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For a §-subharmonic in R™, m > 2, function u© = uy — us of finite positive order we found
the asymptotical representation of the form

u(z) = =I(z,u1) + I(z,u2) + O (V(|z])), = —= oo,

where

law) = [ Kodu), Koo =
la—z|< ||
form =2, K(z,a) = |z —al>~™—|z|>~™ for m > 3, y; is the Riesz measure of the subharmonic

function u;, V(r) = r?("), p(r) is a proximate order of u. The obtained result generalizes one
theorem of I. F. Krasichkov for entire functions.

In this paper one theorem of I.F. Krasichkov (|6], theorem 1) is generalized to the case
of d-subharmonic in R™, m > 2, functions of finite positive order.

Let u be a d-subharmonic function in R™, m > 2, that is u = u; — us, where uy, uy are
subharmonic functions. Without loss of generality, we assume that u;, us are harmonic in a
neighborhood of zero and their orders do not exceed the order of u, the Riesz masses of u;
and usy are concentrated on disjoint sets and u(0) = uz(0) = 0. We set

M(a,r) =In(r/lal), L(z,a) = In(|z|/|z — af)
for m = 2 and
M(a,r) = |a|*™™ —r>™ L(z,a) = |z — a|>™™ — |z|*™
for m > 3, x,a € R™, r > 0. Let p; be a Riesz measure of subharmonic function u;, || = r,
n(t,ui) = pi ({h 2 [ < t}), n(t,x,uw) = p ({h: |h— 2] < t}),
dy, = m — 2, form > 3, dy = 1. We put

T

N(r,u;) = / M(a,r)dpi(a) = dy, / n(t, w)t ™t

a]<r

r

I(z,u;) = / Lz, a)dui(a) = du, / n(t, z, u;)t™dt.

le—al<r 0
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The quantity I(z,w;) is called a concentration index of a subharmonic function u; at the
point z |3, p. 227|. The similar term was used for a related concept in case of entire functions
by LF. Krasichkov [6]. In fact, the quantity I(z,u;) was introduced in the book of B.Ya.
Levin [7, p. 164] (see also [5]) before [6].

Let p(r) be a proximate order of the function u, that is:

1) p(r) >0 on [0,+00);
2) p(r) = p>0asr— +oc;
3) the function p(r) is continuously differentiable on [0, 4+00);
4) rp/(r)Inr — 0 as r — +00;
5) 0< llm T(r,u)/V(r) < 4+oc, with V(r) = P,

Where T(r7 u) is the Nevanlinna characteristic of the function u, i.e.

T(r,u) = Sm =] / max{u (rz), us(rx)}dS(x), 0<r < +oo,
Sm—1
dS(x) is the sphere area element of S™ ' = {x € R™: |z| = 1}, and |[S™7!| =
= 27™/2 /T'(m/2). If u is a subharmonic function on R™ (m > 2), u(0) = 0, then
1

T(T7 u) = |Sm_1|

/ ut(re)dS(z), w" =max{u,0}, 0<r < +oo.
Sm—1
We set K (z) = log|z| for m = 2 and K(z) = —|z[* ™ for m > 3. The function K(z — a)
is harmonic in R™ except the point # = a. In particular, if a # 0 then K(z — a) can be

represented as a power series in variables zq, xs, ..., x,,, convergent in the neighborhood of
the origin. We have

where for fixed v and a # 0 by b,(z,a) we denote a homogeneous harmonic polynomial of
x1, Ta, ..., Ty, Whose degree is v. Let us set

K,(z,a) = K(x —a) Zb x,a)

The Brelot’s results ( [2, pp.145, 147], Theorems 1, 2) imply the analogue of Lindel6f theorem
for subharmonic functions of finite order (|1, p. 9]).

Theorem A (Analogue of the Lindel6f theorem). Let v be a subharmonic function of
integer order p, Sy = {z : |z| = 1}, P,(z) be a homogeneous harmonic polynomial of degree

q,

S(R) = max { Py(x) - / by(x.a)dp(a) )}, 5= T S(R)/V(R).

x€S1 R—+400
la<R
A= Tim n(r,v)/r’OFm2 3 =max(§,A), o= lim T(r,v)/V(r).
r—-400 r—+4-00

Then 0 = 0,0 < 0 < 400, 0 = 4o if and only if, =0, 0 < f < 400, f = 400,
respectively.
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We prove the following theorem.

