УДК 519.4

I. V. PROTASOV

FINITARY APPROXIMATIONS OF COARSE STRUCTURES

I. V. Protasov. Finitary approximations of coarse structures, Mat. Stud. 55 (2021), 33–36.

A coarse structure \mathcal{E} on a set X is called finitary if, for each entourage $E \in \mathcal{E}$, there exists a natural number n such that E[x] < n for each $x \in X$. By a finitary approximation of a coarse structure \mathcal{E}' , we mean any finitary coarse structure \mathcal{E} such that $\mathcal{E} \subseteq \mathcal{E}'$. If \mathcal{E}' has a countable base and E[x] is finite for each $x \in X$ then \mathcal{E}' has a cellular finitary approximation \mathcal{E} such that the relations of linkness on subsets of (X, \mathcal{E}') and (X, \mathcal{E}) coincide. This answers Question 6 from [8]: the class of cellular coarse spaces is not stable under linkness. We define and apply the strongest finitary approximation of a coarse structure.

1. Introduction. Given a set X, a family \mathcal{E} of subsets of $X \times X$ is called a *coarse structure* on X if

- each $E \in \mathcal{E}$ contains the diagonal Δ_X , $\Delta_X = \{(x, x) \in X : x \in X\};$
- if $E, E' \in \mathcal{E}$ then $E \circ E' \in \mathcal{E}$ and $E^{-1} \in \mathcal{E}$, where $E \circ E' = \{(x, y) : \exists z((x, z) \in E, (z, y) \in E')\}, E^{-1} = \{(y, x) : (x, y) \in E\};$
- if $E \in \mathcal{E}$ and $\triangle_X \subseteq E' \subseteq E$ then $E' \in \mathcal{E}$;
- $\bigcup \mathcal{E} = X \times X.$

A subfamily $\mathcal{E}' \subseteq \mathcal{E}$ is called a *base* for \mathcal{E} if, for every $E \in \mathcal{E}$, there exists $E' \in \mathcal{E}'$ such that $E \subseteq E'$. For $x \in X$, $A \subseteq X$ and $E \in \mathcal{E}$, we denote

$$E[x] = \{y \in X : (x, y) \in E\}, \quad E[A] = \bigcup_{a \in A} E[a], \quad E_A[x] = E[x] \cap A$$

and say that E[x] and E[A] are balls of radius E around x and A.

The pair (X, \mathcal{E}) is called a *coarse space* [10] or a ballean [7], [9].

For a coarse space (X, \mathcal{E}) , a subset $B \subseteq X$ is called *bounded* if $B \subseteq E[x]$ for some $E \in \mathcal{E}$ and $x \in X$. The family $\mathcal{B}_{(X,\mathcal{E})}$ of all bounded subsets of (X,\mathcal{E}) is called the *bornology* of (X,\mathcal{E}) . We recall that a family \mathcal{B} of subsets of a set X is a bornology if \mathcal{B} is closed under taking subsets and finite unions, and \mathcal{B} contains all finite subsets of X.

We say that (X, \mathcal{E}) is *locally finite*, if each ball E[x] is finite, equivalently, $\mathcal{B}_{(X,\mathcal{E})} = [X]^{<\omega}$.

A coarse space (X, \mathcal{E}) is called *finitary*, if for each $E \in \mathcal{E}$ there exists a natural number n such that |E[x]| < n for each $x \in X$.

doi:10.30970/ms.55.1.33-36

²⁰¹⁰ Mathematics Subject Classification: 22A05,54E05, 54E35.

Keywords: finitary coarse structure; finitary approximation; linkness.

Let G be a transitive group of permutations of a set X. We denote by X_G the set X endowed with the coarse structure with the base

$$\{\{(x, gx) : g \in F\} : F \in [G]^{<\omega}, id \in F\}.$$

By [4, Theorem 1], for every finitary coarse structure (X, \mathcal{E}) , there exists a transitive group G of permutations of X such that $(X, \mathcal{E}) = X_G$. For more general results, see [6].

