ASYMPTOTICS OF δ-SUBHARMONIC FUNCTIONS OF FINITE ORDER

For a δ-subharmonic in \mathbb{R}^m, $m \geq 2$, function $u = u_1 - u_2$ of finite positive order we found the asymptotical representation of the form

$$ u(x) = -I(x, u_1) + I(x, u_2) + O(V(|x|)), \ x \to \infty, $$

where

$$ I(x, u_i) = \int_{|a-x| \leq |x|} K(x, a) d\mu_i(a), \ K(x, a) = \ln \frac{|x|}{|x-a|} $$

for $m = 2$, $K(x, a) = |x-a|^{2-m}-|x|^{2-m}$ for $m \geq 3$, μ_i is the Riesz measure of the subharmonic function u_i, $V(r) = r^{\rho(r)}$, $\rho(r)$ is a proximate order of u. The obtained result generalizes one theorem of I. F. Krasichkov for entire functions.

In this paper one theorem of I.F. Krasichkov (6, theorem 1) is generalized to the case of δ-subharmonic in \mathbb{R}^m, $m \geq 2$, functions of finite positive order.

Let u be a δ-subharmonic function in \mathbb{R}^m, $m \geq 2$, that is $u = u_1 - u_2$, where u_1, u_2 are subharmonic functions. Without loss of generality, we assume that u_1, u_2 are harmonic in a neighborhood of zero and their orders do not exceed the order of u, the Riesz masses of u_1 and u_2 are concentrated on disjoint sets and $u_1(0) = u_2(0) = 0$. We set

$$ M(a, r) = \ln(r/|a|), \ L(x, a) = \ln (|x|/|x-a|) $$

for $m = 2$ and

$$ M(a, r) = |a|^{2-m}-r^{2-m}, \ L(x, a) = |x-a|^{2-m}-|x|^{2-m} $$

for $m \geq 3$, $x, a \in \mathbb{R}^m$, $r \geq 0$. Let μ_i be a Riesz measure of subharmonic function u_i, $|x| = r$, $n(t, u_i) = \mu_i (\{h : |h| \leq t\})$, $n(t, x, u_i) = \mu_i (\{h : |h-x| \leq t\})$,

$d_m = m - 2$, for $m \geq 3$, $d_2 = 1$. We put

$$ N(r, u_i) = \int_{|a| \leq r} M(a, r) d\mu_i(a) = d_m \int_0^r n(t, u_i) t^{1-m} dt, $$

$$ I(x, u_i) = \int_{|x-a| \leq r} L(x, a) d\mu_i(a) = d_m \int_0^r n(t, x, u_i) t^{1-m} dt. $$

2010 Mathematics Subject Classification: 31A05.

Keywords: δ-subharmonic function; finite order; asymptotic behavior; proximate order; concentration index.

doi:10.30970/ms.54.2.188-192

© M. V. Zabolotskyi, 2020
The quantity $I(x,u_i)$ is called a concentration index of a subharmonic function u_i at the point x [3, p. 227]. The similar term was used for a related concept in case of entire functions by I.F. Krasichkov [6]. In fact, the quantity $I(x,u_i)$ was introduced in the book of B.Ya. Levin [7, p. 164] (see also [5]) before [6].

Let $\rho(r)$ be a proximate order of the function u, that is:

1) $\rho(r) \geq 0$ on $[0, +\infty)$;
2) $\rho(r) \to \rho > 0$ as $r \to +\infty$;
3) the function $\rho(r)$ is continuously differentiable on $[0, +\infty)$;
4) $r\rho'(r)\ln r \to 0$ as $r \to +\infty$;
5) $0 < \lim_{r \to +\infty} T(r, u)/V(r) < +\infty$, with $V(r) = r^\rho(r)$,

where $T(r, u)$ is the Nevanlinna characteristic of the function u, i.e.

$$
T(r, u) = \frac{1}{|S^{m-1}|} \int_{S^{m-1}} \max\{u_1(rx), u_2(rx)\}dS(x), \quad 0 \leq r < +\infty,
$$

