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The problem of construction of a generalized Voronoi diagram with optimal placement
of a finite number of generator points in a bounded set of n-dimensional Euclidean space
is considered. A method is proposed for solving such a problem based on the formulation
of the corresponding continuous problem of optimal partitioning of a set in n-dimensional
Euclidean space with a partition quality criterion that provides the corresponding form of the
Voronoi diagram. Further, to solve such a problem, the developed mathematical and algorithmic
apparatus is used, the part of which is Shor’s r -algorithm.

The standard (classical) Voronoi diagram [1] of a finite set M = {τ1, τ2, ..., τN} ⊂ En

of generator points τi = (τ
(1)
i , τ

(2)
i , ..., τ

(n)
i ), i = 1, 2, ..., N in n-dimensional Euclidean space

En (n ≥ 2) is the set of Voronoi polytopes

V or (τi) = {x ∈ En : c (x, τi) ≤ c (x, τj) , j = 1, 2, ..., N, j ̸= i } , i = 1, 2, ..., N (1)

of the given points τ1, τ2, ..., τN , where c (x, y) is a metric in En.
Let Ω be a given bounded set of En, τ1, τ2, ..., τN be a finite set of generator points in

Ω. In cases when the location of the points τ1, τ2, ..., τN in Ω is unknown and they need to
be located (selected) in Ω, we can introduce another variant of the Voronoi diagram on set
Ω ⊂ En, which generalizes the standard Voronoi diagram.

By the Voronoi diagram of a finite number of generator points τ1, τ2, ..., τN optimally
located in a bounded set Ω ⊂ En, we call the following set of Voronoi polytopes:

V or(τi) = {x ∈ Ω ⊂ En : c(x, τi)/wi + ai ≤ c(x, τj)/wj + aj; i, j = 1, ..., N , i ̸= j} (2)

of points τ1, τ2, ..., τN , where the total weighted distance from the points of set Ω to the
corresponding generator points τ1, τ2, ..., τN is minimal, so the functional

J ({τ1, ..., τN}) =
N∑
i=1

∫
V or(τi)

(c(x, τi)/wi + ai)dx (3)
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attains the minimum value. Here and in the following, we consider Lebesgue integrals; ai ≥
0, wi > 0 (i = 1, 2, ..., N) are given numbers (weights).

Note: By specifying the values of the parameters a1, ..., aN ; w1, ..., wN and the type of
function c(x, τi) in formula (3), one can obtain various variants of the Voronoi diagram with
the optimal placement of generator points (adaptively weighted, multiplicatively weighted
ones etc., see [2]).

To construct the Voronoi diagram (2), (3) we describe an approach based on the appli-
cation of the apparatus of the theory of optimal set partitioning [2, 3].

Let Ω be a bounded Lebesgue measurable set in n-dimensional Euclidean space En. We
name a set Ω1, ...,ΩN of Lebesgue measurable subsets of this set by its possible partitioning,
if
∪N

i=1 Ωi = Ω, mes (Ωi ∩ Ωj) = 0, i, j = 1, 2, ..., N (i ̸= j), where mes (·) is a Lebesgue
measure. By

∑N
Ω we denote the class of all possible partitions of a set Ω into its non-

intersecting subsets that is∑N
Ω =

{
(Ω1, ...,ΩN) :

∪N
i=1 Ωi = Ω, mes (Ωi ∩ Ωj) = 0, i, j = 1, 2, ..., N (i ̸= j)

}
.

We introduce a functional

F ({Ω1, ...,ΩN} , {τ1, ..., τN}) =
N∑
i=1

∫
Ωi

(c(x, τi)/wi + ai) dx, (4)

where c (x, τi) is a given real function bounded on Ω×Ω and measurable by argument x =(
x(1), ..., x(n)

)
∈ Ω for any fixed τi =

(
τ
(1)
i , ..., τ

(n)
i

)
∈ Ω for each i = 1, 2, ..., N ; ai ≥ 0, wi > 0

(i = 1, 2, ..., N) are given numbers. We assume that the measure of the set of boundary points
of subsets Ωi, i = 1, 2, ..., N is equal to zero.

Problem A. To find min
{Ω1, ...,ΩN} ∈ ΣN

Ω ,
{τ1, ..., τN} ∈ ΩN

F ({Ω1, ...,ΩN}, {τ1, ..., τN}),

where functional F ({Ω1, ...,ΩN}, {τ1, ..., τN}) is defined in (4); coordinates τ
(1)
i , ..., τ

(n)
i of

centers τi = (τ
(1)
i , ..., τ

(n)
i ) ∈ Ωi, i = 1, 2, ..., N are unknown in advance and must be determi-

ned.
Problem A is solvable on ΣN

Ω × ΩN , as a special case of the continuous single-product
problem considered in [3], for the optimal partitioning of a set Ω ⊂ En into its subsets
Ω1, ...,ΩN (among which there may be empty ones) without constraints, with finding coordi-
nates of these subsets’ centers τ1, ..., τN , respectively.

A pair ({Ω∗
1, ..., Ω

∗
N}, {τ ∗1 , ..., τ ∗N}) delivering the least, or minimum, value of the functi-

onal (4) on a set ΣN
Ω ×ΩN is called an optimal solution to Problem A. Wherein, in Problem A,

we name a partition {Ω∗
1, ..., Ω

∗
N} ∈ ΣN

Ω by an optimal partitioning of set Ω ⊂ En into N
subsets, and a set τ ∗ = {τ ∗1 , ..., τ ∗N} ∈ ΩN of centers τ ∗i ∈ Ω∗

i , i = 1, 2, ..., N by optimal
centers of subsets Ω∗

i in Problem A.

