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For a δ-subharmonic in Rm, m ≥ 2, function u = u1 − u2 of finite positive order we found
the asymptotical representation of the form

u(x) = −I(x, u1) + I(x, u2) +O (V (|x|)) , x→∞,

where
I(x, ui) =

∫
|a−x|≤|x|

K(x, a)dµi(a), K(x, a) = ln
|x|
|x− a|

for m = 2, K(x, a) = |x−a|2−m−|x|2−m for m ≥ 3, µi is the Riesz measure of the subharmonic
function ui, V (r) = rρ(r), ρ(r) is a proximate order of u. The obtained result generalizes one
theorem of I. F. Krasichkov for entire functions.

In this paper one theorem of I.F. Krasichkov ([6], theorem 1) is generalized to the case
of δ-subharmonic in Rm, m ≥ 2, functions of finite positive order.

Let u be a δ-subharmonic function in Rm, m ≥ 2, that is u = u1 − u2, where u1, u2 are
subharmonic functions. Without loss of generality, we assume that u1, u2 are harmonic in a
neighborhood of zero and their orders do not exceed the order of u, the Riesz masses of u1
and u2 are concentrated on disjoint sets and u1(0) = u2(0) = 0. We set

M(a, r) = ln(r/|a|), L(x, a) = ln (|x|/|x− a|)
for m = 2 and

M(a, r) = |a|2−m − r2−m, L(x, a) = |x− a|2−m − |x|2−m

for m ≥ 3, x, a ∈ Rm, r ≥ 0. Let µi be a Riesz measure of subharmonic function ui, |x| = r,
n(t, ui) = µi ({h : |h| ≤ t}) , n(t, x, ui) = µi ({h : |h− x| ≤ t}) ,

dm = m− 2, for m ≥ 3, d2 = 1. We put

N(r, ui) =

∫
|a|≤r

M(a, r)dµi(a) = dm

r∫
0

n(t, ui)t
1−mdt,

I(x, ui) =

∫
|x−a|≤r

L(x, a)dµi(a) = dm

r∫
0

n(t, x, ui)t
1−mdt.
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The quantity I(x, ui) is called a concentration index of a subharmonic function ui at the
point x [3, p. 227]. The similar term was used for a related concept in case of entire functions
by I.F. Krasichkov [6]. In fact, the quantity I(x, ui) was introduced in the book of B.Ya.
Levin [7, p. 164] (see also [5]) before [6].

Let ρ(r) be a proximate order of the function u, that is:

1) ρ(r) ≥ 0 on [0,+∞);

2) ρ(r)→ ρ > 0 as r → +∞;

3) the function ρ(r) is continuously differentiable on [0,+∞);

4) rρ′(r) ln r → 0 as r → +∞;

5) 0 < lim
r→+∞

T (r, u)/V (r) < +∞, with V (r) = rρ(r),

where T (r, u) is the Nevanlinna characteristic of the function u, i.e.

T (r, u) =
1

|Sm−1|

∫
Sm−1

max{u1(rx), u2(rx)}dS(x), 0 ≤ r < +∞,

dS(x) is the sphere area element of Sm−1 = {x ∈ Rm : |x| = 1}, and |Sm−1| =
= 2πm/2/Γ(m/2). If u is a subharmonic function on Rm (m ≥ 2), u(0) = 0, then

T (r, u) =
1

|Sm−1|

∫
Sm−1

u+(rx)dS(x), u+ = max{u, 0}, 0 ≤ r < +∞.

We set K(x) = log |x| for m = 2 and K(x) = −|x|2−m for m ≥ 3. The function K(x− a)
is harmonic in Rm except the point x = a. In particular, if a 6= 0 then K(x − a) can be
represented as a power series in variables x1, x2, . . . , xm, convergent in the neighborhood of
the origin. We have

K(x− a) =
+∞∑
ν=0

bν(x, a),

where for fixed ν and a 6= 0 by bν(x, a) we denote a homogeneous harmonic polynomial of
x1, x2, . . . , xm, whose degree is ν. Let us set

Kq(x, a) = K(x− a)−
q∑

ν=0

bν(x, a).

The Brelot’s results ( [2, pp.145, 147], Theorems 1, 2) imply the analogue of Lindelöf theorem
for subharmonic functions of finite order ([1, p. 9]).

Theorem A (Analogue of the Lindelöf theorem). Let v be a subharmonic function of
integer order ρ, S1 = {x : |x| = 1}, Pq(x) be a homogeneous harmonic polynomial of degree
q,

δ(R) = max
x∈S1

{
Pq(x)−

∫
|a|≤R

bq(x, a)dµ(a)
}
, δ = lim

R→+∞
δ(R)/V (R),

∆ = lim
r→+∞

n(r, v)/rρ(r)+m−2, β = max(δ,∆), σ = lim
r→+∞

T (r, v)/V (r).

Then σ = 0, 0 < σ < +∞, σ = +∞ if and only if, β = 0, 0 < β < +∞, β = +∞,
respectively.
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We prove the following theorem.

