
Математичнi Студiї. Т.53, №1 Matematychni Studii. V.53, No.1

УДК 517.5

E. A. Sevost’yanov, S. A. Skvortsov, I. A. Sverchevska

ON BOUNDARY EXTENSION OF ONE CLASS OF MAPPINGS IN TERMS

OF PRIME ENDS

E. A. Sevost’yanov, S. A. Skvortsov, I. A. Sverchevska. On boundary extension of one class of
mappings in terms of prime ends, Mat. Stud. 53 (2020), 29–40.

Here we consider the classes of mappings of metric spaces that distort the modulus of
families of paths similarly to Poletsky inequality. For domains, which are not locally connected
at the boundaries, we obtain results on the boundary extension of the indicated mappings. We
also investigate the local and global behavior of mappings in the context of the equicontinuity
of their families. The main statements of the article are proved under the condition that the
majorant responsible for the distortion of the modulus of the families of paths has a finite
mean oscillation at the corresponding points. The results are applicable to well-known classes
of conformal and quasiconformal mappings as well as mappings with a finite distortion.

1. Introduction. Recently we considered a number of problems related to the boundary
extension of classes of mappings of metric spaces in the context of so-called prime ends, see [1].
In this article, we slightly strengthen the indicated results for the case when mappings satisfy
somewhat more general conditions. Here, first of all, we mean the distortion of the module
under the mapping, the order of which equals the Hausdorff dimension of the space in the
previous publication. In addition, we refuse some separation conditions both on the maps
themselves and on the spaces in which they act. In particular, in [1] we assumed that the
mapped domain has a compact closure. Note that the last condition may be relaxed if it is
required that the space of the action of the map admits the so-called weak sphericalization
(see [2]). We note that the boundary extension of mappings in terms of prime ends has been
studied recently by some other authors, see, e.g., [3], [4], [5] and [6].

Since all the necessary information related to the definition and properties of prime ends
in metric spaces is given in [1], we allow ourselves not to provide them in this text. We
also omit the part concerning Poincaré-type inequalities, Ahlfors regular spaces, and other
information contained in the publication mentioned above. From now on we assume that
the space X is complete and supports a p-Poincaré inequality, and that the measure µ is
doubling (see [4]). In this case, a space X is locally connected (see [4, Section 2]), and proper
(see [7, Proposition 3.1]). If X is also connected then there exist constants C > 0 and q > 0
such that for all x ∈ X, 0 < r 6 R and y ∈ B(x,R),

µ(B(y, r))

µ(B(x,R))
6 C

( r
R

)q

, (1)
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see [4, (2.2)].
In what follows, (X, d, µ) and (X ′, d′, µ′) are metric spaces with metrics d and d′ and

locally finite Borel measures µ and µ′, correspondingly. Sometimes instead of (X, d, µ) and
(X ′, d′, µ′) we write (X, d) and (X ′, d′) , or even shorter, X and X ′, if a misunderstanding
is impossible. Given a metric space (X, d, µ) with a measure µ, a domain in X is an open
path-connected set in X.

Recall, for a given continuous path γ : [a, b] → X in a metric space (X, d), that its length
is the supremum of the sums

k∑
i=1

d(γ(ti), γ(ti−1))

over all partitions a = t0 6 t1 6 . . . 6 tk = b of the interval [a, b]. The path γ is called
rectifiable if its length is finite.

Given a family of paths Γ in X, a Borel function ρ : X → [0,∞] is called admissible for
Γ, abbr. ρ ∈ admΓ, if ∫

γ

ρ ds > 1

for all (locally rectifiable) γ ∈ Γ. Everywhere further, for any sets E,F, and G in X, we
denote by Γ(E,F,G) the family of all paths γ : [0, 1] → X such that γ(0) ∈ E, γ(1) ∈ F,
and γ(t) ∈ G for all t ∈ (0, 1). Everywhere further (X, d, µ) and (X ′, d′, µ′) are metric spaces
with metrics d and d′ and locally finite Borel measures µ and µ′, correspondingly. We will
assume that µ is a Borel measure such that 0 < µ(B) <∞ for all balls B in X.

Given p > 1, the p-modulus of the family Γ is the number

Mp(Γ) = inf
ρ∈admΓ

∫
X

ρp(x)dµ(x).