By a finitary approximation of a coarse structure \mathcal{E}' on X we mean an arbitrary finitary coarse structure \mathcal{E} on X such that $\mathcal{E} \subseteq \mathcal{E}'$. In particular, the discrete coarse structure \mathcal{E}_0 with the base $\{\{(x, y) : x, y \in F\} \cup \Delta_X : F \in [X]^{<\omega}\}$ is a finitary approximation of any coarse structure on X.

Following [8], we say that two subsets A, B of a coarse space (X, \mathcal{E}) are *linked* (write $(A, B) \in \lambda_{(X, \mathcal{E})}$) if either A, B are bounded or there exists $E \in \mathcal{E}$ such that $E[A] \cap B$ is unbounded,

A class \mathcal{K} of coarse space is called λ -stable if $(X, \mathcal{E}) \in \mathcal{K}$ and $\lambda_{(X, \mathcal{E})} = \lambda_{(X, \mathcal{E}')}$ imply $(X, \mathcal{E}') \in \mathcal{K}$.

We recall that a coarse space (X, \mathcal{E}) is *cellular* if \mathcal{E} has a base consisting of equivalences of X, equivalently, *asdim* $(X, \mathcal{E}) = 0$, see [9, Theorem 3.1.3].

This note is to give the negative ZFC-answer to the following question (see [8, Question 6] and [3, Problem 2.11]): is the class of cellular coarse spaces λ -stable? The same answer but under some set-theoretical assumptions involving small cardinals was obtained by Taras Banakh, see [8, Remark 1] and [1, Corollary 5.9].

2. Results.

Theorem 1. Let (X, \mathcal{E}') be an unbounded locally finite coarse space with a countable base of \mathcal{E}' . Then there exists a cellular finitary approximation \mathcal{E} of X such that $\lambda_{(X,\mathcal{E})} = \lambda_{(X,\mathcal{E}')}$.

Proof. We use the Zorn Lemma to choose a maximal by inclusion cellular finitary approximation \mathcal{E} of \mathcal{E}' such that $\mathcal{E}_0 \subseteq \mathcal{E} \subseteq \mathcal{E}'$, \mathcal{E}_0 has the base $\{\{(x, y) : x, y \in F\} \bigcup \Delta_X : F \in [X]^{<\omega}\}$. Let \mathcal{P} be a base of \mathcal{E} consisting of equivalences, and let $\{E'_n : n < \omega\}$ be an increasing symmetric base of \mathcal{E}' . Since (X, \mathcal{E}') is locally finite, we have $\lambda_{(X,\mathcal{E})} \subseteq \lambda_{(X,\mathcal{E}')}$.

To prove $\lambda_{(X,\mathcal{E}')} \subseteq \lambda_{(X,\mathcal{E})}$, we take any two unbounded subsets A, B of X such that $(A, B) \in \lambda_{(X,\mathcal{E}')}$, so $E'[A] \cap B$ is unbounded for some $E' \in \mathcal{E}'$, $(E')^{-1} = E'$.

We choose inductively two injective sequences $(a_n)_{n < \omega}$ in A and $(b_n)_{n < \omega}$ in B such that $(a_n, b_n) \in E'$ and

$$E'_{n+1}[\{a_{n+1}, b_{n+1}\}] \cap E'_{n+1}[\{a_0, b_0, \dots, a_n, b_n\}] = \emptyset.$$
(*)

We put $M = \{(a_n, b_n), (b_n, a_n): n < \omega\} \cup \Delta_X$ and denote by \mathcal{M} the smallest coarse structure on X such that $M \in \mathcal{M}$ and $\mathcal{E} \subseteq \mathcal{M}$. Since A, B are linked in \mathcal{M} , it suffices to show that $\mathcal{E} = \mathcal{M}$. In turn on, by the maximality of \mathcal{E} and $\mathcal{M} \subseteq \mathcal{E}'$, it suffices to verify that \mathcal{M} is cellular.

We take an arbitrary $P \in \mathcal{P}$, a natural number m, put $H = M \cup P$ and show that H^m is contained in some equivalence from \mathcal{M} . We choose a natural number n such that $P \subseteq E'_{n+1}$.

