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In this paper the comparative growth properties of composition of entire and meromorphic
functions on the basis of their generalized (α, β) order and generalized lower (α, β) order of
Wronskians generated by entire and meromorphic functions have been investigated.

1. Introduction, definitions and notations. Let us consider that the reader is familiar
with the fundamental results and the standard notations of the Nevanlinna theory of mero-
morphic functions which are available in [4, 5, 10]. We also use the standard notations and
definitions of the theory of entire functions which are available in [9] and therefore we do
not explain those in details. Let f be an entire function defined in the open complex plane
C and Mf (r) = max{|f(z)| : |z| = r}. When f is meromorphic, one may introduce another
function Tf (r) known as Nevanlinna’s characteristic function of f (see [4, p.4]), playing the
same role as Mf (r). The Nevanlinna’s characteristic function of a meromorphic function f is
defined as Tf (r) = Nf (r)+mf (r), wherever the function Nf (r, a) known as counting function
of a-points of meromorphic f is defined as follows:

Nf (r, a) =

r∫
0

nf (t, a)− nf (0, a)

t
dt+ nf (0, a) log r,

in addition we represent by nf (r, a) the number of a-points of f in |z| ≤ r and an ∞ -point

is a pole of f . In many occasions Nf (r,∞) is symbolized by Nf (r).
On the other hand, the function mf (r,∞) alternatively indicated by mf (r) known as

the proximity function of f is defined as mf (r) = 1
2π

2π∫
0

log+ |f(reiθ)|dθ, where log+ x =

max(log x, 0) for all x > 0. Also we may employ m(r, 1
f−a

) by mf (r, a). If f is entire, then
the Nevanlinna’s characteristic function Tf (r) of f is defined as Tf (r) = mf (r).

For a meromorphic function f defined on C, the Wronskian determinant W (f) is defined
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as

W (f) = W (a1, a2, . . . , ak, f) =

∣∣∣∣∣∣∣∣∣∣∣∣
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where a1, a2, . . . . ak are linearly independent meromorphic functions and small with respect
to f i.e., Tai(r) = Sf (r) for i = 1, 2, 3 . . . k. From the Nevanlinna’s second fundamental
theorem, it follows that the set of values of a ∈ C ∪ {∞} for which δ(a; f) > 0 is countable
and

∑
a ̸=∞

δ(a; f)+δ(∞; f) ≤ 2 (cf [4], p.43) where δ(a; f) = 1−lim sup
r→∞

N(r,a;f)
Tf (r)

= lim inf
r→∞

m(r,a;f)
Tf (r)

.

If in particular
∑
a ̸=∞

δ(a; f) + δ(∞; f) = 2, we say that f has the maximum deficiency sum.

However, let L be a class of continuous non-negative on (−∞,+∞) function α such
that α(x) = α(x0) ≥ 0 for x ≤ x0 with α(x) ↑ +∞ as x → +∞. For any α ∈ L, we say
that α ∈ L0

1, if α((1 + o(1))x) = (1 + o(1))α(x) as x → +∞ and α ∈ L0
2, if α(exp((1 +

o(1))x)) = (1 + o(1))α(exp(x)) as x → +∞. Finally for any α ∈ L, we also say that
α ∈ L1, if α(cx) = (1 + o(1))α(x) as x0 ≤ x → +∞ for each c ∈ (0,+∞) and α ∈ L2, if
α(exp(cx)) = (1 + o(1))α(exp(x)) as x0 ≤ x → +∞ for each c ∈ (0,+∞). Clearly, L1 ⊂ L0

1,
L2 ⊂ L0

2 and L2 ⊂ L1.
Considering this, the value

ϱ(α,β)[f ] = lim
r→+∞

α(logMf (r))

β(log r)
(α ∈ L, β ∈ L)

is called [7] generalized (α, β) order of an entire function f . For details about generalized order
(α, β) one may see [7]. During the past decades, several authors made close investigations
on the properties of entire functions related to generalized order (α, β) in some different
direction. For the purpose of further applications, here in this paper we rewrite the definition
of the generalized (α, β) order of entire and meromorphic function in the following way after
giving a minor modification to the original definition (e.g. see, [7]) which considerably extend
the definition of φ-order of entire and meromorphic function introduced in [3].

