J. G. ANAYA, E. CASTAÑEDA-ALVARADO, J. A. MARTÍNEZ-CORTEZ

INDUCED MAPPINGS ON $C_n(X)/C_{nK}(X)$

J. G. Anaya, E. Castañeda-Alvarado, J. A. Martínez-Cortez. Induced mappings on $C_n(X)/C_{nK}(X)$, Mat. Stud. 56 (2021), 83–95.

Given a continuum X and $n \in \mathbb{N}$. Let $C_n(X)$ be the hyperspace of all nonempty closed subsets of X with at most n components. Let $C_{nK}(X)$ be the hyperspace of all elements in $C_n(X)$ containing K where K is a compact subset of X. The quotient space $C_n(X)/C_{nK}(X)$ will be denote by $C_K^n(X)$. Given a mapping $f: X \to Y$ between continua, let $C_n(f): C_n(X) \to C_n(Y)$ be the mapping induced by f, defined by $C_n(f)(A) = f(A)$. We denote the natural induced mapping between $C_K^n(X)$ and $C_{f(K)}^n(Y)$ by $C_K^n(f)$. In this paper, we study relationships among the mappings $f, C_n(f)$ and $C_K^n(f)$ for the following classes of mappings: almost monotone, atriodic, confluent, joining, light, monotone, open, OM, pseudo-confluent, quasi-monotone, semi-confluent, strongly freely decomposable, weakly confluent, and weakly monotone.

1. Introduction. A continuum is a nonempty compact connected metric space. A subcontinuum of a continuum X is a subset of X which is a continuum. A mapping is a continuous function. We will denote by \mathbb{N} the set of positive integers, by I the unit interval [0, 1], and by S^1 the unit circle $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$.

Given a continuum X and $n \in \mathbb{N}$, we consider the following hyperspaces of X

$$2^{X} = \{A \subset X : A \text{ is nonempty and closed in } X\},\$$
$$C_{n}(X) = \{A \in 2^{X} : A \text{ has at most } n \text{ components}\},\$$
$$F_{n}(X) = \{A \in 2^{X} : A \text{ has at most } n \text{ points }\}.$$

All the hyperspaces topologized with the Hausdorff metric (see the definition below). Given a nonempty compact subset K of X, the subspace $C_{nK}(X)$ of $C_n(X)$ defined by

$$C_{nK}(X) = \{A \in C_n(X) : K \subset A\}$$

is called the containment hyperspace for K in $C_n(X)$.

The hyperspace $C_n(X)$ is called the *n*-fold hyperspace of X, his structure topologic is different to other hyperspaces, see [22] and [23]. For example, by [18, Lemma 2.3, p. 349], $C_2(I)$ is not homeomorphic to $C_2(S^1)$. In fact, $C_2(I)$ is homeomorphic to a 4-dimensional cell (see [18, Lemma 2.2, p. 349]) and $C_2(S^1)$ is homeomorphic to the cone over the solid torus (see [19]). The hyperspace $C_1(X)$ is called the hyperspace of subcontinua, some geometric models of $C_1(X)$ are (see [20, Chapter II]):

- $C_1(I)$ is a triangle;
- $C_1(S^1)$ is the unit disk;

2010 Mathematics Subject Classification: 54C05, 54C10, 54B20, 54B15.

Keywords: induced mapping; hyperspaces; continuum; containment hyperspaces; quotient space. doi:10.30970/ms.56.1.83-95

- $C_1(T)$ is a cube with three triangles, where T is the cone over three points;
- $C_1(X)$ is the *n*-dimensional polyhedron built by attaching *n* two dimensional cell with an *n*-dimensional cell where X is the cone over *n* points, $n \in \mathbb{N}$.
- $C_1(P)$ is a 3-dimensional polyhedron (see [20, Figure 6, p. 37]), where P is the union of a simple closed curve and an arc whose intersection is one of the end points of the arc.

