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We obtain an analogue of Wiman-Bitlyan-Gol’dberg type inequality for entire f : Cp → C
from the class Ep(λ) of functions represented by gap power series of the form

f(z) =

+∞∑
k=0

Pk(z), z ∈ Cp.

Here P0(z) ≡ a0 ∈ C, Pk(z) =
∑
‖n‖=λk

anz
n is a homogeneous polynomial of degree λk ∈ Z+,

аnd 0 = λ0 < λk ↑ +∞ (1 ≤ k ↑ +∞), λ = (λk). We consider the exhaustion of the space
Cp by the system (Gr)r≥0 of a bounded complete multiple-circular domains Gr with the
center at the point 0 = (0, . . . , 0) ∈ Cp. Define M(r, f) = max{|f(z)| : z ∈ Gr}, µ(r, f) =
max{|Pk(z))| : z ∈ Gr}. Let L be the class of positive continuous functions ψ : R+ → R+ such
that

∫ +∞
0

dx
ψ(x) < +∞, n(t) =

∑
λk≤t 1 the counting function of the sequence (λk) for t ≥ 0.

The following statement is proved: If a sequence λ = (λk) satisfy the condition

(∃p1 ∈ (0,+∞))(∃t0 > 0)(∀t ≥ t0) : n(t+
√
ψ(t))− n(t−

√
ψ(t)) ≤ tp1

for some function ψ ∈ L, then for every entire function f ∈ Ep(λ), p ≥ 2 and for any ε > 0
there exist a constant C = C(ε, f) > 0 and a set E = E(ε, f) ⊂ [1,+∞) of finite logarithmic
measure such that the inequality

M(r, f) ≤ Cm(r, f)(lnm(r, f))p1(ln lnm(r, f))p1+ε

holds for all r ∈ [1,+∞] \ E.
The obtained inequality is sharp in general. In the case λk ≡ k, p = 2 we have p1 = 1/2+ ε,

therefore from obtained statement we get the assertion on the Bitlyan-Gol’dberg inequality
(1959), and fot p = 1 the classical Wiman inequality it follows.

1. Introduction. We use the following standard notation. Let Cp be the p-dimensional
(p ≥ 1) a complex vector space, Zp+ = (N ∪ {0})p, zn = zn1

1 · · · z
np
p , ‖n‖ = n1 + · · · + np

for n = (n1, . . . , np) ∈ Zp+ and z = (z1, . . . , zp) ∈ Cp, R+ = [0,+∞). By Ep(λ) we denote
of the class of entire functions f : Cp → C, (i.e., entire functions of p complex variables),
represented by power series of the form

f(z) =
+∞∑
k=0

Pk(z), z ∈ Cp. (1)
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Here P0(z) ≡ a0 ∈ C, Pk(z) =
∑
‖n‖=λk anz

n is a homogeneous polynomial of degree λk ∈ Z+,

аnd 0 = λ0 < λk ↑ +∞ (1 ≤ k ↑ +∞), λ = (λk). In the case λk ≡ k (k ≥ 0) we obtain the
class of all entire functions of p complex variables. Denote by Ep; E1, E1(λ) the classes of
entire functions of one variable and entire functions represented by gap power series of the
form

f(z) = a0 +
+∞∑
k=1

akz
λk , z ∈ C, (2)

respectively.
According to [1] we consider the exhaustion of the space Cp by a system (Gr)r≥0 of

bounded complete multiple-circular domains with the center at the point 0 = (0, . . . , 0) ∈ Cp.
Actually, we assume that this system satisfies the conditions:

i)
⋃
r≥0

Gr = Cp;

ii) (∀r1 < r2) : Gr1 ⊂ Gr2 ;

iii) (z1, . . . , zp) ∈ G1 ⇐⇒ (∀ r > 0) : (rz1, . . . , rzp) ∈ Gr;

iv) (z1, . . . zp) ∈ Gr =⇒ (∀ θ = (θ1, . . . , θp) ∈ Rp) : (z1e
iθ1 , . . . , zpe

iθp) ∈ Gr.