Let λi(x) =

{
1, x ∈ Ωi,

0, x ∈ Ω\Ωi

be characteristic functions of subsets Ωi ⊂ Ω (i = 1, ..., N).

Following the results of [2, 3], the components of characteristic vector function λ∗(x) =
(λ∗

1(x), ..., λ
∗
i (x), ..., λ

∗
N(x)) corresponding to an optimal partitioning {Ω∗

1, ...,Ω
∗
i , ...,Ω

∗
N} ∈
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Ω to Problem A for i = 1, ..., N and for almost all x ∈ Ω are defined as

λ∗
i (x) =


1, if c(x, τ ∗i )/wi + ai ≤ c(x, τ ∗j )/wj + aj,

for a.a. x ∈ Ω, j = 1, ..., N (j ̸= i), then x ∈ Ω∗
i ,

0, in other cases,

(5)

where τ ∗ = (τ ∗1 , ..., τ
∗
i , ..., τ

∗
N) ∈ ΩN is an optimal solution to the problem

G(τ) =

∫
Ω

min
i=1,...,N

[c(x, τi)/wi + ai] dx → min
τ∈ΩN

. (6)

Let us present an algorithm to solve Problem A, which is based on the mathematical
apparatus from [2, 3] and on one variant of the generalized gradient descent method with
space expansion in the direction of the difference of two successive generalized antigradients
(or the so-called Shor’s r -algorithm [4]). In the iterative formula of the r-algorithm

τ [k+1] = τ [k] − hkB
τ
k+1[B

τ
k+1]

TgG(τ
[k]), k = 0, 1, ..., (7)

Bτ
k+1 is an operator that maps the transformed space into the main space EN (wherein, Bτ

0 =
I is the identity matrix); hk is a step factor, which is chosen from the minimum’s condition of
function G(τ) in direction Bτ

k+1[B
τ
k+1]

TgG(τ
[k]); gG(τ [k]) is the generalized gradient of function

G(τ) at a point τ [k].
We apply the r -algorithm in the H -form [4] (Hk is a symmetric matrix such that Hk =

BkB
T
k ), for which iterative formula (7) has the form

τ [k+1] = τ [k] − hkHk+1gG
(
τ [k]

)/√
(Hk+1gG (τ [k]) , gG (τ [k])), k = 0, 1, ...,

where

Hk+1 = Hk +
(
1/α2

k − 1
) Hk∆k∆

T
kHk

(Hk∆k,∆k)
, ∆k = gG

(
τ [k]

)
− gG

(
τ [k−1]

)
.

We take the space expansion’s coefficient αk, which equal to 3, and we apply for finding step
factor hk the adaptive adjustment method described in [4].

We define the i -th component of the vector of generalized gradient
gτG (τ) = (gτ1G (τ) , ..., gτiG (τ) , ..., gτNG (τ)) of function G(τ) from (6) as follows:

gτiG (τ) =

∫
Ω

gτic (x; τ) λi(x)dx, τ ∈ ΩN , i = 1, ..., N, (8)

where gτic (x, τ) is the i -th component of the vector of the generalized gradient gτA (x, τ) of
function c (x, τ) for x ∈ Ω, τ ∈ ΩN .
Algorithm.

Step 1. We enclose domain Ω in an n-dimensional parallelepiped Π whose sides are parallel
to the axes of the Cartesian coordinate system. We cover parallelepiped Π with a rectangular
grid and take the initial approximation τ = τ [0]. Then we calculate values of λ[0] (x) at the
grid nodes by formulas (5) for τ = τ [0] and we also calculate values of gG (τ) by formula (8)
for λ (x) = λ[0] (x), τ = τ [0]. We select the initial test step factor h0 > 0 of the r -algorithm
and find

τ [1] = PΠ

(
τ [0] − h0H1gG

(
τ [0]

)/√
(H1gG (τ [0]) , gG (τ [0]))

)
,
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where PΠ is a projection operator on Π. We pass to the second step.
Suppose that after k steps of the algorithm we have obtained certain values τ [k], λ[k−1](x)

at the grid nodes (k = 1, 2, ...). Let us describe the (k+1)-th step of the algorithm.
Step k+1 (k = 1, 2, ...).
1. We calculate λ[k](x) at the grid nodes according to formulas (5) for τ = τ [k].
2. We find values of gG (τ) according to formulas (8) for λ(x) = λ[k](x), τ = τ [k].
3. We carry out the (k+1)-th iteration of the r -algorithm by the formula

τ [k+1] = PΠ

(
τ [k] − hkHk+1gG

(
τ [k]

)/√
(Hk+1gG (τ [k]) , gG (τ [k]))

)
,

4. If the condition
||τ [k+1] − τ [k]|| ≤ ε, ε > 0 (9)

does not hold, then we go to the (k+2 )-th step of the algorithm, otherwise, we go to the
point 5.

5. We assume that λ∗(x) = λ[l](x), τ ∗ = τ [l], where l is the iteration number at which
condition (9) holds true.

6. We calculate the optimal value of objective function G(τ) from (6) at τ = τ ∗.
The algorithm is described.

Thus, based on the mathematical and algorithmic apparatus of the theory of continuous
problems of optimal set partitioning, a generalized Voronoi diagram can be constructed with
the optimal placement of generator points in a bounded set of n-dimensional Euclidean space.
For the considered type of a generalized Voronoi diagram, the described construction method
is proposed for the first time, and its advantages compared to the algorithms for constructing
other generalized Voronoi diagrams known in the scientific literature are confirmed by the
results of practical implementations.
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