a family B of subsets of a set X is a bornology if B is closed under
taking subsets and finite unions, and B contains all finite subsets of X.

We say that (X, E) is locally finite, if each ball E[x] is finite, equivalently, B(X,E) = [X]<ω.
A coarse space (X, E) is called finitary, if for each E ∈ E there exists a natural number

n such that |E[x]| < n for each x ∈ X.
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Let G be a transitive group of permutations of a set X. We denote by XG the set X
endowed with the coarse structure with the base

{{(x, gx) : g ∈ F} : F ∈ [G]<ω, id ∈ F}.

By [4, Theorem 1], for every finitary coarse structure (X, E), there exists a transitive
group G of permutations of X such that (X, E) = XG. For more general results, see [6].

By a finitary approximation of a coarse structure E ′ on X we mean an arbitrary finitary
coarse structure E on X such that E ⊆ E ′. In particular, the discrete coarse structure E0 with
the base {{(x, y) : x, y ∈ F} ∪ ∆X : F ∈ [X]<ω} is a finitary approximation of any coarse
structure on X.

Following [8], we say that two subsets A,B of a coarse space (X, E) are linked (write
(A,B) ∈ λ(X,E)) if either A,B are bounded or there exists E ∈ E such that E[A] ∩ B is
unbounded,

A class K of coarse space is called λ-stable if (X, E) ∈ K and λ(X,E) = λ(X,E ′) imply
(X, E ′) ∈ K.

We recall that a coarse space (X, E) is cellular if E has a base consisting of equivalences
of X, equivalently, asdim (X, E) = 0, see [9, Theorem 3.1.3].

This note is to give the negative ZFC-answer to the following question (see [8, Question 6]
and [3, Problem 2.11]): is the class of cellular coarse spaces λ-stable? The same answer but
under some set-theoretical assumptions involving small cardinals was obtained by Taras
Banakh, see [8, Remark 1] and [1, Corollary 5.9].

2. Results.

Theorem 1. Let (X, E ′) be an unbounded locally finite coarse space with a countable base
of E ′. Then there exists a cellular finitary approximation E of X such that λ(X,E) = λ(X,E ′).

Proof. We use the Zorn Lemma to choose a maximal by inclusion cellular finitary approxi-
mation E of E ′ such that E0 ⊆ E ⊆ E ′, E0 has the base {{(x, y) : x, y ∈ F}

⋃
∆X : F ∈ [X]<ω}.

Let P be a base of E consisting of equivalences, and let {E ′n : n < ω} be an increasing
symmetric base of E ′. Since (X, E ′) is locally finite, we have λ(X,E) ⊆ λ(X,E ′).

To prove λ(X,E ′) ⊆ λ(X,E), we take any two unbounded subsets A,B of X such that
(A,B) ∈ λ(X,E ′), so E ′[A] ∩B is unbounded for some E ′ ∈ E ′, (E ′)−1 = E ′.

We choose inductively two injective sequences (an)n<ω in A and (bn)n<ω in B such that
(an, bn) ∈ E ′ and

E ′n+1[{an+1, bn+1}] ∩ E ′n+1[{a0, b0, . . . , an, bn}] = ∅. (∗)

We put M = {(an, bn), (bn, an) : n < ω} ∪ ∆X and denote by M the smallest coarse
structure on X such that M ∈ M and E ⊆ M. Since A,B are linked in M, it suffices to
show that E =M. In turn on, by the maximality of E andM⊆ E ′, it suffices to verify that
M is cellular.

We take an arbitrary P ∈ P , a natural number m, put H = M ∪P and show that Hm is
contained in some equivalence fromM. We choose a natural number n such that P ⊆ E ′n+1.

If x ∈ X and E ′n+1[x] ∩ E ′n+1[{a0, b0, . . . , an, bn}] = ∅ then by (∗) either Hm[x] = P [x]
or Hm[x] is the union of two blocks of P containing some {ak, bk}, k > n. We enlarge the
obtained partial equivalence of X by the joining the block
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⋃
{P [x] : E ′n+1[x] ∩ E ′n+1[{a0, b0, . . . , an, bn}] 6= ∅}

and get the desired equivalence fromM containing Hm[x].