By G = {G = (Gr)r≥0 : i)—iv)} we denote the class the systems of such domains. Remark
that following system G = (Gr)r≥0 of the domains Gr is contained in the class G:

i) Gr = Cr,a = {(z1, . . . , zp) ∈ Cp : |zj| < ajr, 1 ≤ j ≤ p};
ii) Gr = Br,a = {(z1, . . . , zp) ∈ Cp : a1|z1|2 + . . .+ ap|zp|2 < r2};
iii) Gr = Πr,a = {(z1, . . . , zp) ∈ Cp : a1|z1|+ . . .+ ap|zp| < r};
iv) Gr = {(z1, . . . , zp) ∈ Cp : |z1|a1 · . . . · |z2|ap < ra1+···+ap} ;

where a = (a1, . . . , ap), aj > 0 (1 ≤ j ≤ p), r > 0.
For r > 0 and an entire function f ∈ E1(λ) we denote by Mf (r) = max{|f(z)| : |z| = r}

the maximum modulus, and by µf (r) = max{|ak|rλk : k ≥ 0} the maximal term of power
series (2). For r > 0 and an entire function f ∈ Ep(λ) of the form (1) we denote

M(r, f) = max{|f(z)| : z ∈ Gr}, mk(r, f) = max{|Pk(z)| : z ∈ Gr} (k ≥ 0).

By the maximum modulus principle there exists a point z(k) = (z
(k)
1 , . . . , z

(k)
p ) ∈ ∂Gr such

that mk(r, f) = |Pk(z(k))|. The definition of Gr implies s(k) = (s
(k)
1 , . . . , s

(k)
p )

def
= z(k)

r
∈ ∂G1,

but Pk(z) is a homogeneous polynomial. Hence Pk(z(k)) = rλkPk(s
(k)). Thus |Pk(s(k))| =

max{|Pk(z)| : z ∈ G1} = mk(1, f) and therefore s(k) does not depend on r. So,

mk(r, f) = rλk |Pk(s(k))| (r > 0, k ≥ 0).

According to [1] define now the diagonal maximal term of the series (1)

m(r, f)
def
= max{mk(r, f) : k ≥ 0} = max{rλkmk(1, f) : k ≥ 0}.

We remark that m(r, f) ≡ µf (r) in the case p = 1.



BITLYAN-GOL’DBERG TYPE INEQUALITY 137

Let n(t) =
∑

λk≤t 1 be the counting function of the sequence λ = (λk). From Theorem 1
in the paper [2], proved for entire Dirichlet series, it follows such a statement. If a sequence
λ = (λk) satisfies the condition

lim
t→+∞

ln
(
n(t+

√
ψ(t))− n(t−

√
ψ(t))

)
ln t

≤ p1 < +∞ (3)

for some positive function ψ : R+ → R+ such that
∫ +∞
0

dt/ψ(t) < +∞, then for every entire
function f ∈ E1(λ) and any ε > 0 there exists a set E = E(ε, f) ⊂ [1,+∞) of finite
logarithmic measure (i.e., ln-meas(E)

def
=
∫
E
d ln r < +∞) such that

Mf (r) ≤ Cµf (r)(lnµf (r))
p1+ε (4)

holds for all r ∈ [1,+∞) \E. Here C is some constant depending only on f and ε. Hence, in
particular, it follows (see also [3, 4]), that if

(∃4 ∈ (0,+∞))(∃% ∈ [1/2, 1])(∃D > 0)(∃t0 > 0)(∀t > t0) : |n(t)−4t%| ≤ D, (5)

then inequality (4) holds with p1 = (2%− 1)/2, because in this case condition (3) is satisfied
with p1 = (2%− 1)/2. In the case f ∈ E1, i.e. λk ≡ k (k ≥ 0), condition (5) holds with % = 1.
Therefore, inequality (4) holds with p1 = 1/2, i.e., we have the classical Wiman’s inequality
(see [5, 6, 7]).

In [2] it is also proved that for every sequence λ = (λk) such that there exists a continuous
positive increasing to +∞ in the interval [0,+∞) function ψ satisfying ψ(t) = O(t ln t ln2 ln t)

(t→ +∞),
+∞∫
0

dt
ψ(t)

< +∞ and

(∃p1 > 0) : lim
t→+∞

t−p1
(
n(t+

√
ψ(t))− n(t−

√
ψ(t))

)
> 0, (6)

there exists an entire function f ∈ E1(λ) such that

Mf (r)

µf (r)
(lnµf (r))

−p1 → +∞ (r → +∞). (7)

Condition (5) implies that (6) holds with p1 = (2% − 1)/2. Thus, some entire function
satisfies relation (7) with p1 = (2%− 1)/2. It follows from the foregoing that if condition (5)
is satisfied, then there exists a function f ∈ E1(λ) such that relations (4) and (7) hold with
p1 = (2%− 1)/2. In particular, for some entire function f ∈ E1 we have

Mf (r)

µf (r)
√

lnµf (r)
→ +∞ (r → +∞).