$dS(x)$ is the sphere area element of $S^{m-1} = \{x \in \mathbb{R}^m : |x| = 1\}$, and $|S^{m-1}| = 2\pi^{m/2}/\Gamma(m/2)$. If u is a subharmonic function on $\mathbb{R}^m (m \geq 2)$, $u(0) = 0$, then

$$
T(r, u) = \frac{1}{|S^{m-1}|} \int_{S^{m-1}} u^+(rx)dS(x), \quad u^+ = \max\{u, 0\}, \quad 0 \leq r < +\infty.
$$

We set $K(x) = \log |x|$ for $m = 2$ and $K(x) = -|x|^{2-m}$ for $m \geq 3$. The function $K(x-a)$ is harmonic in \mathbb{R}^m except the point $x = a$. In particular, if $a \neq 0$ then $K(x-a)$ can be represented as a power series in variables x_1, x_2, \ldots, x_m, convergent in the neighborhood of the origin. We have

$$
K(x-a) = \sum_{\nu=0}^{+\infty} b_\nu(x,a),
$$

where for fixed ν and $a \neq 0$ by $b_\nu(x,a)$ we denote a homogeneous harmonic polynomial of x_1, x_2, \ldots, x_m, whose degree is ν. Let us set

$$
K_q(x,a) = K(x-a) - \sum_{\nu=0}^{q} b_\nu(x,a).
$$

The Brelot’s results ([2, pp.145, 147], Theorems 1, 2) imply the analogue of Lindelöf theorem for subharmonic functions of finite order ([1, p. 9]).

Theorem A (Analogue of the Lindelöf theorem). Let v be a subharmonic function of integer order ρ, $S_1 = \{x : |x| = 1\}$, $P_q(x)$ be a homogeneous harmonic polynomial of degree q.

$$
\delta(R) = \max_{x \in S_1} \left\{ P_q(x) - \int_{|a| \leq R} b_q(x,a)d\mu(a) \right\}, \quad \delta = \lim_{R \to +\infty} \delta(R)/V(R),
$$

$$
\Delta = \lim_{r \to +\infty} n(r,v)/r^{\rho(r)+m-2}, \quad \beta = \max(\delta, \Delta), \quad \sigma = \lim_{r \to +\infty} T(r,v)/V(r).
$$

Then $\sigma = 0$, $0 < \sigma < +\infty$, $\sigma = +\infty$ if and only if, $\beta = 0$, $0 < \beta < +\infty$, $\beta = +\infty$, respectively.
We prove the following theorem.

Theorem 1. Let \(u \) be a \(\delta \)-subharmonic function in \(\mathbb{R}^m \), \(m \geq 2 \), of finite proximate order \(\rho(r), g(r) \to q > 0 \) as \(r \to +\infty \). Then

\[
u(x) = -I(x, u_1) + I(x, u_2) + O(V(r)) \quad (r \to +\infty).
\]

Proof. We note that it suffices to prove the theorem for the case of a subharmonic function.

Let \(v \) be a subharmonic function in \(\mathbb{R}^m \) of proximate order \(\rho(r), \rho(r) \to \rho > 0 \) as \(r \to +\infty \), \(q = [\rho] \). By Theorem 4.2 from [4] (Let us remark that there is a misprint in the lemma statement. As could be seen from the proof in (4.1.4) \(\rho^{q+1} \) must be set instead of \(\rho^{q+2} \)) we obtain \((q \geq 1, m \geq 2, A \) is some constant)

\[
|J_2| \leq \int_{|a|>2r} K_q(x,a)\,d\mu(a) \leq Ar^{q+1} \int_{2r}^{+\infty} \frac{dn(t,v)}{t^{m+q-1}} \leq Ar^{q+1}(m+q-1) \int_{2r}^{+\infty} \frac{n(t,v)}{t^{m+q}} \,dt = O(V(r)) \quad (r \to +\infty).
\]