Definition 1. Let α, β ∈ L. The generalized order (α, β) and generalized lower (α, β) order

of a meromorphic function f are defined as ϱ(α,β)[f ]
λ(α,β)[f ]

= lim
r→∞

sup
inf

α(exp(Tf (r)))

β(r)
, If f is an

entire function, then ϱ(α,β)[f ]
λ(α,β)[f ]

= lim
r→∞

sup
inf

α(Mf (r))

β(r)
.

Using the inequality Tf (r) ≤ logMf (r) ≤ 3Tf (2r) (see [4]), for an entire function f , one
may easily verify that

ϱ(α,β)[f ]
λ(α,β)[f ]

= lim
r→∞

sup
inf

α(Mf (r))

β(r)
= lim

r→∞

sup
inf

α(exp(Tf (r)))

β(r)
,

when α ∈ L2 and β ∈ L1.
In this paper we wish to prove some newly developed results relating to the growth

properties of composite entire and meromorphic functions on the basis of generalized (α, β)
order and generalized lower order (α, β) of Wronskians generated by entire and meromorphic
functions.

2. Lemmas. In this section we present some lemmas which will be needed in the sequel.
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Lemma 1 ([1]). If f is a meromorphic function and g is an entire function then as r → +∞

Tf(g)(r) 6 (1 + o(1))
Tg(r)

logMg(r)
Tf (Mg(r)).

Lemma 2 ([2]). Let f and g are any two entire functions with g(0) = 0. Also let β satisfy
0 < β < 1 and c(β) = (1−β)2

4β
. Then for all sufficiently large values of r,

Mf (c(β)Mg(βr)) ≤ Mf(g)(r).

In addition if β = 1
2
, then for all sufficiently large values of r, Mf(g)(r) ≥ Mf (

1

8
Mg(

r

2
)).

Lemma 3 ([6]). Let f be a transcendental meromorphic function having the maximum
deficiency sum. Then

lim
r→+∞

TW (f)(r)

Tf (r)
= 1 + k − kδ(∞; f).

Lemma 4. Let f be a transcendental meromorphic function having the maximum deficiency
sum. Then the generalized (α, β) order and generalized lower (α, β) order of W (f) and that
of f are same where α ∈ L2.

Proof. Since α ∈ L2, from Lemma 3 we get α(exp(TW (f)(r))) ∼ α(exp(Tf (r))) as r → +∞
and, thus, ϱ(α,β)[W (f)] = ϱ(α,β)[f ] and λ(α,β)[W (f)] = λ(α,β)[f ].

3. Main results. In this section we present the main results of the paper. Below we suppose
that functions α2, β1, β2, β3 belong to the class L1 and α1, α3 belong to the class L2 unless
otherwise specifically stated.

Theorem 1. Let f be a transcendental meromorphic function having the maximum defi-
ciency and g be an entire function such that 0 < λ(α1,β1)[f ] ≤ ϱ(α1,β1)[f ] < +∞. and
ϱ(α2,β2)[g] < +∞. Also let γ be a positive continuous on [0,+∞) function increasing to
+∞ and A ≥ 0 be any number. If β1(α

−1
2 (log r)) ≤ r and lim

r→+∞
log γ(r)
log r

= +∞, then

lim
r→+∞

{α1(exp(Tf(g)(β
−1
2 (log r))))}1+A

α1(exp(TW (f)(β
−1
1 (γ(r)))))

= 0. (1)

If either β1(r) = Bα2(r), where B = constant > 0 and lim
r→+∞

log γ(r)
log r

= +∞ or β1(α
−1
2 (r)) ∈ L1

and lim
r→+∞

log γ(r)

β1(α
−1
2 (log r))

= +∞, then

lim
r→+∞

{exp(α1(exp(Tf(g)(β
−1
2 (log r)))))}1+A

α1(exp(TW (f)(β
−1
1 (γ(r)))))

= 0. (2)