This means that we cannot replace (2% − 1)/2 in (4) by a smaller number. Moreover, we
cannot even replace ε > 0 in (4) on ε = 0. Hence we get in Wiman’s inequality for the class of
all entire functions E1 the number 1

2
cannot be replaced by a smaller number. Moreover, ε > 0

cannot be replaced by ε = 0. We note also that Mf (r) ∼
√

2πµf (r)
√

lnµf (r) (r → +∞) for
the entire function f(z) = ez.
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Theorem on Wiman’s type inequality with diagonal maximal term of the series for the
class E2 and exhausting C2 by an arbitrary system of complete multiple-circular domains is
proved in the paper [1].

Theorem A ([1, p.33, Theorem 3]). For every entire function f ∈ E2 and for any ε > 0
there exist a constant C = C(ε, f) > 0 and a set E ⊂ [1,+∞] of finite logarithmic measure
such that the inequality

M(r, f) ≤ C ·m(r, f)(lnm(r, f))
1
2
+ε

holds for all r ∈ [1,+∞] \ E.
In this paper we prove analogues of cited above results ([2]) for the class Ep(λ). Obtained

results in particular contain the result of Theorem A and their sharpness is also proved.
Note, that in [1] it is proved an analogue of the Wiman inequality for maximum modulus

on bi-circle M(r, f) = max{|f(z1, z2)| : |z1| = r1, |z2| = r2} and maximal term µ(r, f) =
max{|an|rn : n ∈ Z2

+}, r = (r1, r2) ∈ R2
+ with 3/2 instead of 1/2 in (8). A. Schumitski ([8, 9]),

P. Fenton ([10]), O. Skaskiv and O. Trakalo ([11]) and some others authors have improved
Bitlyan and Goldberg’s result as in the specification of inequality, and in the specification
of describing exceptional set, and also established analogues Wiman’s inequality for other
classes analytic functions of several variables (see also [12]–[26]).

2. Main results.
2.1. Wiman’s type inequality for entire gap power series and diagonal maximal
term. Let L be the class of positive continuous functions ψ : R+ → R+ such that

∫ +∞
0

dx
ψ(x)

<
+∞.

First we prove such assertions.

Theorem 1. If a sequence λ = (λk) satisfies the condition

(∃p1 ∈ (0,+∞))(∃t0 > 0)(∀t ≥ t0) : n(t+
√
ψ(t))− n(t−

√
ψ(t)) ≤ tp1 (8)

for some function ψ ∈ L, then for every entire function f ∈ Ep(λ), p ≥ 2 and for any ε > 0
there exist a constant C = C(ε, f) > 0 and a set E = E(ε, f) ⊂ [1,+∞) of finite logarithmic
measure such that the inequality

M(r, f) ≤ Cm(r, f)(lnm(r, f))p1(ln lnm(r, f))p1+ε

holds for all r ∈ [1,+∞] \ E.

Theorem 2. Let ψ ∈ L be an increasing in interval [0,+∞) function such that ψ(t) =
O(t ln t ln2 ln t) (t→ +∞), and for a sequence λ = (λk) the condition

(∃p1 > 0)(∃C1 > 0)(∃t0 > 0)(∀t ≥ t0) : n(t+
√
ψ(t))− n(t−

√
ψ(t)] ≥ C1t

p1 (9)

holds. Then for every ε ∈ (0, p1) there exists an entire function f ∈ Ep(λ) such that

M(r, f)

m(r, f) lnp1 m(r, f) lnp1−ε lnm(r, f)
→ +∞ (r → +∞).

Remark 1. In the case of assumption (5) instead of (8) and (9) the assertions of Theorems
1 and 2 were announced in [28].
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Proof of Theorem 1. Let z = rs, z1 = rs1, . . . , zp = rsp, r > 0, (Pk) be a homogenous
polynomial, so we have

f(z) =
+∞∑
k=0

rλkPk(s).