Should admΓ be empty, we set Mp(Γ) = ∞. A family of paths Γ1 in X is said to be minorized
by a family of paths Γ2 in X, abbr. Γ1 > Γ2, if, for every path γ1 ∈ Γ1, there is a path γ2 ∈ Γ1

such that γ2 is a restriction of γ1. In this case,

Γ1 > Γ2 ⇒ Mp(Γ1) ≤Mp(Γ2) (2)

(see [8, Theorem 1]).
Put X := X ∪ {∞}, and let h : X ×X → R be some metric. We say that h satisfies the

weak sphericalization condition, if (X, h) is a compact metric space, and h and d generate
the same X topology (note that this definition is slightly different from what we gave in [2]).
Note that the extended space X with the metric h introduced on it is a kind of analogue of
the Riemannian sphere in the indicated sense.

If the space X admits a weak sphericalization, then for a domain G ⊂ X and sets
E,F ⊂ G, we put

Mp(Γ(E,F,G)) :=Mp(Γ(E \ {∞}, F \ {∞}, G \ {∞})).

If Γ is a family of paths in X, we put Mp(Γ) =Mp(Γ
∗), where Γ∗ consists of those and only

those paths of Γ, not passing through ∞.
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Let G be a domain in X, let Q : G → [0,∞] be a function measurable with respect to
measure µ and p, q > 1 be fixed numbers. Put

A(ζ0, r1, r2) = {x ∈ X : r1 < d(x, ζ0) < r2} , Si = S(ζ0, ri) = {x ∈ X : d(x, ζ0) = ri}.

Similarly to [9, Ch. 7], a mapping f : G → X ′ is called a ring Q-mapping at a point x0 ∈ G
with respect to (p, q)-moduli, if for some r0 = r0(x0) > 0 and for all 0 < r1 < r2 < r0 the
inequality

Mp(f(Γ(S(ζ0, r1), S(ζ0, r2), G))) 6
∫

A∩G

Q(x) · ηq(d(x, ζ0))dµ(x) (3)

holds for any measurable function η : (r1, r2) → [0,∞] with

r2∫
r1

η(r)dr > 1. (4)

Let X and Y be metric spaces. A mapping f : X → Y is discrete if f−1(y) is discrete
for all y ∈ Y and f is open if it takes open sets onto open sets. Given a domain D ⊂ X,
the cluster set of f : D → Y at b ∈ ∂D is the set C(f, b) of all points z ∈ Y for which there
exists a sequence {bk}∞k=1 in D such that bk → b and f(bk) → z as k → ∞. For a non-empty
set E ⊂ ∂D let C(f, E) = ∪C(f, b), where b ranges over set E. A mapping f : G → Y is
closed in G ⊂ X if f(A) is closed in f(G) whenever A closed in G. A mapping f is proper
if f−1(K) is compact in D whenever K is a compact set of f(D). A mapping f is boundary
preserving if C(f, ∂D) ⊂ ∂f(D).

Let D ⊂ X, f : D → X ′ be a discrete open mapping, β : [a, b) → X ′ be a path, and
x ∈ f−1 (β(a)) . A path α : [a, c) → D is called a maximal f -lifting of β starting at x, if
(1) α(a) = x; (2) f ◦α = β|[a,c); (3) for c < c′ 6 b, there is no path α′ : [a, c′) → D such that
α = α′|[a,c) and f ◦α′ = β|[a,c′). If X and X ′ are locally compact, X is locally connected, and
f : D → X ′ is discrete and open, then there is a maximal f -lifting of β starting at x, see [2,
Lemma 2.1].

Let G be a domain in a space (X, d, µ). Similarly to [10], we say that a function φ : G→ R
has finite mean oscillation at a point x0 ∈ G, abbr. φ ∈ FMO(x0), if

lim
ε→0

1

µ(B(x0, ε))

∫
B(x0,ε)

|φ(x)− φε|dµ(x) <∞ (5)

where
φε =

1

µ(B(x0, ε))

∫
B(x0,ε)

φ(x)dµ(x)

is the mean value of the function φ over the set B(x0, ε) = {x ∈ G : d(x, x0) < ε} with respect
to the measure µ. Here the condition (5) includes the assumption that φ is integrable with
respect to the measure µ over the set B(x0, ε) for some ε > 0.