Proof. From the definition of λ(α1,β1)[W (f)] and in view of Lemma 4, we get

α1(exp(TW (f)(β
−1
1 (γ(r)))) ≥ (λ(α1,β1)[W (f)]− ε)γ(r) = (λ(α1,β1)[f ]− ε)γ(r) (3)

for every ε ∈ (0, λ(α1,β1)[f ]) and all r ≥ r0(ε). On the other hand, in view of Lemma 1 and
the inequality Tg(r) ≤ log+Mg(r) we get

α1(exp(Tf(g)(β
−1
2 (log r)))) 6 (1 + o(1))(ϱ(α1,β1)[f ] + ε)β1(Mg(β

−1
2 (log r))) (4)
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for every ε > 0 and all r ≥ r0(ε).
If β1(α

−1
2 (log r)) ≤ r then (4) implies

α1(exp(Tf(g)(β
−1
2 (log r)))) 6 (1 + o(1))(ϱ(α1,β1)[f ] + ε)β1(α

−1
2 (α2(Mg(β

−1
2 (log r)))))

6 (1 + o(1))(ϱ(α1,β1)[f ] + ε)β1(α
−1
2 (log r(ϱ(α2,β2)

[g]+ε))) ≤
6 (1 + o(1))(ϱ(α1,β1)[f ] + ε)r(ϱ(α2,β2)

[g]+ε). (5)

If lim
r→+∞

log γ(r)
log r

= +∞, then from (3) and (5) we get

{α1(exp(Tf(g)(β
−1
2 (log r)))}1+A

α1(exp(TW (f)(β
−1
1 (γ(r)))))

≤

6 (1 + o(1))(ϱ(α1,β1)[f ] + ε)1+A[(ϱ(α1,β1)[f ] + ε)r(ϱ(α2,β2)
[g]+ε)]1+A

(λ(α1,β1)[f ]− ε)γ(r)
= o(1)

as r → +∞, i.e. (1) is proved.
If β1(r) = Bα2(r) then from (4) as above we have

α1(exp(Tf(g)(β
−1
2 (log r)))) 6 (1 + o(1))B(ϱ(α1,β1)[f ] + ε)α2(Mg(β

−1
2 (log r))) ≤

≤ (1 + o(1))B(ϱ(α1,β1)[f ] + ε)(ϱ(α2,β2)[g] + ε) log r,

i.e., exp(α1(exp(Tf(g)(β
−1
2 (log r))))) 6 (1 + o(1))rB(ϱ(α1,β1)

[f ]+ε)(ϱ(α2,β2)
[g]+ε). Hence in view of

(3) and the condition lim
r→+∞

log γ(r)
log r

= +∞ we get

{exp(α1(exp(Tf(g)(β
−1
2 (log r)))))}1+A

α1(exp(TW (f)(β
−1
1 (γ(r)))))

6 (1 + o(1))rB(ϱ(α1,β1)
[f ]+ε)(ϱ(α2,β2)

[g]+ε)(1+A)

(λ(α1,β1)[f ]− ε)γ(r)
= o(1)

as r → +∞, i.e. (2) is proved.
Finally if β1(α

−1
2 (r)) ∈ L1 then as above we have

α1(exp(Tf(g)(β
−1
2 (log r)))) 6 (1 + o(1))(ϱ(α1,β1)[f ] + ε)β1(α

−1
2 (log r)),

i.e.,
exp(α1(exp(Tf(g)(β

−1
2 (log r))))) 6 exp((1 + o(1))(ϱ(α1,β1)[f ] + ε)β1(α

−1
2 (log r)))

whence in view of (3) and the condition lim
r→+∞

log γ(r)

β1(α
−1
2 (log r))

= +∞ we get

{exp(α1(exp(Tf(g)(β
−1
2 (log r)))))}1+A

α1(exp(TW (f)(β
−1
1 (γ(r)))))

≤

6 [exp((1 + o(1))(ϱ(α1,β1)[f ] + ε)β1(α
−1
2 (log r)))]1+A

(λ(α1,β1)[f ]− ε)γ(r)
= o(1)

as r → +∞, i.e. (2) is proved again. The proof of Theorem 1 is completed.

Remark 1. Theorem 1 improves and extends Theorem 3 of [8].