Hence, using mk(1, f) = |Pk(s(k))| = max{|Pk(z)| : z ∈ G1}, we obtain

M(r, f) = max{|f(z)| : z ∈ Gr} = max{|f(rs)| : s ∈ G1} ≤

≤
+∞∑
k=0

rλk max{|Pk(s)| : s ∈ G1} =
+∞∑
k=0

rλkmk(1, f)
def
= H(r).

Here H(r) is an entire function of one variable, for which condition (8) of Theorem 1 holds.
Now we need one result from [7, Theorem 1].
Let I(ν) be the class of the functions F : R→ R+ defined by the integral of the form

F (x) =

∫
R+

a(u)exuν(du), (10)

where ν is a countable additive measure on the σ-algebra B(R+) of Borel sets on R+ (Borel
measure) such that ν({x : 0 ≤ x ≤ b}) < +∞ for any b > 0, a : R+ → R+ be a positive
measurable function. Denote by supp ν the support of the measure ν, i.e. the closed set
E =: supp ν such that ν(R \ E) = 0 and ν({u ∈ R : |u− u0| < r}) > 0 for any u0 ∈ E and
r > 0. For x ∈ R and F ∈ I(ν) we set

µ∗(x) = sup{a(u)exu : u ∈ supp ν}, µ∗(x) = sup{a(u)exu : u ∈ R}.

Lemma 1 ([7], Theorem 1). Let F ∈ I(ν). If

(∃ψ ∈ L)(∃p1 < +∞)(∃t0)(∀t ≥ t0) : ν(t−
√
ψ(t), t+

√
ψ(t)] ≤ tp1 ,

then for every ε > 0 there exists a set E1 ⊂ R+ of finite Lebesgue measure, i.e. meas(E1) :=∫
E1
dx < +∞, such that for all x ∈ [0,+∞) \ E

F (x) ≤ Cµ∗(x) lnp1 µ∗(x) lnp1+ε2 µ∗(x).

Here C is some constant depending only on F and ε, ln2 t := ln(ln t).

Let

ν(E) =
+∞∑
k=0

δλk(E),

where δλ(E) = 1 for λ ∈ E, δλ(E) = 0 for λ /∈ E for every bounded set E ⊂ R+. We put
a(u) = mk(1, f) for u = λk, a(u) = 0 for u ∈ R+ \ {λk}. Then

H(ex) =

∫
R+

a(u)euxν(du), µh(e
x) = µ∗(x) (x > 0).

Now from Lemma 1 it follows

M(ex, f) ≤ H(ex) ≤ Cµ∗(x) lnp1 µ∗(x) ln
p1+ε/2
2 µ∗(x) =

= CµH(ex) lnp1 µH(ex) ln
p1+ε/2
2 µH(ex) = Cm(ex, f) lnp1 m(ex, f) ln

p1+ε/2
2 m(ex, f)
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for all x ∈ R+ \ E1, meas(E1) < +∞. We put r = ex and denote E = eE1 . Then we obtain
that inequality (1) holds for all r ∈ [1,+∞) \ E,

ln-meas(E) =

∫
E

d ln r =

∫
E1

dx = meas(E1) < +∞.

Proof of Theorem 2. Remark that for an arbitrary entire f ∈ Ep of the form

f(z) =
+∞∑
k=0

ak(z1 · . . . · zp)λk , z = (z1, . . . , zp) ∈ Cp, (11)

we have
mk(r, f) = max{|ak||z1 · . . . · zp|λk : (z1, . . . , zp) ∈ Gr}.

Denote dk = max{|s1 · . . . · sp|λk : (s1, . . . , sp) ∈ G1} (k ≥ 1). Then

mk(r, f) = dkakr
pλk , (k ≥ 1), (12)

and
m(r, f) = max{mk(r, f) : k ≥ 1} = max{dkakrpλk : k ≥ 1}. (13)

We make use of the following assertion.