In what follows, DP is a completion of a domain D by its prime ends, and ED : = DP \D
denotes the set of all prime ends of D. We say that the boundary of the domain G in X
(or X) is strongly accessible at a point x0 ∈ ∂G with respect to p-modulus, if, for every
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neighborhood U of the point x0, there is a compact set E ⊂ G, a neighborhood V ⊂ U of
the point x0 and a number δ > 0 such that

Mp(Γ(E,F,G)) > δ

for every continuum F ⊂ G intersecting ∂U and ∂V. We say that the boundary ∂G is strongly
accessible with respect to p-modulus, if the corresponding property holds at every point of
the boundary. The following result holds.

Theorem 1. Let (X, d, µ) and (X ′, d′, µ′) be metric spaces, and let X ′ admits a weak spheri-
calization. Let D be a bounded domain in X which is finitely connected at the boundary,
let D′ be a domain in X ′, and let 1 6 p <∞, 1 6 q <∞ be fixed numbers. Assume that X
is a complete space, supporting q-Poincaré inequality, and that the measure µ is doubling.

Let Q : X → (0,∞) be a locally integrable function. Suppose that f : D → D′, D′ =
f(D), is a discrete, closed and open ring Q-mapping with respect to (p, q)-moduli in ∂D.
Moreover, suppose that ∂D′ is strongly accessible with respect to p-modulus.

Then f has a continuous extension f : DP → D′, f(DP ) = D′, whenever Q ∈ FMO(∂D).

In the above statement, the continuity of the map f : DP → D′ is understood in the
sense of an extended space (X ′, h), that is, it is stated that if the sequence xk, k = 1, 2, . . . ,
converges to the prime end P0 as k → ∞ in the metric space DP , then f(xk) converges to
some value y0 ∈ X ′ by the metric h. The statement, in this case, takes into account the
metrizability of space DP (see [4, Corollary 10.9]).

By correspondence [Ek] 7→ f([Ek]), [Ek] ∈ ED, f([Ek]) ∈ ∂D′, we mean the following. If
{xk}∞k=1 is a sequence with xk → [Ek], k → ∞, then we set:

f([Ek]) := lim
k→∞

f(xk).

The statement of the Theorem 1 includes that this limit exists, and it does not depend on a
sequence {xk}∞k=1, which converges to [Ek].

Remark 1. In fact, the FMO type condition that is present in Theorem 1 may be replaced
by the following more general and more fundamental assumption, which will be used later
in proving all the main results. Given a point x0 ∈ D, assume that there exists a Lebesgue
measurable function ψ : (0,∞) → (0,∞) such that

I(ε, ε0) :=

ε0∫
ε

ψ(t)dt <∞ (6)

for every ε ∈ (0, ε0) and I(ε, ε0) → ∞ as ε→ 0, and∫
ε<d(x,x0)<ε0

Q(x) · ψq(d(x, x0)) dµ(x) = o (Iq(ε, ε0)) , ε→ 0. (7)

2. Main Lemma. The following statement was proved in [5, Lemma 5.1] for homeomor-
phisms in R2.

Lemma 1. Suppose that the assumptions of Theorem 1 are satisfied. Moreover, assume that,
for every x0 ∈ ∂D conditions (6)–(7) hold. Then f has a continuous extension f : DP → D′,
f(DP ) = D′.
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Proof. By [4, Corollary 10.9], DP is metrizable. Now, by metrizability of DP , it is sufficient
to prove that

L = C(f, P ) :=
{
y ∈ X ′ : y = lim

k→∞
f(xk), xk → P, xk ∈ D

}
consists of single point y0 ∈ ∂D′. Since X ′ is a space admitting a weak sphericalization,
L ̸= ∅. By [1, Proposition 2.1], L ⊂ ∂D′.

Assume, to the contrary, that f cannot be extended to P continuously. Now, we can find
at least two points y0 and z0 ∈ L. Set U = B(y0, r0), where 0 < r0 < d(y0, z0). Now we
may find sequences yk and zk in f(Ek), k = 1, 2, . . . , P = [Ek], such that d(y0, yk) < r0 and
d(y0, zk) > r0 and, besides that, yk → y0 and zk → z0 as k → ∞. By Remark 4.5 in [4] we
may consider that the sets Ek are open. Moreover, by Remark 2.6 in [4] the set Ek is path
connected for every k ∈ N.