If $x \in X$ and $E'_{n+1}[x] \cap E'_{n+1}[\{a_0, b_0, \dots, a_n, b_n\}] = \emptyset$ then by (*) either $H^m[x] = P[x]$ or $H^m[x]$ is the union of two blocks of P containing some $\{a_k, b_k\}, k > n$. We enlarge the obtained partial equivalence of X by the joining the block

$$\bigcup \{ P[x] \colon E'_{n+1}[x] \cap E'_{n+1}[\{a_0, b_0, \dots, a_n, b_n\}] \neq \emptyset \}$$

and get the desired equivalence from \mathcal{M} containing $H^m[x]$.

Remark 1. For every natural number n, there exists a coarse structure \mathcal{E}' satisfying Theorem 1 such that asdim $(X, \mathcal{E}') = n$. Analogously, there exists \mathcal{E}' such that $asdim(X, \mathcal{E}') = \infty$. Theorem 1 shows that the corresponding classes of coarse spaces are not λ -stable.

For a coarse structure \mathcal{E} on X, we denote by \mathcal{E}_{fin} the strongest finitary coarse structure on X such that $\mathcal{E}_{fin} \subseteq \mathcal{E}$. We take the family $\mathcal{F} \in \mathcal{E}$ such that $E = E^{-1}$ and there exists a natural number n such that |E[x]| < n for every $x \in X$. Then \mathcal{F} is a base of \mathcal{E}_{fin} .

Proposition 1. If a coarse structure \mathcal{E} on X is locally finite then $\lambda_{(X,\mathcal{E})} = \lambda_{(X,\mathcal{E}_{fin})}$.

Proof. Since \mathcal{E} is locally finite, we have $\lambda_{(X,\mathcal{E}_{fin})} \subseteq \lambda_{(X,\mathcal{E})}$. Let A, B be infinite subset of X such that $(A, B) \in \lambda_{(X,E)}$. We take $E \in \mathcal{E}$ such that $E = E^{-1}$ and $E[A] \cap B$ is infinite. We construct inductively a countable subset A' of A and an injective mapping $f: A' \longrightarrow B$ such that $(x, f(x)) \in E$ for each $x \in A'$. Then the entourage $\{(x, f(x)) : x \in A'\} \cup \Delta_X$ in \mathcal{E}_{fin} shows that A, B are linked in (X, \mathcal{E}_{fin}) .

Theorem 2. Let (X, \mathcal{E}) be a locally finite coarse space. Assume that there exists $E \in \mathcal{E}$ such that, for every natural number n, there exists $x \in X$ such that |E[x]| > n. Then the coarse space (X, \mathcal{E}_{fin}) is not cellular.

Proof. We choose a sequence $(x_n)_{n<\omega}$ in X such that the subsets $\{E[x_n]: n < \omega\}$ are pairwise disjoint and $|E[x_n]| > n$. Let $|E[x_n]| = m_n$. We enumerate $E[x_n] = \{a_{n1}, a_{n2}, \ldots, a_{nm_n}\}$ and define a bijection f of X such that, for each n, $f(a_{n1}) = f(a_{n2}), \ldots, f(a_{nm_n}) = a_{n1}$, and f(x) = x for each $x \in X \setminus \bigcup_{n<\omega} E[x_n]$. Then the entourage $\{(x, f(x)): x \in X\} \cup \Delta_X$ belongs to \mathcal{E}_{fin} and shows that \mathcal{E}_{fin} is not cellular. Otherwise, there is a equivalence P in \mathcal{E}_{fin} such that each $E[x_n]$ is contained in some block of P contradicting finitarity of \mathcal{E}_{fin} .

Remark 2. If we take cellular (X, \mathcal{E}) in Theorem 2 and apply Proposition 1 then also get the negative answer to Question 6 from [7]. In light of Corollary 1 from [2] we may conjecture that asdim $(X, \mathcal{E}_{fin}) = \infty$.

Following [8], we say that two subsets A, B of (X, \mathcal{E}) are *close* (write $(A, B) \in \delta_{(X, \mathcal{E})}$) if there exists $E \in \mathcal{E}$ such that $A \subseteq E[B], B \subseteq E[A]$.