Lemma 2 ([7], Theorem 2). Let ψ ∈ L be such that ψ(t) = O(t ln t ln2
2 t) (t→ +∞) and a

measure ν such that ln ν(0, t] = O(t) (t→ +∞) and

(∃C > 0)(∃p1 > 0)(∃t0 > 0)(∀t ≥ t0) : ν(t−
√
ψ(t), t+

√
ψ(t)] ≥ Ctp1 . (14)

Then for every ε ∈ (0, p1) there exists F ∈ I(ν) of form (10) such that

F (x)

µ∗(x) lnp1 µ∗(x) lnp1−ε2 µ∗(x)
→ +∞, (x→ +∞). (15)

Let again

ν(E) =
+∞∑
k=0

δ
λ
(1)
k

(E), λ
(1)
k := pλk.

Condition (9) for a sequence (λk) holds with a function ψ ∈ L if and only if it is holds for
(bλk), b > 0, with the function ψ1(u) = b2ψ(u/b) instead of the function ψ, and the constant
Cb−p1 instead of constant C. Therefore, condition (14) holds for such ν, so Lemma 2 implies
that there exists F ∈ I(ν) of form (10) such that relation (15) is valid.

Now we put hk := a(λ
(1)
k ) = a(pλk). Then

H(r) :=
+∞∑
k=1

hkr
pλk =

∫ +∞

1

a(u)eu ln rν(du) = F (ln r), µ∗(ln r) ≥ µH(r) (r ≥ 1).

Thus h : C→ C is an entire function of one variable. From (15) follows

H(r)

µ∗(ln r) lnp1 µ∗(ln r) lnp1−ε2 µ∗(ln r)
→ +∞ (r → +∞). (16)
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We set ak = hk/dk (k ≥ 0) and consider a function f of the form (11). Remark, that for
r > 0 and each z ∈ ∂G1

M(r, f) ≥ |f(rz)|.

We put z = (1, . . . , 1) ∈ Rp
+. Without loss of generality, we may suppose that z = (1, . . . , 1) ∈

∂G1. Then, for all r > 0 we get

M(r, f) ≥ |f(rz)| =
+∞∑
k=0

hkr
pλk = H(r).

From equalities (12), (13) it follows that

m(r, f) = max{akdkrpλk : k ≥ 0} = max{hkrpλk : k ≥ 0} = µH(r) ≤ µ∗(ln r) (r ≥ 1).

Therefore, relation (16) implies

M(r, f)

m(r, f) lnp1 m(r, f) lnp1−ε2 m(r, f)
≥ H(r)

µ∗(ln r) lnp1 µ∗(ln r) lnp1−ε2 µ∗(ln r)
→ +∞ (17)

as r → +∞. We suppose now that z = (1, . . . , 1) 6∈ ∂G1, and r1 > 0 such that z =
(r1, . . . , r1) ∈ ∂G1. Consider the function f1(z) = f(zr1) and the exhaustion by the domains
G

0

r := Grr1 . Then, z = (1, . . . , 1) ∈ ∂G0

1,

M(r, f1, G
0) = M(r, f,G), m(r, f1, G

0) = m(r, f,G).

Since M(r, f) = M(r, f,G) and M(r, f1) = M(r, f1, G
0) for r > 0,

M(r, f)

m(r, f) lnp1 m(r, f) lnp1−ε2 m(r, f)
=

M(r, f1)

m(r, f1) lnp1 m(r, f1) lnp1−ε2 m(r, f1)
→ +∞

as r → +∞, because for the function f1 and the domains G0
r relation (17) holds.

2.2. Bitlyan-Goldberg type inequality and new description of exceptional set. We
will adhere to the general scheme of reasoning from the previous subsection 2.1. First we get
one statement containing a new estimate of the exceptional set of functions from class I(ν).

Theorem 3. Let F ∈ I(ν) and ν be a Borel measure such that (∃t0 ≥ 0)(∃c2, c3 > 0)(∀T ≥
t0)(∀t ∈ [t0, T ]) :

ν(T − t, T + t] ≤ c2t+ c3. (18)

If h is a positive function such that
∫ +∞
0

h(x)dx = +∞ and ln+
2 h(x) = o(ln2 F (x)) (x →

+∞), then for each ε > 0 there exists a set E3(ε, F, h) ≡ E3 such that h-meas E3 :=∫
E3
h(x)dx < +∞ and the inequality

F (x) ≤ h(x)µ∗(x)(lnµ∗(x))1/2+ε

holds for every x ∈ [0; +∞) \ E3.