Denote x0 := I([Ek]) (see [4, Theorem 10.8]). Now we show that, for every r > 0 there
exists k ∈ N such that

Ek ⊂ B(x0, r) ∩D. (8)

Assume, to the contrary, that there exists r > 0 with the following property: for every k ∈ N
there exists xk ∈ Ek \B(x0, r). Since µ is doubling, X is complete if and only if it is proper
(i.e. every closed bounded set is compact), see [7, Proposition 3.1]. Since D is bounded, D
is compact. Now, we may find a subsequence xkl ∈ D with xkl → x0 as l → ∞ for some
x0 ∈ D. Given i ∈ N, there exists l0 ∈ N such that kl > i for every l > l0. Consequently,
xkl ∈ Ekl ⊂ Ei for every l > l0 and thus, x0 ∈ Ei. Since i is arbitrary, we obtain that
x0 ∈

∩∞
i=1Ei = {x0}. So, x0 = x0. It remains to show that xk → x0 as k → ∞. Assume

the contrary, then there exists a subsequence xml
∈ D with xml

→ ζ0 as l → ∞. Arguing
as above, we obtain that ζ0 = x0, that disproves the contradiction mentioned above. Now
xk → x0 as k → ∞ and thus, xk ∈ B(x0, r). The inclusion (8) have been proved.

Since yk, zk ∈ f(Ek), one can find at least two sequences xk, x′k ∈ Ek such that f(xk) = yk
and f(x′k) = zk. By (8) xk → x0 and x′k → x0 as k → ∞. According to the definition of
a strongly accessible boundary at a point y0 ∈ ∂D′ with respect to p-modulus, for any
neighborhood U of this point one can find a compact set C ′

0 ⊂ ∂D′, a neighborhood V of
the point y0 and a number δ > 0 such that

Mp(Γ(C
′
0, F,D

′)) > δ > 0 (9)

for an arbitrary continuum F that intersects ∂U and ∂V. By [1, Proposition 2.1] C0 :=
f−1(C ′

0) is compact subset of D. Consequently, δ0 = dist(x0, C0) > 0. Then, without loss of
generality, we may assume that C0∩B(x0, ε0) = ∅. Since Ek is connected, the points xk and
x′k can be connected by a path γk lying in Ek.

As usually, given a path γ : [a, b] → X, or γ : [a, b] → X ′, we set

|γ| := {x ∈ X : ∃t ∈ [a, b] : γ(t) = x}.

Since f(xk) = yk ∈ V and f(x′k) = zk ∈ D′ \ U for sufficiently large k ∈ N, one can find
a number k0 ∈ N such that, by virtue of (9),

Mp(Γ(C
′
0, |f(γk)|, D′)) > δ > 0 (10)
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for all k > k0. Let Γk denote the family of all semi-open paths βk : [a, b) → D′ such that
β(a) ∈ |f(γk)|, βk(t) ∈ D′ for all t ∈ [a, b), and

lim
t→b−0

βk(t) := Bk ∈ C ′
0.

It is obvious that
Mp(Γk) =Mp (Γ (C ′

0, |f(γk)|, D′)) . (11)

Since X is a complete space, supporting p-Poincaré inequality, X is proper and locally
connected (see [4, Section 2], [7, Proposition 3.1]). Now, by [2, Lemma 2.1], each path βk ∈ Γk

has a maximal lifting α∗ in D starting in |γk|. Let Γ′
k is a family of all maximal liftings

αk : [a, c) → D of Γk starting at |γk|. Note that no path αk ∈ Γ′
k, αk : [a, c) → D, can not

tend to the boundary of D as t→ c− 0, since C(f, ∂D) ⊂ ∂D′. Then C(αk, c) ⊂ D.
Now, assume that the αk does not have a limit as t→ c− 0. Consider

G =
{
x ∈ X : x = lim

k→∞
α(tk)

}
, tk ∈ [a, c), lim

k→∞
tk = c.

Letting to subsequences, if it is needed, we may restrict us by monotone sequences tk. For
x ∈ G, by continuity of f, f (α(tk)) → f(x) as k → ∞, where tk ∈ [a, c), tk → c as k → ∞.
However, f (α(tk)) = β(tk) → β(c) as k → ∞. Thus, f is a constant on G. On the other
hand, α is a compact set, because α is a closed subset of the compact space D (see [11,
Theorem 2.II.4, §41]). Now, by Cantor condition on the compact α, by monotonicity of
α ([tk, c)) ,

G =
∞∩
k=1

α ([tk, c)) ̸= ∅,

see [11, 1.II.4, §41]. By [11, Theorem 5.II.5, §47], G is connected. By discreteness of f, G is
a single-point set, α : [a, c) → D extends to a closed path α : [a, c] → D, and f(α(c)) = β(c).