Remark 2. In Theorem 1 if we take the condition “ϱ(α1,β1)[f ] > 0” instead of “0 <
λ(α1,β1)[f ] ≤ ϱ(α1,β1)[f ] < +∞”, the theorem remains true with “ limit inferior” in place
of “limit ”.
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Remark 3. In Theorem 1 the conditions “
∑
a̸=∞

δ(a; f) + δ(∞; f) = 2”, “0 < λ(α1,β1)[f ] ≤

ϱ(α1,β1)[f ] < +∞” and “ϱ(α2,β2)[g] < +∞” can be replaced by the conditions “
∑
a ̸=∞

δ(a; g) +

δ(∞; g) = 2”, “ϱ(α1,β1)[f ] < +∞” and “0 < λ(α2,β2)[g] ≤ ϱ(α2,β2)[g] < +∞” (α2 ∈ L2) Then
the conclusion of Theorem 1 remains true with “α1(exp(TW (f)(β

−1
1 (γ(r)))))” replaced by

“α2(exp(TW (g)(β
−1
2 (γ(r)))))”.

Remark 4. In Remark 3, if we take the condition “ϱ(α2,β2)[g] > 0” instead of
“0 < λ(α2,β2)[g] ≤ ϱ(α2,β2)[g] < +∞”, the theorem remains true with “limit replaced by
limit inferior”.

Theorem 2. Let f be a transcendental meromorphic function with
∑
a ̸=∞

δ(a; f)+δ(∞; f) = 2

and g be an entire function such that 0 < λ(α1,β1)[f ] ≤ ϱ(α1,β1)[f ] < +∞. and ϱ(α2,β2)[g] <
+∞. If α2(β

−1
1 (r)) ∈ L1, then

lim
r→+∞

α2(β
−1
1 (α1(exp(Tf(g)(r)))))

α1(exp(TW (f)(β
−1
1 (β2(r)))))

≤
ϱ(α2,β2)[g]

λ(α1,β1)[f ]
.

Proof. In view of (3), it follows for all sufficiently large values of r that

α1(exp(TW (f)(β
−1
1 (β2(r))))) ≥ (λ(α1,β1)[f ]− ε)β2(r). (6)

Again in view of (4), we get that α1(exp(Tf(g)(r))) 6 (1 + o(1))(ϱ(α1,β1)[f ] + ε)β1(Mg(r)) as
r → +∞. Since α2(β

−1
1 (r)) ∈ L1, we obtain from above for all sufficiently large values of r

that α2(β
−1
1 (α1(exp(Tf(g)(r))))) ≤ (1 + o(1))α2(Mg(r)), i.e.,

α2(β
−1
1 (α1(exp(Tf(g)(r))))) ≤ (1 + o(1))(ϱ(α2,β2)[g] + ε)β2(r). (7)

Now combining (6) and above we get that lim
r→+∞

α2(β
−1
1 (α1(exp(Tf(g)(r)))))

α1(exp(TW (f)(β
−1
1 (β2(r)))))

≤
ϱ(α2,β2)[g]

λ(α1,β1)[f ]
.

Hence the theorem follows.

Remark 5. We remark that in Theorem 2 if we will replace the condition ϱ(α2,β2)[g] < +∞
by λ(α2,β2)[g] < +∞, then

lim
r→+∞

α2(β
−1
1 (α1(exp(Tf(g)(r)))))

α1(exp(TW (f)(β
−1
1 (β2(r))))

≤
λ(α2,β2)[g]

λ(α1,β1)[f ]
. (8)

If the conditions of Theorem 2 remain unchanged then (8) remains true with “λ(α2,β2)[g]”
and “λ(α1,β1)[f ]” replaced by “ϱ(α2,β2)[g]” and “ϱ(α1,β1)[f ]” respectively.

Remark 6. In Theorem 2 the conditions “
∑
a̸=∞

δ(a; f) + δ(∞; f) = 2”, “0 < λ(α1,β1)[f ] ≤

ϱ(α1,β1)[f ] < +∞” and “ϱ(α2,β2)[g] < +∞” can be replaced by the conditions “
∑
a ̸=∞

δ(a; g) +

δ(∞; g) = 2”, “0 < ϱ(α1,β1)[f ] < +∞” and “0 < λ(α2,β2)[g] ≤ ϱ(α2,β2)[g] < +∞” (α2 ∈
L2) Then the conclusion of Theorem 1 remains true with “α1(exp(TW (f)(β

−1
1 (β2(r))))” and

“λ(α1,β1)[f ]” replaced by “α2(exp(TW (g)(r)))” and “λ(α2,β2)[g]” respectively.