Remark 3. We show that Proposition 1 does not hold with $\delta_{(X,\mathcal{E})} = \delta_{(X,\mathcal{E}_f in)}$ in place $\lambda_{(X,\mathcal{E})} = \lambda_{(X,\mathcal{E}_f in)}$. We partition a countable set X into finite subsets $\{X_n: n < \omega\}$ such that $|X_n| > n$, denote by E the equivalence defined by this partition and take the smallest coarse structure \mathcal{E} containing E as an entourage. For each $n < \omega$, we pick $x_n \in X_n$, put $A = \{x_n: n < \omega\}, B = X$. Then $(A, B) \in \delta_{(X,\mathcal{E})}$ but $(A, B) \notin \delta_{(X,\mathcal{E}_f in)}$.

By [1, Theorem 2.8], the strongest finitary coarse structure \mathcal{F} on a set X does not admit a cellular finitary approximation \mathcal{E} such that $\delta_{(X,\mathcal{F})} = \delta_{(X,\mathcal{E})}$.

Question. Does there exist a non-cellular finitary coarse space (X, \mathcal{E}) such that \mathcal{E} has a countable base and $\delta_{(X,\mathcal{E})} = \delta_{(X,\mathcal{E}')}$ for some cellular finitary approximation \mathcal{E}' of \mathcal{E} .

Following [5], we say that a class \mathcal{K} of coarse spaces is a *variety* if \mathcal{K} is closed under operations of taking subspaces **S**, cartesian products **P** and macro-uniform images **Q**.

Given two coarse spaces (X, \mathcal{E}) and (X', \mathcal{E}') , a mapping $f: X \longrightarrow X'$ is called *macro-uniform* if, for any $E \in \mathcal{E}$, there exists $E' \in \mathcal{E}'$ such that $f(E[x]) \subseteq E'[f(x)]$ for each $x \in X$. If f is a bijection such that f and f^{-1} are macro-uniform then f is called an *asymorphism*.

Theorem 3. Let X be an unbounded finitary space, \mathcal{K}_X denotes the class of coarse spaces asymorphic to X and let Y be an arbitrary coarse space. Then $Y \in \mathbf{QSP} \mathcal{K}_X$.

Proof. By [5, Theorem 2], the minimal variety of coarse spaces containing \mathcal{K}_X coincides with the class of all coarse spaces. By [5, Theorem 1], $Y \in \mathbf{QSP} \mathcal{K}_X$.

REFERENCES

- 1. T. Banakh, Small uncountable cardinals in large-scale topology, preprint, arXiv: 2002.08800.
- 2. T. Banakh, I. Banakh, On the dimension of coarse spaces, preprint, arXiv: 2001.04300.
- 3. T. Banakh, I. Protasov, Set-theoretical problems in Asymptology, preprint, arXiv: 2004.01979.
- I. V. Protasov, Balleans of bounded geometry and G-spaces, Algebra Discrete Math., 7 (2008), №2, 101–108.
- I. Protasov, Varieties of coarse spaces, Axioms, 7 (2018), №2, 32. https://doi.org/10.3390/axioms7020032.
- 6. I. Protasov, Decompositions of set-valued mappings, preprint, arXiv: 1908.03911.
- I. Protasov, T. Banakh, Ball structures and colorings of groups and graphs, Math. Stud. Monogr. Ser., 11, VNTL, Lviv, 2003.
- I. Protasov, K. Protasova, Closeness and linkness in balleans, Mat. Stud. 53 (2020), №1, 100–108. https://doi.org/10.30970/ms.53.1.100-108
- 9. I. Protasov, M. Zarichnyi, General Asymptology, Math. Stud. Monogr. Ser., V.12, VNTL, Lviv, 2007.
- J. Roe, Lectures on coarse geometry, Univ. Lecture Ser., 31, American Mathematical Society, Providence RI, 2003.

Taras Shevchenko National University of Kyiv Academic Glushkov, Kyiv, Ukraine i.v.protasov@gmail.com

Received 29.09.2020