Therefore, there exists
lim

t→c−0
αk(t) = Ak ∈ D.

Observe that, in this case, by the definition of maximal lifting, we have c = b. Then, on the
one hand,

lim
t→b−0

αk(t) := Ak,

and, on the other hand, by virtue of the continuity of the mapping f in D,

f(Ak) = lim
t→b−0

f(αk(t)) = lim
t→b−0

βk(t) = Bk ∈ C ′
0.

According to the definition of C0, this implies that Ak belongs to C0. We imbed the compact
set C0 into a certain continuum C1 lying completely in the domain D (see Lemma 1 in [12]).
Taking a smaller value of ε0 > 0, we may again assume that C1 ∩ B(x0, ε0) = ∅. Now we
have that Γ′

k ⊂ Γ(|γk|, C1, D). Passing to a subsequence, if necessary, we may consider that
xk and x′k ∈ B(x0, 2

−k). Observe that the function

η(t) =

{
ψ(t)/I(2−k, ε0), t ∈ (2−k, ε0),

0, t ∈ R \ (2−k, ε0),
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where I(ε) :=
∫ ε0
ε
ψ(t)dt, satisfies a normalization condition of the form (6). By conditions (6)

and (7), we get
Mp (f (Γ

′
k)) 6Mp(f(Γ(|γk|, C1, D))) 6 ∆(k), (12)

where ∆(k) → 0 as k → ∞. However, Γk = f(Γ′
k). Therefore, using (12), we conclude that

Mp(Γk) =Mp (f(Γ
′
k)) 6 ∆(k) → 0 as k → ∞. (13)

Relation (13), together with equality (11), contradicts inequality (10), which proves the
possibility of continuous extension f : DP → D′.

It remains to show that f(DP ) = D′. It is clear, that f(DP ) ⊂ D′. Now we show the
inverse inclusion. Let ζ0 ∈ D′. If ζ0 ∈ D′, then there exists ξ0 ∈ D with f(ξ0) = ζ0 and,
consequently, ζ0 ∈ f(D). Assume that ζ0 ∈ ∂D′. Now there exists ζm ∈ D′, ζm = f(ξm),
ξm ∈ D, such that ζm → ζ0 as m→ ∞. By [4, Theorem 10.10], DP is a compact metric space.
Now, we may consider that ξm → P0 as m → ∞, where P0 is some prime end in DP . Now
ζ0 ∈ f(DP ). The inclusion D′ ⊂ f(DP ) has been proved. Consequently, f(DP ) = D′.

3. Proof of the main result. We will say that a space (X, d, µ) is upper α-regular at a point
x0 ∈ X if there is a constant C > 0 such that

µ(B(x0, r)) 6 Crα

for the balls B(x0, r) centered at x0 ∈ X with all radii r < r0 for some r0 > 0. We will
also say that a space (X, d, µ) is upper α-regular if the above condition holds at every point
x0 ∈ X. The following statement holds (see [13, Lemma 2]).

Proposition 1. Let G be a domain in Ahlfors upper q-regular metric space (X, d, µ), 1 6
q <∞. Assume that x0 ∈ G and Q : G→ [0,∞] belongs to FMO(x0). If

µ(G ∩B(x0, 2r)) 6 γ · logq−2 1

r
· µ(G ∩B(x0, r)) (14)

for some r0 > 0 and every r ∈ (0, r0), then Q satisfies (7) at x0 with ψ(t) := 1
t log 1

t

.

Proof of Theorem 1. follows from Lemma 1 and Proposition 1. Indeed, X is upper regular
by (1), and (14) holds because the measure µ is doubling by assumptions. So, the desired
statement follows from the Lemma 1.