Remark 7. In Remark 6 if we take the condition “0 < λ(α2,β2)[g] < +∞” or “0 < ϱ(α2,β2)[g] <

+∞” instead of “0 < λ(α2,β2)[g] ≤ ϱ(α2,β2)[g] < +∞”, then lim
r→+∞

α2(β
−1
1 (α1(exp(Tf(g)(r)))))

α2(exp(TW (g)(r)))
≤ 1.
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Theorem 3. Let f be a transcendental meromorphic function with
∑
a ̸=∞

δ(a; f)+δ(∞; f) = 2

and g be a transcendental entire function having the maximum deficiency sum such that
ϱ(α1,β1)[f(g)] < ∞ and λ(α3,β3)[g] > 0. Then

lim
r→∞

{α1(exp(Tf(g)(β
−1
1 (log r))))}2

α3(exp(TW (g)(β
−1
3 (log r)))) · α3(exp(TW (g)(β

−1
3 (r))))

= 0.

Proof. In view of (3), we get

α3(exp(TW (g)(β
−1
3 (log r)))) ≥ (λ(α3,β3)[g]− ε) log r (9)

and
α3(exp(TW (g)(β

−1
3 (r)))) ≥ (λ(α3,β3)[g]− ε)r (10)

for every ε ∈ (0, λ(α3,β3)[g]) and all r ≥ r0(ε).
Further for arbitrary positive ε we obtain for all sufficiently large values of r

α1(exp(Tf(g)(β
−1
1 (log r)))) ≤ (ϱ(α1,β1)[f(g)] + ε) log r. (11)

Now from (9) and (11) we have for all sufficiently large values of r that

α1(exp(Tf(g)(β
−1
1 (log r))))

α3(exp(TW (g)(β
−1
3 (log r))))

≤
(ϱ(α1,β1)[f(g)] + ε) log r

(λ(α3,β3)[g]− ε) log r
.

As ε > 0 is arbitrary we obtain from above that

lim
r→+∞

α1(exp(Tf(g)(β
−1
1 (log r))))

α3(exp(TW (g)(β
−1
3 (log r))))

≤
ϱ(α1,β1)[f(g)]

λ(α3,β3)[g]
. (12)

Again from (10) and (11) we get for all sufficiently large values of r that

α1(exp(Tf(g)(β
−1
1 (log r))))

α3(exp(TW (g)(β
−1
3 (r))))

≤
(ϱ(α1,β1)[f(g)] + ε) log r

(λ(α3,β3)[g]− ε)r
.

Since ε > 0 is arbitrary it follows from above that

lim
r→+∞

α1(exp(Tf(g)(β
−1
1 (log r))))

α3(exp(TW (g)(β
−1
3 (r))))

= 0. (13)

Thus the theorem follows from (12) and (13).

Theorem 4. Let f be a transcendental meromorphic function with
∑
a ̸=∞

δ(a; f)+δ(∞; f) = 2

and g be a transcendental entire function having the maximum deficiency sum such that
ϱ(α2,β2)[g] < λ(α1,β1)[f ] ≤ ϱ(α1,β1)[f ] (β1 ∈ L2). Also let C be any positive constant.
If α2(β

−1
1 (r)) ∈ L1, then

lim
r→+∞

exp(α2(β
−1
1 (α1(exp(Tf(g)(β

−1
2 (log r))))) · α1(exp(Tf(g)(β

−1
2 (log r))))

exp(α1(exp(TW (f)(β
−1
1 (log r))))) · β1(exp(TW (g)(2(β

−1
2 (log r)))))

= 0. (14)

If either β1(r) = C exp(α2(r)), where C is any positive constant or exp(α2(r)) > β1(r), then

lim
r→+∞

{α1(exp(Tf(g)(β
−1
2 (log r))))}2

exp(α1(exp(TW (f)(β
−1
1 (log r))))) · β1(exp(TW (g)(2(β

−1
2 (log r)))))