We need the following assertion.
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Lemma 3 ([29]). Let g1(x) be a positive differentiable non-decreasing on [0; +∞) function,
ψ(x) be a positive continuous increasing on [0; +∞) function such that

∫ +∞
0

dx
ψ(x)

< +∞,
and h0(x) be a positive local integrable on [0; +∞) function such that

∫ +∞
0

h0(x) dx = +∞.
Then there exists a set E0 ⊂ [0; +∞) such that h-meas E0 :=

∫
E0
h0(x) dx < +∞ and for

every x ∈ [0; +∞) \ E0

g′1(x) ≤ h0(x)ψ(g1(x)).

Proof of Theorem 3. We put g(x) = lnF (x). As in [29] for fixed x ∈ R we have

F (x) ≤ 2

∫
|u−g′(x)|<

√
2g′′(x)

f(u)exuν(du).

Thus by the hypotheses of Theorem 3

F (x) ≤ 2µ∗(x)ν(g′(x)−
√

2g′′(x), g′(x) +
√

2g′′(x)] ≤ 2µ∗(x)
(
c2
√

2g′′(x) + c3

)
.

Let for ε1 > 0 and ε2 > 0

E1 = {x > 0 : g′′(x) > h(x)g′(x)(ln g′(x))1+ε1 , g′(x) ≥ 2,

E2 = {x > 0 : g′(x) > h(x)(g(x))1+ε2 , g(x) ≥ 1}.

Now we use the statement of the Lemma 3 twice. First, choosing g1(x) = g′(x), ψ(x) =
2c22x(lnx)1+ε1/(2c22), and then g1(x) = g(x), ψ(x) = x1+ε2 , we obtain that

h-meas E1 < +∞, h-meas E2 < +∞,

i.e. h-meas E1 ∪ E2 < +∞.
Therefore for x /∈ E := E1 ∪ E2 we have

F (x) ≤ 2µ∗(x)

(
h(x)

(
g(x)

)(1+ε2)/2( ln
(
h(x)

(
g(x)

)1+ε2))(1+ε1)/2 + c3

)
.

By the assumptions of Theorem 3 lnh(x) < (lnF (x))δ (x ≥ x0(δ)) for every δ > 0. Therefore,(
ln
(
h(x)(g(x))1+ε2

))(1+ε1)/2
≤

≤
(
(lnF (x))δ + (1 + ε2) ln2 F (x)

)(1+ε1)/2 ≤ (1 + o(1)
)(

lnF (x)
)δ(1+ε1)/2

as x→ +∞. Hence

F (x) ≤ 2µ∗(x)

(
h(x)

(
lnF (x)

)(1+ε)/2
+ c3

)
(x→ +∞, x /∈ E),

where ε = ε2 + δ(1 + ε1).
We note that h(x) ≤ exp{ln1/3 F (x)} (x→ +∞). Thus

h(x)
(

lnF (x)
)(1+ε)/2

+ c3 ≤ exp{ln2/3 F (x)} (x→ +∞)

and as x→ +∞ (x /∈ E)

lnF (x) ≤ ln 2 + lnµ∗(x) + ln

(
h(x)

(
lnF (x)

)(1+ε)/2
+ c3

)
≤

≤ ln 2 + lnµ∗(x) + ln2/3 F (x).
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hence lnF (x) ≤ (1 + o(1)) lnµ∗(x). Consequently,

F (x) ≤ 2µ∗(x)

(
h(x)

(
lnF (x)

)(1+ε)/2
+ c3

)
≤ 4µ∗(x)h(x)

(
lnµ∗(x)

)(1+ε)/2
as x→ +∞ (x /∈ E).

We now consider the general case of entire functions from the class Ep := Ep(λ) with
λk ≡ k ∈ Z+.

Theorem 3 implies the following corollary.

Theorem 4. Let f ∈ Ep. If a positive local integrable on [1; +∞) function h0 is such that∫ +∞
1

h0(r)d ln r = +∞ and ln+ lnh0(r) = o(ln lnm(r, f)) (r → +∞), then for each ε > 0
there exists a set E4(ε, f, h) ≡ E4 such that h0-log-meas E4 :=

∫
E4
h0(r)d ln r < +∞ and

M(r, f) ≤ h0(r)m(r, f)(lnm(r, f))1/2+ε

holds for all r ∈ [1,+∞) \ E4.