4. Equicontinuous families of homeomorphisms. Let us recall some definitions. Let
(X, d) and (X ′, d′) be metric spaces with distances d and d′, respectively. A family F of
mappings f : X → X ′ is said to be equicontinuous at a point x0 ∈ X if for every ε > 0 there
is δ > 0 such that

d′(f(x), f(x0)) < ε

for all f ∈ F and x ∈ X with d(x, x0) < δ. The family F is equicontinuous if F is equiconti-
nuous at every point x0 ∈ X. In what follows, X = DP and d = mP , where mP is defined
in [4, Corollary 10.9]. If we are talking about a family of mappings f with values in the
space S that admits weak sphericalization S, then in this case X ′ := S and d′ = h is the
corresponding metric in S. The next definition can be found, e.g., in [14].
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Suppose that the space X ′ admits a weak sphericalization and, moreover, h is the
corresponding metric in the extended space X ′. Given p > 1, a domain D ⊂ X ′ is called
p-uniform domain if, for each r > 0, there is δ > 0 such that

Mp(Γ(F, F
∗, D)) > δ

whenever F and F ∗ are continua of D with h(F ) > r and h(F ∗) > r. (Here h(A) :=
supx,y∈A h(x, y)). Domains Di, i ∈ I, are said to be p-equi-uniform domains if, for r > 0, the
modulus condition above is satisfied by each Di with the same number δ.

Assume that X ′ admits a weak sphericalization. Given δ > 0, D ⊂ X and a measurable
function Q : D → [0,∞], denote RQ,δ,p,q(D) the family of all ring Q-homeomorphisms
f : D → X ′ \ Kf with respect to (p, q)-moduli in D, such that f(D) is some open set in
X ′ and

h(Kf ) = supx,y∈Kf
h(x, y) > δ,

where Kf ⊂ X ′ is a continuum. The following statement holds.

Lemma 2. Let (X, d, µ) and (X ′, d′, µ′) be metric spaces, let D be a domain in X, and let
1 6 p <∞, 1 6 q <∞ be fixed numbers.

Given x0 ∈ D, assume that conditions (6)–(7) hold. If X is a locally path connected and
locally compact space, X ′ admits a weak sphericalization and X ′ is a uniform domain, then
RQ,δ,p,q(D) is equicontinuous at x0. (As mentioned above, equicontinuity is understood here
in the sense of extended metric space (X ′, h)).

Proof. The idea of a proof is closely related to [15, Lemma 2]. Assume the contrary, i.e.,
assume that RQ,δ,p,q(D) is not equicontinuous at x0. Now, there is exists xk ∈ D and fk ∈
RQ,δ,p,q(D) such that xk → x0 as k → ∞ and

h(fk(xk), fk(x0)) > a0, k = 1, 2, . . . , (15)

for some a0. SinceX is locally connected by assumption, there is a sequence of balls B(x0, εk),
k = 0, 1, 2, . . . , εk → 0 as k → ∞, such that

Vk+1 ⊂ B(x0, εk) ⊂ Vk,

where Vk are connected neighborhoods of x0 and Vk are continua in D. There is no loss of
generality in assuming that xk ∈ Vk. Now, x0 and xk can be joined by a path γk in the
domain Vk. Note that an arbitrary path γ ∈ Γ(Kfk , |fk(γk)|, X ′) is not included entirely both
in fk(B(x0, ε0)) and X ′ \ fk(B(x0, ε0)), therefore there exists

y1 ∈ |γ| ∩ fk(S(x0, ε0))
(see [11, Theorem 1, §46, item I]). Let γ : [0, 1] → X ′ and let t1 ∈ (0, 1) be such that
γ(t1) = y1. There is no loss of generality in assuming that

|γ|[0,t1)| ⊂ fk(B(x0, ε0)).

We put γ1 := γ|[0,t1], and α1 = f−1
k (γ1). Observe that |α1| ⊂ B(x0, ε0), moreover, α1 is

not included entirely either in B(x0, εk−1), or in X \ B(x0, εk−1). Consequently, there exists
t2 ∈ (0, t1) with α1(t2) ∈ S(x0, εk−1) (see [11, Theorem 1, §46, item I]). There is no loss of
generality in assuming that

|α1|[t2,t1]| ⊂ X \B(x0, εk−1).

Put α2 = α1|[t2,t1]. Observe that γ2 := fk(α2) is a subcurve of γ. By the said above,

Γ(Kfk , |fk(γk)|, X ′) > Γ(fk(S(x0, εk−1)), fk(S(x0, ε0)), fk(A)),
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where A = A(x0, εk−1, ε0), and by (2) we obtain

Mp(Γ(Kfk , |fk(γk)|, X ′)) 6Mp(Γ(fk(S(x0, εk−1)), fk(S(x0, ε0)), fk(A))). (16)

Since I(ε, ε0) → ∞ as ε → 0, we may consider that I(εk, ε0) > 0 for every k = 1, 2, . . . .
Consider the family of measurable functions

ηk(t) = ψ(t)/I(εk, ε0), t ∈ (ε, ε0).