= 0. (15)
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Proof. In view of (3), it follows for all sufficiently large values of r that

exp(α1(exp(TW (f)(β
−1
1 (log r))))) ≥ r(λ(α1,β1)

[f ]−ε). (16)

As ϱ(α2,β2)[g] < λ(α1,β1)[f ] we can choose ε(> 0) in such a way that

ϱ(α2,β2)[g] + ε < λ(α1,β1)[f ]− ε. (17)

Now from (4)we have for all sufficiently large values of r that

α1(exp(Tf(g)(β
−1
2 (log r)))

β1(exp(TW (g)(2(β
−1
2 (log r)))))

≤
(1 + o(1))(ϱ(α1,β1)[f ] + ε)β1(Mg(β

−1
2 (log r)))

β1(exp(TW (g)(2(β
−1
2 (log r)))))

.

Since β1 ∈ L2, in view of log+ Mg(r) ≤ 3Tg(2r) {cf. [4]}, we get from above

α1(exp(Tf(g)(β
−1
2 (log r)))

β1(exp(TW (g)(2(β
−1
2 (log r)))))

≤
(1 + o(1))(ϱ(α1,β1)[f ] + ε)β1(exp(Tg(2(β

−1
2 (log r)))))

β1(exp(TW (g)(2(β
−1
2 (log r)))))

.

Since ε > 0 is arbitrary, so

lim
r→+∞

α1(exp(Tf(g)(β
−1
2 (log r)))

β1(exp(TW (g)(2(β
−1
2 (log r)))))

≤ ϱ(α1,β1)[f ]. (18)

If α2(β
−1
1 (r)) ∈ L1 then (4) implies

exp(α2(β
−1
1 (α1(exp(Tf(g)(β

−1
2 (log r))))))) 6 r(1+o(1))(ϱ(α2,β2)

[g]+ε). (19)

Now combining (16), (17), (18) and (19) we get

lim
r→+∞

exp(α2(β
−1
1 (α1(exp(Tf(g)(β

−1
2 (log r))))) · α1(exp(Tf(g)(β

−1
2 (log r))))

exp(α1(exp(TW (f)(β
−1
1 (log r))))) · β1(exp(TW (g)(2(β

−1
2 (log r)))))

=

= lim
r→+∞

exp(α2(β
−1
1 (α1(exp(Tf(g)(β

−1
2 (log r)))))

exp(α1(exp(TW (f)(β
−1
1 (log r)))))

· lim sup
r→+∞

α1(exp(Tf(g)(β
−1
2 (log r)))

β1(exp(TW (g)(2(β
−1
2 (log r)))))

≤

≤ lim
r→+∞

ϱ(α1,β1)[f ] · r(1+o(1))(ϱ(α2,β2)
[g]+ε)

r(λ(α1,β1)
[f ]−ε)

= 0,

i.e., (14) is proved.
If β1(r) = C exp(α2(r)) then from (4) as above we have

α1(exp(Tf(g)(β
−1
2 (log r)))) 6 C(1 + o(1))(ϱ(α1,β1)[f ] + ε)r(ϱ(α2,β2)

[g]+ε). (20)

Therefore combining (16), (17), (18) and (20) we get

lim
r→+∞

{α1(exp(Tf(g)(β
−1
2 (log r))))}2

exp(α1(exp(TW (f)(β
−1
1 (log r))))) · β1(exp(TW (g)(2(β

−1
2 (log r)))))

=

= lim
r→+∞

α1(exp(Tf(g)(β
−1
2 (log r))))

exp(α1(exp(TW (f)(β
−1
1 (log r)))))

· lim
r→+∞

α1(exp(Tf(g)(β
−1
2 (log r)))

β1(exp(TW (g)(2(β
−1
2 (log r)))))

≤

≤ lim
r→+∞

ϱ(α1,β1)[f ] · C(1 + o(1))(ϱ(α1,β1)[f ] + ε)r(ϱ(α2,β2)
[g]+ε)

r(λ(α1,β1)
[f ]−ε)