Remark 1. For every natural number n, there exists a coarse structure E ′ satisfying
Theorem 1 such that asdim (X, E ′) = n. Analogously, there exists E ′ such that asdim (X, E ′)
=∞. Theorem 1 shows that the corresponding classes of coarse spaces are not λ-stable.

For a coarse structure E on X, we denote by Efin the strongest finitary coarse structure
on X such that Efin ⊆ E . We take the family F ∈ E such that E = E−1 and there exists a
natural number n such that |E[x]| < n for every x ∈ X. Then F is a base of Efin.

Proposition 1. If a coarse structure E on X is locally finite then λ(X,E) = λ(X,Efin).

Proof. Since E is locally finite, we have λ(X,Efin) ⊆ λ(X,E). Let A,B be infinite subset of X
such that (A,B) ∈ λ(X,E). We take E ∈ E such that E = E−1 and E[A] ∩ B is infinite. We
construct inductively a countable subset A′ of A and an injective mapping f : A′ −→ B such
that (x, f(x)) ∈ E for each x ∈ A′. Then the entourage {(x, f(x)) : x ∈ A′} ∪ ∆X in Efin

shows that A,B are linked in (X, Efin).

Theorem 2. Let (X, E) be a locally finite coarse space. Assume that there exists E ∈ E
such that, for every natural number n, there exists x ∈ X such that |E[x]| > n. Then the
coarse space (X, Efin) is not cellular.

Proof. We choose a sequence (xn)n<ω in X such that the subsets {E[xn] : n < ω} are pair-
wise disjoint and |E[xn]| > n. Let |E[xn]| = mn. We enumerate E[xn] = {an1, an2, . . . , anmn}
and define a bijection f of X such that, for each n, f(an1) = f(an2), . . . , f(anmn) = an1, and
f(x) = x for each x ∈ X \

⋃
n<ω E[xn]. Then the entourage {(x, f(x)) : x ∈ X}∪∆X belongs

to Efin and shows that Efin is not cellular. Otherwise, there is a equivalence P in Efin such
that each E[xn] is contained in some block of P contradicting finitarity of Efin.

Remark 2. If we take cellular (X, E) in Theorem 2 and apply Proposition 1 then also get
the negative answer to Question 6 from [7]. In light of Corollary 1 from [2] we may conjecture
that asdim (X, Efin) =∞.

Following [8], we say that two subsets A,B of (X, E) are close (write (A,B) ∈ δ(X,E)) if
there exists E ∈ E such that A ⊆ E[B], B ⊆ E[A].

Remark 3. We show that Proposition 1 does not hold with δ(X,E) = δ(X,Ef in) in place
λ(X,E) = λ(X,Ef in). We partition a countable set X into finite subsets {Xn : n < ω} such
that |Xn| > n, denote by E the equivalence defined by this partition and take the smallest
coarse structure E containing E as an entourage. For each n < ω, we pick xn ∈ Xn, put
A = {xn : n < ω}, B = X. Then (A,B) ∈ δ(X,E) but (A,B) /∈ δ(X,Ef in).

By [1, Theorem 2.8], the strongest finitary coarse structure F on a set X does not admit
a cellular finitary approximation E such that δ(X,F) = δ(X,E).

Question. Does there exist a non-cellular finitary coarse space (X, E) such that E has a
countable base and δ(X,E) = δ(X,E ′) for some cellular finitary approximation E ′ of E .

Following [5], we say that a class K of coarse spaces is a variety if K is closed under
operations of taking subspaces S, cartesian products P and macro-uniform images Q.
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Given two coarse spaces (X, E) and (X ′, E ′), a mapping f : X −→ X ′ is called macro-
uniform if, for any E ∈ E , there exists E ′ ∈ E ′ such that f(E[x]) ⊆ E ′[f(x)] for each x ∈ X.
If f is a bijection such that f and f−1 are macro-uniform then f is called an asymorphism.

Theorem 3. Let X be an unbounded finitary space, KX denotes the class of coarse spaces
asymorphic to X and let Y be an arbitrary coarse space. Then Y ∈ QSP KX .

Proof. By [5, Theorem 2], the minimal variety of coarse spaces containing KX coincides with
the class of all coarse spaces. By [5, Theorem 1], Y ∈ QSP KX .
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