Observe that
ε0∫
εk

ηk(t)dt = 1. Now, by (3), (7) and (16), we obtain that

Mp(Γ(Kfk , |fk(γk)|, X ′)) 6 φ(εk), (17)

where φ is some function with φ(εk) → 0 as k → ∞. On the other hand, it follows from (15)
that

min{h(Kfk), h(|fk(γk)|)} > r0

for some r0 > 0 and every k = 1, 2, . . . , . Now, since X ′ is uniformly domain, we obtain that

Mp(Γ(Kfk , |fk(γk)|, X ′)) > δ0 (18)

for some δ0 > 0 and every k = 1, 2, . . . , . Now, (18) contradicts with (17). Thus, RQ,δ,p,q(D)
is equicontinuous at x0, as required.

Assume that X ′ admits a weak sphericalization. Given δ > 0, D ⊂ X, a continuum
A ⊂ D and a measurable function Q : D → [0,∞], denote FQ,δ,A,p,q(D) the family of all ring
Q-homeomorphisms f : D → X ′ \Kf with respect to (p, q)-modulus in D, such that f(D) is
some open set in X ′,

h(Kf ) = sup
x,y∈Kf

h(x, y) > δ and h(f(A)) > δ,

where Kf ⊂ X ′ is some continuum. An analog of the following result was proved in [14,
Theorem 3.1] (see also [1, Lemma 5.2]).

Lemma 3. Let (X, d, µ) and (X ′, d′, µ′) be metric spaces, and let X ′ admits a weak spheri-
calization. Let D be a bounded domain in X which is finitely connected at the boundary,
let D′ be a domain in X ′, and let 1 6 p <∞, 1 6 q <∞ be fixed numbers. Assume that X
is a complete space, supporting p-Poincaré inequality, and that the measure µ is doubling.

Let Q : X → (0,∞) be a locally integrable function. Assume that, for every x0 ∈ D condi-
tions (6)–(7) hold. If D′

f := f(D) and X ′ are equi-uniform domains over f ∈ FQ,δ,A,p,q(D),

then every f ∈ FQ,δ,A,p,q(D) has a continuous extension f : DP → D′
f , and FQ,δ,A,p,q(D) is

equicontinuous in DP .

Proof. Observe that ∂D′
f = ∂f(D) is strongly accessible for every f ∈ FQ,δ,A,p,q(D). Indeed,

assume that x0 ∈ ∂D′
f . Given a neighborhood U of x0, there exists ε1 > 0 such that

V = B(x0, ε1), V := B(x0, ε1) ⊂ U.

Assume that ∂U ̸= ∅. Now, ∂V ̸= ∅ by connectedness of X ′ (see [11, 5.I.46]). Now, we set
ε2 := h′(∂U, ∂V ) > 0. Since D′

f are equi-uniform, we obtain that
Mp(Γ(F,G,D

′
f )) > δ > 0
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for some δ > 0 whenever F and G are continua in D′
f with

F ∩ ∂U ̸= ∅ ̸= F ∩ ∂V and G ∩ ∂U ̸= ∅ ̸= G ∩ ∂V
(because, in this case, we obtain that h(F ) > ε2 and h(G) > ε2). Thus, ∂D′

f = f(D)
is strongly accessible with respect to p-modulus, as required. Now, by Lemma 1, f ∈
FQ,δ,A,p,q(D) has a continuous extension f : DP → D′

f .
Since µ is doubling,X is complete if and only if it is proper (i.e. every closed bounded set is

compact), see [7, Proposition 3.1]. Now, X is a locally compact space. Since X is complete, X
supports an q-Poincaré inequality, and the measure µ is doubling, we obtain that X is locally
connected (see [4], see also [16, Theorem 17.1]). Moreover, X is locally path connected by the
Mazurkiewicz–Moore–Menger theorem (see in [11, Theorem 1.6.50.II]). Thus, all conditions
of Lemma 2 are satisfied. Now, by Lemma 2, FQ,δ,A,p,q(D) is equicontinuous at x0 for every
x0 ∈ D.