= 0
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i.e., (15) is proved.
Lastly, if exp(α2(r)) > β1(r) then as above we have from (4)

α1(exp(Tf(g)(β
−1
2 (log r)))) 6 (1 + o(1))(ϱ(α1,β1)[f ] + ε)r(ϱ(α2,β2)

[g]+ε). (21)

So combining (16), (17), (18) and (21) we get

lim
r→+∞

{α1(exp(Tf(g)(β
−1
2 (log r))))}2

exp(α1(exp(TW (f)(β
−1
1 (log r))))) · β1(exp(TW (g)(2(β

−1
2 (log r)))))

=

= lim
r→+∞

α1(exp(Tf(g)(β
−1
2 (log r))))

exp(α1(exp(TW (f)(β
−1
1 (log r)))))

· lim
r→+∞

α1(exp(Tf(g)(β
−1
2 (log r)))

β1(exp(TW (g)(2(β
−1
2 (log r)))))

≤ lim
r→+∞

ϱ(α1,β1)[f ] · (1 + o(1))(ϱ(α1,β1)[f ] + ε)r(ϱ(α2,β2)
[g]+ε)

r(λ(α1,β1)
[f ]−ε)

= 0,

i.e. (15) is proved again. The proof of Theorem 4 is completed.

Theorem 5. Let f be meromorphic and g be a transcendental entire function having the
maximum deficiency sum such that λ(α1,β1)[f ] < ∞ (β1 ∈ L2), λ(α2,β2)[g] > 0 (α2 ∈ L2) and
ϱ(α3,β3)[f(g)] < ∞. Then

lim
r→+∞

α1(exp(Tf(g)(β
−1
2 (log r))) · α3(exp(Tf(g)(β

−1
3 (r))))

β1(exp(TW (g)(2(β
−1
2 (log r))))) · α2(exp(TW (g)(β

−1
2 (r))))

≤
ϱ(α3,β3)[f(g)] · ϱ(α1,β1)[f ]

λ(α2,β2)[g]
.

Proof. For all sufficiently large values of r we have

α3(exp(Tf(g)(β
−1
3 (r)))) ≤ (ϱ(α3,β3)[f(g)] + ε)r. (22)

Again for all sufficiently large values of r it follows that

α2(exp(TW (g)(β
−1
2 (r)))) ≥ (λ(α2,β2)[g]− ε)r. (23)

Now combining (22) and (23) we have for all sufficiently large values of r that

α3(exp(Tf(g)(β
−1
3 (r))))

α2(exp(TW (g)(β
−1
2 (r))))

≤
ϱ(α3,β3)[f(g)] + ε

λ(α2,β2)[g]− ε
.

As ε > 0 is arbitrary we get from above that lim
r→+∞

α3(exp(Tf(g)(β
−1
3 (r))))

α2(exp(TW (g)(β
−1
2 (r))))

≤
ϱ(α3,β3)[f(g)]

λ(α2,β2)[g]
.

Hence and from (18) we obtain that

lim
r→+∞

α1(exp(Tf(g)(β
−1
2 (log r))) · α3(exp(Tf(g)(β

−1
3 (r))))

β1(exp(TW (g)(2(β
−1
2 (log r))))) · α2(exp(TW (g)(β

−1
2 (r))))

≤

≤ lim
r→+∞

α1(exp(Tf(g)(β
−1
2 (log r)))

β1(exp(TW (g)(2(β
−1
2 (log r)))))

· lim
r→+∞

α3(exp(Tf(g)(β
−1
3 (r))))

α2(exp(TW (g)(β
−1
2 (r))))

≤

≤
ϱ(α3,β3)[f(g)] · ϱ(α1,β1)[f ]

λ(α2,β2)[g]
.

Hence the theorem follows.
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Theorem 6. Let f be a transcendental meromorphic function with
∑
a ̸=∞

δ(a; f)+δ(∞; f) = 2

and g be entire such that ϱ(α1,β1)[f ] < +∞ and λ(α3,β3)[f(g)] = +∞. Then

lim
r→+∞

α3(exp(Tf(g)(r)))

α1(exp(TW (f)(β
−1
1 (β3(r)))))

= ∞.