Proof. First, we reason as in the proof of Theorem 1 up to the application of Lemma 1. Next,
applying instead of Lemma 1 the statement of Lemma 3, we obtain the required inequality
and the required description of the exceptional set, because∫

E4

h0(r)d ln r =

∫
E3

h0(e
x)dx =

∫
E3

h(x)dx < +∞,

where the set E4 is the image of the set E3 by mapping r = ex : E3 → E4.
Note now, that for the sequence λk ≡ k one has n(T + t) − n(T − t) ≤ 2t + 1, i.e.

conditions (18) take place with c2 = 2, c3 = 1. It remains to obtain from the condition
ln+ lnh0(r) = o(ln lnm(r, f)) (r → +∞) condition ln+

2 h(x) = o(ln2 F (x)) (x → +∞) with
h(x) = h0(e

x), F (x) = H(ex). But, by Cauchy’s inequality m(r, f) = µH(r) ≤ H(r).

If in Theorem 4 we choose h0(r) = lnεm(r, f), then we immediately obtain the following
statement.

Corollary. If f ∈ Ep, then for each ε > 0 there exists a set E5(ε, f, h) ≡ E5 such that∫
E5

lnεm(r, f)d ln r < +∞ and the inequality

M(r, f) ≤ m(r, f)(lnm(r, f))1/2+ε

holds for all r ∈ [1,+∞) \ E5.

Remark, that in the case of entire functions of one complex variables statements similarly
to Theorem 4 and Corollary 1 we find in [30] (see also [31]).

References

1. Bitlyan I.F., Goldberg A.A. Wiman-Valiron’s theorem for entire functions of several complex variables//
Vestn. Leningrad univ. ser. mat., mech. and astr. – 1959. – V.2, №13. – P. 27–41. (in Russian)



144 A. O. KURYLIAK, S. I. PANCHUK, O. B. SKASKIV

2. O.B. Skaskiv, On the classical Wiman’s inequality for entire Dirichlet series, Visn. Lviv. Univer., ser.
mekh.-mat. – 1999. – V.54. – P. 180–182. (in Ukrainian)

3. M.M. Sheremeta, Wiman-Valiron’s method for entire functions, represented by Dirichlet series, Dokl.
USSR Acad. Sci. – 1978. – V.240, №5. – P. 1036–1039. (in Russian)

4. Skaskiv O.B. Random gap power series and Wiman’s inequality// Mat. Stud. – 2008. – V.30, №1. –
P. 101–106. (in Ukrainian)

5. Valiron G. Functions analytiques. – Paris: Press Univer. de France, 1954.
6. Wittich H. Neuer Untersuchungen über eindeutige analytische Funktionen. – Berlin-Göttingen-

Heidelberg: Springer-Verlag, 1955.
7. Kuryliak A.O., Ovchar I.E., Skaskiv O.B. Wiman’s inequality for Laplace integrals// Int. Journal of

Math. Analysis. – 2014. – V.8, №8. – P. 381–385.
8. Schumitsky A. Wiman-Valyron theory for entire functions of several complex variables. – Ph.D. Thesis,

Cornell Univ., 1965.
9. Shumitzky A. A probabilistic approach to the Wiman-Valiron’s theory for entire functions of several

complex variables// Complex Variables. – 1989. – V.13. – P. 85–98.
10. Fenton P.C. Wiman-Valiron theory in two variables// Trans. Amer. Math. Soc. – 1995.– V.347, №11. –

P. 4403–4412.
11. Skaskiv O.B., Trakalo O.M. On classical Wiman’s inequality for entire Dirichlet series// Mat. metods

and fys.-mekh. polya. – 2000. – V.43, №3. – P. 34–39. (in Ukrainian)
12. Zrum O.V., Skaskiv O.B. On Wiman’s inequality for random entire functions of two variables// Mat.

Stud. – 2005. – V.23, №2. – P. 149–160. (in Ukrainian)
13. Skaskiv O.B., Zrum O.V. Wiman-type inequalities for entire functions of two complex variables with

rapidly oscillating coefficients// Mat. Metody Phys.-Mekh. Polya. – 2005. – V.48, №4. – P. 78–87. (in
Ukrainian)

14. Skaskiv O.B., Zrum O.V. Refinement of Fenton’s inequality for entire functions of two complex variables//
Mat. Visn. Nauk. Tov. Im. Shevchenka. – 2006. – V.3. – P. 56–68. (in Ukrainian)

15. Gopala Krishna J. Generalised inverse and probability techniques and some fundamental growth theorems
in Ck// J. Indian Math. Soc. – 1977. – V.41. – P. 203–219.