Theorem 1. Let u be a δ-subharmonic function in Rm, m ≥ 2, of finite proximate order
ρ(r), %(r)→ % > 0 as r → +∞. Then

u(x) = −I(x, u1) + I(x, u2) +O (V (r)) (r → +∞). (1)

Proof. We note that it suffices to prove the theorem for the case of a subharmonic function.
Let v be a subharmonic function in Rm of proximate order ρ(r), ρ(r)→ ρ > 0 as r → +∞,

q = [ρ]. By Theorem 4.2 from [4] we have

v(x)=

∫
|a|≤2r

Kq−1(x, a)dµ(a) +

∫
|a|>2r

Kq(x, a)dµ(a) + Pq(x) + wq−1(x)−
∫

|a|≤2r

bq(x, a)dµ(a)=

= I1 + I2 + Pq(x) + wq−1(x)−
∫

|a|≤2r

bq(x, a)dµ(a),

where Pq(x) is a homogeneous harmonic polynomial of degree q, wq−1(x) is a harmonic
polynomial of degree at most q − 1, and thus wq−1(x) = O (V (r)) as r → +∞.

By Lemma 4.2 from [4] (Let us remark that there is a misprint in the lemma statement.
As could be seen from the proof in (4.1.4) ρq+1 must be set instead of ρq+2) we obtain (q ≥ 1,
m ≥ 2, A is some constant)

|I2| ≤

∣∣∣∣∣∣∣
∫

|a|>2r

Kq(x, a)dµ(a)

∣∣∣∣∣∣∣ ≤ Arq+1

+∞∫
2r

dn(t, v)

tm+q−1 ≤

≤ Arq+1(m+ q − 1)

+∞∫
2r

n(t, v)

tm+q
dt = O (V (r)) (r → +∞).

In the case of q = 0, m = 2 we get

|I2| ≤

∣∣∣∣∣∣∣
∫

|a|>2r

K0(x, a)dµ(a)

∣∣∣∣∣∣∣ ≤ −
+∞∫
2r

log
(

1− r

t

)
dn(t, v) ≤

≤ log
(

1− r

t

)
n(t, v)

∣∣∣2r
+∞

+ r

+∞∫
2r

n(t, v)

t(t− r)
dt ≤ 2r

+∞∫
2r

n(t, v)t−2dt = O (V (r)) (r → +∞),

since

n(r, v) = O (V (r)) = o(r), r

+∞∫
r

tρ(t)−2dt =
1 + o(1)

1− ρ
rρ(r) (r → +∞).

Now we shall estimate I1. Let D(x, a) = {a : |x− a| > r, |a| ≤ 2r}. Since

0 ≤
∫

D(x,a)

ln
|x− a|
r

dµ(a) ≤ n(2r, v) ln 3,

∫
|a|≤2r

ln
r

|a|
dµ(a) = N(2r, v)− n(2r, v) ln 2,
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we have for m = 2

I1 =

∫
|a|≤2r

K0(x, a)dµ(a)+O (V (r))=−I(x, v)+

∫
|a|≤2r

ln
|x−a|
|a|

dµ(a)+

∫
|x−a|≤r

ln
r

|x−a|
dµ(a)+

+O (V (r)) = −I(x, v) +

∫
D(x,a)

ln
|x− a|
r

dµ(a) +

∫
|a|≤2r

ln
r

|a|
dµ(a) +O (V (r)) =

= −I(x, v) +O (V (r)) (r → +∞).

In the case of m ≥ 3 similarly to the previous

I1 =

∫
|a|≤2r

K0(x, a)dµ(a) +O (V (r)) = −I(x, v) +

∫
|x−a|≤r

(
|x− a|2−m − r2−m

)
dµ(a)+

+

∫
|a|≤2r

(
|a|2−m − |x− a|2−m

)
dµ(a) +O (V (r)) = −I(x, v)−

∫
D(x,a)

|x− a|2−mdµ(a)−

−r2−mn(r, x, v) +

∫
|a|≤2r

|a|2−mdµ(a) +O (V (r)) = −I(x, v) +O (V (r)) (r → +∞),

as 0≤
∫

D(x,a)

|x − a|2−mdµ(a)≤ r2−mn(2r, v),
∫

|a|≤2r
|a|2−mdµ(a) =N(2r, v) + (2r)2−mn(2r, v).

Thus, we obtain

v(x) = −I(x, v) + Pq(x)−
∫

|a|≤2r

bq(x, a)dµ(a) +O (V (r)) (r → +∞).

In the case of non-integer order of the subharmonic function v, that Pq(x) = O (V (r)) and
by Lemma 4.1 from [4] ∫

|a|≤2r

bq(x, a)dµ(a) = O (V (r)) (r → +∞).

Hence
v(x) = −I(x, v) +O (V (r)) (r → +∞).

Taking into account that ρ(r) is a proximate order of the function v, which means 0 <
σ < +∞, by theorem A in case of integer order of v we obtain

Pq(x)−
∫

|a|≤2r

bq(x, a)dµ(a) = O (V (r)) (r → +∞),

whence v(x) = −I(x, v) +O (V (r)) as r → +∞.
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