Proof. Let us suppose that the conclusion of the theorem do not hold. Then we can find a
constant ∆ > 0 such that for a sequence of values of r tending to infinity

α3(exp(Tf(g)(r))) ≤ ∆ · α1(exp(TW (f)(β
−1
1 (β3(r))))). (24)

Again from the definition of ϱ(α1,β1)[W (f)] and in view of Lemma 4, it follows for all suffici-
ently large values of r that α1(exp(TW (f)(β

−1
1 (β3(r))))) ≤ (ϱ(α1,β1)[W (f)] + ε)β3(r)

i.e., α1(exp(TW (f)(β
−1
1 (β3(r))))) ≤ (ϱ(α1,β1)[f ] + ε)β3(r). (25)

Thus from (24) and (25), we have for a sequence of values of r → +∞ that

α3(exp(Tf(g)(r))) ≤ ∆(ϱ(α1,β1)[f ] + ε)β3(r),

i.e., lim
r→+∞

α3(exp(Tf(g)(r)))

β3(r)
= λ(α3,β3)[f(g)] ≤ ∆(ϱ(α1,β1)[f ] + ε) < +∞. This is a contradi-

ction. Thus the theorem follows.
Remark 8. If we take “

∑
a̸=∞

δ(a; g) + δ(∞; g) = 2” and “ϱ(α1,β1)[g] < +∞” instead of

“
∑
a̸=∞

δ(a; f) + δ(∞; f) = 2” and “ϱ(α1,β1)[f ] < +∞” and other conditions remain same,

the conclusion of Theorem 6 remains true with “α1(exp(TW (f)(β
−1
1 (β3(r)))))” replaced by

“α1(exp(TW (g)(β
−1
1 (β3(r)))))” in the denominator.

Remark 9. Theorem 6 and Remark 8 are also valid with “limit superior” instead of “limit” if
“λ(α3,β3)[f(g)] = +∞” is replaced by “ϱ(α3,β3)[f(g)] = +∞” and the other conditions remain
the same.

Using Definition 1 and Lemma 4, one can easily proof the following theorem and therefore
its proof is omitted:
Theorem 7. Let f be a transcendental meromorphic function with

∑
a̸=∞

δ(a; f) + δ(∞; f) =

2 and g be an entire function such 0 < λ(α1,β1)[f(g)] ≤ ϱ(α1,β1)[f(g)] < +∞ and 0 <
λ(α2,β2)[f ] ≤ ϱ(α2,β2)[f ] < +∞. Then

λ(α1,β1)[f ◦ g]
ϱ(α2,β2)[f ]

≤ lim
r→+∞

α1(exp(Tf◦g(r)))

α2(exp(TW (f)(β
−1
2 (β1(r))))

≤ min
{λ(α1,β1)[f ◦ g]

λ(α2,β2)[f ]
,
ϱ(α1,β1)[f ◦ g]
ϱ(α2,β2)[f ]

}
≤

≤ max
{λ(α1,β1)[f ◦ g]

λ(α2,β2)[f ]
,
ϱ(α1,β1)[f ◦ g]
ϱ(α2,β2)[f ]

}
≤ lim

r→+∞

α1(exp(Tf◦g(r)))

α2(exp(TW (f)(β
−1
2 (β1(r))))

≤
ϱ(α1,β1)[f ◦ g]
λ(α2,β2)[f ]

.

Remark 10. If we take “
∑
a ̸=∞

δ(a; g) + δ(∞; g) = 2” and “0 < λ(α2,β2)[g] ≤ ϱ(α2,β2)[g] < +∞”

instead of “
∑
a̸=∞

δ(a; f) + δ(∞; f) = 2 ” and “0 < λ(α2,β2)[f ] ≤ ϱ(α2,β2)[f ] < +∞ ” and

other conditions remain same, the conclusion of Theorem 7 remains true with “ϱ(α2,β2)[f ]”,
“λ(α2,β2)[f ]” and “α2(exp(TW (f)(β

−1
2 (β1(r)))) ” replaced by “ϱ(α2,β2)[g]”, “λ(α2,β2)[g]” and

“α2(exp(TW (g)(β
−1
2 (β1(r))))” respectively in the denominator.
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