In the case of \(q = 0, m = 2 \) we get

\[
|J_2| \leq \int_{|a|>2r} K_0(x,a)\,d\mu(a) \leq -\int_{2r}^{+\infty}\log\left(1 - \frac{r}{t}\right) \,dn(t,v) \leq \log\left(1 - \frac{r}{t}\right) n(t,v) + r \int_{2r}^{+\infty} \frac{n(t,v)}{t(t-r)} \,dt \leq 2r \int_{2r}^{+\infty} n(t,v) t^2 \,dt = O(V(r)) \quad (r \to +\infty),
\]

since

\[
n(r,v) = O(V(r)) = o(r), \quad r \int \rho(t)^{-2} \,dt = \frac{1 + o(1)}{1 - \rho} \quad (r \to +\infty).
\]

Now we shall estimate \(I_1 \). Let \(D(x,a) = \{a : |x-a| > r, |a| \leq 2r \} \). Since

\[
0 \leq \int_{D(x,a)} \ln \frac{|x-a|}{r} \,d\mu(a) \leq n(2r,v) \ln 3, \quad \int_{|a| \leq 2r} \ln \frac{r}{|a|} \,d\mu(a) = N(2r,v) - n(2r,v) \ln 2,
\]
we have for $m = 2$

$$I_1 = \int_{|a| \leq 2r} K_0(x, a) d\mu(a) + O(V(r)) = -I(x, v) + \int_{|a| \leq 2r} \ln \frac{|x-a|}{|a|} d\mu(a) + \int_{|x-a| \leq r} \ln \frac{r}{|x-a|} d\mu(a) + O(V(r)) = -I(x, v) + O(V(r)) \quad (r \to +\infty).$$

In the case of $m \geq 3$ similarly to the previous

$$I_1 = \int_{|a| \leq 2r} K_0(x, a) d\mu(a) + O(V(r)) = -I(x, v) + \int_{|a| \leq 2r} (|x-a|^{2-m} - r^{2-m}) d\mu(a) +$$

$$+ \int_{|a| \leq 2r} (|a|^{2-m} - |x-a|^{2-m}) d\mu(a) + O(V(r)) = -I(x, v) - \int_{D(x,a)} |x-a|^{2-m} d\mu(a) -$$

$$-r^{2-m} n(r, x, v) + \int_{|a| \leq 2r} |a|^{2-m} d\mu(a) + O(V(r)) = -I(x, v) + O(V(r)) \quad (r \to +\infty),$$

as $0 \leq \int_{D(x,a)} |x-a|^{2-m} d\mu(a) \leq r^{2-m} n(2r, v), \quad \int_{|a| \leq 2r} |a|^{2-m} d\mu(a) = N(2r, v) + (2r)^{2-m} n(2r, v)$. Thus, we obtain

$$v(x) = -I(x, v) + P_q(x) - \int_{|a| \leq 2r} b_q(x, a) d\mu(a) + O(V(r)) \quad (r \to +\infty).$$

In the case of non-integer order of the subharmonic function v, that $P_q(x) = O(V(r))$ and by Lemma 4.1 from [4]

$$\int_{|a| \leq 2r} b_q(x, a) d\mu(a) = O(V(r)) \quad (r \to +\infty).$$

Hence

$$v(x) = -I(x, v) + O(V(r)) \quad (r \to +\infty).$$

Taking into account that $\rho(r)$ is a proximate order of the function v, which means $0 < \sigma \leq +\infty$, by theorem A in case of integer order of v we obtain

$$P_q(x) - \int_{|a| \leq 2r} b_q(x, a) d\mu(a) = O(V(r)) \quad (r \to +\infty),$$

whence $v(x) = -I(x, v) + O(V(r))$ as $r \to +\infty$. \qed
REFERENCES

1. V.S. Azarin, Subharmonic functions of completely regular growth, Ph.D., Kharkiv, 1963. (in Russian)

Ivan Franko National University of Lviv, Lviv, Ukraine
mykola.zabolotskyy@lnu.edu.ua

Received 02.09.2020
Revised 06.11.2020