16. Gopala Krishna J., Nagaraja Rao I.H. Generalised inverse and probability techniques and some
fundamental growth theorems in Ck// Jour. of the Indian Math. Soc. – 1977. – V.41. – P. 203–219.

17. O.B. Skaskiv, Random gap power series and Wiman’s inequality// Mat. Stud. – 2008. – V.30, №1. –
P. 101–106. (in Ukrainian)

18. Kuryliak A.O., Skaskiv O.B. Wiman’s type inequalities without exceptional sets for random entire functi-
ons of several variables// Mat. Stud. – 2012. – V.38, №1. – P. 35–50.

19. Skaskiv O. B., Kuryliak A. O. Maximum modulus of entire functions of two variables and arguments of
coefficients of double power series// Mat. Stud. – 2011. – V.36, №2. – P. 162–175.

20. Zrum O.V., Kuryliak A.O., Skaskiv O.B. Levy’s phenomenon for entire functions of several variables//
arXiv: 1307.6164v1 [math.CV] 23 Jul 2013. – 14 p.

21. Kuryliak A.O., Skaskiv O.B., Zrum O.V. Levy’s phenomenon for entire functions of several variables//
Ufa Math. J. – 2014. – Т.6, №2. – P. 111–120.

22. Kuryliak A.O., Shapovalovska L.O., Skaskiv O.B.Wiman’s type inequality for some double power series//
Mat. Stud. – 2013. – V.39, №2. – P. 134–141.

23. Kuryliak A.O., Shapovalovska L.O. Wiman’s type inequality for entire functions of several complex
variables with rapidly oscillating coefficients// Mat. Stud. – 2015. – V.43, №1. – P. 16–26. doi:
10.15330/ms.43.1.16-26

24. Kuryliak A.O., Skaskiv O.B., Shapovalovska L.O. Wiman’s inequality for analityc functions in a bydisc//
Visn. Lviv. Univ. – 2014. – Vyp.79. –P. 89–96 (2014) (in Ukrainian)

25. Kuryliak A.O., Shapovalovska L.O., Skaskiv O.B. Wiman’s type inequality for analytic functions in a
polydisc// Ukr. Mat. Zh. – 2016. –V.68, №.1. –P. 78–86 (2016) (in Ukrainian)

26. Kuryliak A.O., Tsvigun V.L. Wiman’s type inequality for multiple power series in an unbounded cylinder
domain// Mat. Stud. – 2018. – V.49, №1. – P. 29–51.

27. Kuryliak A., Skaskiv O., Skaskiv S. Levy’s phenomenon for analytic functions on a polydisk// European
Journal of Mathematics. – 2020. – V.6, №1. – P. 138–152 doi.org/10.1007/s40879-019-00363-2

28. Panchuk S.I., Skaskiv O.B. Lacunary multiple power series and Wiman’s inequality// International
conference dedicated to the 120th anniversary of Stefan Banach (Lviv, 17.09—21.09.2012): Abstract
of Reports. – Lviv, 2012. — P. 172–173.



BITLYAN-GOL’DBERG TYPE INEQUALITY 145

29. Skaskiv O.B. On certain relations between the maximum modulus and the maximal term of an entire
Dirichlet series, Math. Notes. – 1999. – V.66, №2. – P. 223–232. Transl. from Mat. Zametky. – 1999. –
V.66, №2. – P. 282–292.

30. Skaskiv O.B., Zrum O.V., On an exeptional set in the Wiman inequalities for entire functions// Mat.
Stud. – 2004. – V.21, №1. – P. 13–24. (in Ukrainian)

31. Skaskiv O.B., Filevych P.V., On the size of an exceptional set in the Wiman theorem, Mat. Stud. – 1999.
– V.12, №1. – P. 31–36. (in Ukrainian)

Ivan Franko National University of Lviv
Lviv, Ukraine
andriykuryliak@gmail.com
olskask@gmail.com
s.panchuk@lnu.edu.ua

Received 03.07.2020
Revised 04.10.2020