It remains to show that FQ,δ,A,p,q(D) is equicontinuous on ED = DP \ D. Assume the
contrary, i.e., assume that there exists P0 ∈ ED such that FQ,δ,A,p,q(D) is not equicontinuous
at P0. Now, there is exists Pk ∈ DP and fk ∈ FQ,δ,A(D) such that Pk → P0 as k → ∞ and

h(fk(Pk), fk(P0)) > a0 (19)

for some a0 > 0. Since fk has a continuous extension on DP , given k ∈ N, we can find xk ∈ D
with mP (xk, Pk) < 1/k and h(fk(xk), fk(Pk)) < 1/k. Thus, we obtain from (19) that

h(fk(xk), fk(P0)) > a0/2 ∀ k = 1, 2, . . . , . (20)

Similarly, we can find x′k ∈ D such that x′k → P0 as k → ∞, and
h(fk(x

′
k), fk(P0)) < 1/k, k = 1, 2, . . . .

Thus, we obtain from (20) that

h(fk(xk), fk(x
′
k)) > a0/4 ∀ k = 1, 2, . . . , (21)

where xk and x′k ∈ D satisfy conditions xk → P0, x
′
k → P0 as k → ∞.

Let P0 = [Ek]. Denote x0 := I([Ek]) (see [4, Theorem 10.8]). By [4, Remark 4.5] we
may consider that the sets Ek are open. Moreover, by Remark 2.6 in [4] the set Ek is path
connected for every k ∈ N. Arguing as in the proof of Lemma 1, we may show that, for every
r > 0 there exists k ∈ N such that

Ek ⊂ B(x0, r) ∩D.
Thus, there is no loss of generality in assuming that

xk, x
′
k ∈ Ek and Ek ⊂ B(x0, 2

−k).

Let γk be a path, joining xk and x′k in Ek. Observe that
A ⊂ D \B(x0, 2

−k)

for all k > k0 and some k0 ∈ N. We may consider that 2−k0 < ε0. Let Γk be a family of paths
joining |γk| and A in D. By (2), we obtain that

Mp(fk(Γk)) 6Mp(fk(Γ(S(x0, 2
−k), S(x0, 2

−k0), A(x0, 2
−k, 2−k0)))). (22)

Observe that

η(t) =

{
ψ(t)/I(2−k, 2−k0), t ∈ (2−k, 2−k0),

0, t ∈ R \ (2−k, 2−k0),
I(ε, ε0) :=

ε0∫
ε

ψ(t)dt,
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satisfies the condition (4) for r1 = 2−k and r2 = 2−k0 . By the definition of a ring Q-
homeomorphism at a boundary point x0, (7) and (22) imply

Mp(fk(Γk)) 6 α(2−k) → 0 (23)

as k → ∞, where α(ε) is some nonnegative function with α(ε) → 0 as ε→ 0.
However,

fk(Γk) = Γ(|fk(γk)|, fk(A), D′
fk
).

By assumption, h(fk(A)) > δ, k = 1, 2, . . . , moreover, by (21) we obtain that
h(|fk(γk)|) > a0/4, k = 1, 2, . . . .

Since D′
fk

are are equi-uniform domains, we obtain that

Mp(fk(Γk)) > r0, k = 1, 2, . . . , (24)

for some r0 > 0. But (24) contradicts (23). Thus, FQ,δ,A,p,q(D) is equicontinuous at P0, as
required.

The following main result holds.

Theorem 2. Let (X, d, µ) and (X ′, d′, µ′) be metric spaces, and let X ′ admits a weak spheri-
calization. Let D be a bounded domain in X which is finitely connected at the boundary,
let D′ be a domain in X ′, and let 1 6 p <∞, 1 6 q <∞ be fixed numbers. Assume that X
is a complete space, supporting p-Poincaré inequality, and that the measure µ is doubling.

LetQ : X → (0,∞) be a locally integrable function. Assume thatQ ∈ FMO(D). IfD′
f :=

f(D) and X ′ are equi-uniform domains over f ∈ FQ,δ,A,p,q(D), then every f ∈ FQ,δ,A,p,q(D)
has a continuous extension f : DP → D′

f , and FQ,δ,A,p,q(D) is equicontinuous in DP .

Proof of Theorem 2. follows from Lemma 3 and Proposition 1. Indeed, X is upper regular
by (1), and (14) holds because the measure µ is doubling by assumptions. So, the desired
statement follows from Lemma 3.
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