Theorem 1. Let u be a d-subharmonic function in R™, m > 2, of finite proximate order
p(r), o(r) = 0 >0 asr — 4o0. Then

u(x) = —=I(x,uy) + I(z,us) + O (V(r)) (r — +o0). (1)

Proof. We note that it suffices to prove the theorem for the case of a subharmonic function.
Let v be a subharmonic function in R™ of proximate order p(r), p(r) — p > 0 asr — +o0,
q = [p]. By Theorem 4.2 from [4] we have

D= [ Koo+ [ K adi) B+ ua - [ b adut)-

la|<2r la|>2r la|<2r

=1+ L+ Py(x) + wy_1(z) — / by(x, a)du(a),

la|<2r

where P,(x) is a homogeneous harmonic polynomial of degree ¢, w,—;(z) is a harmonic
polynomial of degree at most ¢ — 1, and thus w,—1(x) = O (V(r)) as r — +o0.

By Lemma 4.2 from [4] (Let us remark that there is a misprint in the lemma statement.
As could be seen from the proof in (4.1.4) p?™! must be set instead of p?*2) we obtain (¢ > 1,
m > 2, A is some constant)

+oo
dn(t,v)
pl<| [ R ad@| <t [ 00
a|>2r 2r

< Ar'Y(m+q— 1) / ”tgf;)dt —O0(V(r) (r— +oo).

2r

In the case of ¢ =0, m = 2 we get

400
bl <| [ Kot aduta)| <~ [1os (1) dntr) <
al>2r 2r
9 +oo (t ) +o0
r r n(t,v
<1 1—— J <9 -2, _
< og( t)ﬂ(t,v) +oo+r/t(t—r)dt_ T/n(t,v)t dt =0V (r)) (r— +400),
2r 2r
since N
n(r,v) =0 (V(r)) =o(r), r / P02 4 — 1;—0(1)7,,)@) (r = +00).
- P

r

Now we shall estimate I;. Let D(x,a) = {a: |x — a| > r,|a| < 2r}. Since

0< / In 2 ; a‘du(a) <n(2r,v)In3, / In éd,u(a) = N(2r,v) —n(2r,v)In2,
D(z,a) |a|<2r
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we have for m = 2

I = / Ko(z,a)dp(a)+0 (V(r)=—I(z,v)+ / In |x|;’a|d,u(a)+ / In ’x_a|du(a)—l—
la|<2r la|<2r |z—a|<r
+0O (V(r)) = —I(z,v) + / In =~ a|d,u(a) + / In éd,u(a) +0((V(r) =
D(z,a) la|<2r

=—I(z,v) + O (V(r)) (r— +o0).

In the case of m > 3 similarly to the previous

I = / Ko(z,a)du(a) + O (V(r)) = —1(z,v) + / (Jz — al>™™ = r*™) du(a)+

la|<2r lz—al<r
[ (P = = aP ) dula) + O V() = ~Ta0) — [ o - o du(a)-
la|<2r D(z,a)
—r® M (r, 2,0) + / lal* ™du(a) + O (V(r)) = —1(z,v) + O (V(r)) (r — +o0),
la|<2r

as 0< [ |z —al* ™du(a) <r* ™n(2r,v), [ la|*""du(a) = N(2r,v) + (2r)* ™n(2r,v).
D(z,a) la|<2r
Thus, we obtain

o(x) = —I(z,0) + P,(z) — / by(, a)dpu(a) + O (V(r))  (r = +o0).
jal<2r

In the case of non-integer order of the subharmonic function v, that P,(x) = O (V(r)) and
by Lemma 4.1 from [4]

by(z,a)dp(a) = O (V(r)) (r — +o0).
la|<2r

Hence
v(x) =—I(z,0)+ O (V(r)) (r— +4o0).

Taking into account that p(r) is a proximate order of the function v, which means 0 <
0 < 400, by theorem A in case of integer order of v we obtain

P = [ boaduta) =0 (V) (> +oc),

la|<2r

whence v(z) = —I(z,v) + O (V(r)) as r — 4o0. O
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