For a continuum X, since $C_{nK}(X)$ is a nonempty closed subset of $C_n(X)$,

 $\{C_{nK}(X)\} \cup \{\{A\} : A \in C_n(X) - C_{nK}(X)\}$

is an upper semi-continuous decomposition of $C_n(X)$. By [29, Theorem 3.10, p. 40], the space $C_n(X)/C_{nK}(X)$ is a continuum, which is denoted by $C_K^n(X)$, where π_K^X stands for the quotient mapping $\pi_K^X \colon C_n(X) \to C_K^n(X)$. For each $A \in C_n(X) - C_{nK}(X)$ we denote the class of A by \mathcal{A} , and let $C_{nK}^X = \pi_K^X(C_{nK}(X))$. Thus, π_K^X is given by

$$\pi_K^X(A) = \begin{cases} \mathcal{A} & \text{if } A \notin C_{nK}(X), \\ C_{nK}^X & \text{if } A \in C_{nK}(X). \end{cases}$$

In 1979 S. B. Nadler Jr., see [28], began the study of the quotient space $C_1(X)/F_1(X)$, which he called the *hyperspace suspension* of X. Later, in 2004, R. Escobedo, M. de J. López and S. Macías extended the study of hyperspace suspension in [14].

Subsequently, S. Macías generalized the study of hyperspace suspension, considering the quotient space $C_n(X)/F_n(X)$, which he called the *n*-fold hyperspace suspension of X, see [24], continuing with the study in 2006, see [25]. In the year 2008, J. C. Macías analyzes the quotient space $C_n(X)/F_1(X)$, which he called the *n*-fold pseudo-hyperspace suspension of X, see [21]. J. Camargo and S. Macías in 2016 considered the quotient space $C_n(X)/C_1(X)$, they show several of their properties, see [9]. With respect to the space $C_K^n(X)$ in [2] is demonstrated that $C_K^n(I)$ is homeomorphic to the suspension over $C_{nK}(I)$, where $K \in \{\{0\}, \{1\}\}$. In particular, $C_K^n(I)$ is homeomorphic to a 2-dimensional cell for n = 1 (see [2, Corollary 3.11]). Other example is that $C_K^n(S^1)$ is homeomorphic to a 2-dimensional cell for n = 1 and $K \in 2^{S^1}$ (see [2, Theorem 3.13]).

On the other hand, given a mapping $f: X \to Y$ between continua, the mapping $C_n(f): C_n(X) \to C_n(Y)$

defined by $C_n(f)(A) = f(A)$ for each $A \in C_n(X)$ is called the *induced mapping by* f. Let $C_K^n(f): C_K^n(X) \to C_K^n(Y)$ be the function defined by

$$C_K^n(f)(\pi_K^X(A)) = \pi_{f(K)}^Y(C_n(f)(A)) = \pi_{f(K)}^Y(f(A))$$

for each $A \in C_n(X)$. By [13, Theorem 4.3, p. 126], $C_K^n(f)$ is a mapping.

Let A be a class of mappings between continua. A general problem is to determine all possible relationships among the following statements:

(1) $f \in \mathbb{A}$; (2) $C_n(f) \in \mathbb{A}$; (3) $C_K^n(f) \in \mathbb{A}$ for each $K \in 2^X$; (4) $C_K^n(f) \in \mathbb{A}$ for some $K \in 2^X$.

There are particular results concerning this problem, which relate (1) and (2). Readers especially interested in this topic are referred, for example, to [5], [7], [8], [11], [12], [16], [17]. Regarding induced mappings in quotient hyperspaces we refer the reader, for example, to [1], [3], [4], [6], [10].

Following this line of research, in this paper we study interrelations among the statements (1)-(4), for the following classes of mappings: almost monotone, atriodic, confluent, joining, light, monotone, open, OM, pseudo-confluent, quasi-monotone, semi-confluent, strongly freely decomposable, weakly confluent, and weakly monotone.

2. Definitions and notations. Given a topological space Z, we denote the closure and interior of a subset A of Z by $\operatorname{Cl}_Z(A)$ and $\operatorname{Int}_Z(A)$, respectively. Let X be a continuum, with metric d, and $\epsilon > 0$. The open ball in X of radius ϵ and center x will be denoted by $B^d_{\epsilon}(x)$. The hyperspace 2^X is considered with the Hausdorff metric induced by d, which is denoted by H_d and defined as follows (see [27, (0.1), p. 1] or [20, Definition 2.1, p. 11]): for any $A, B \in 2^X$,

$$H_d(A,B) = \inf\{\epsilon > 0 \colon A \subset N_d(B,\epsilon) \text{ and } B \subset N_d(A,\epsilon)\}, \text{ where } N_d(A,\epsilon) = \bigcup_{x \in A} B^d_{\epsilon}(x).$$

Given a mapping $f: X \to Y$ between continua. The *induced function from* 2^X into 2^Y is the function f^* defined by $f^*(A) = f(A)$ for each $A \in 2^X$. For each $\mathcal{H}(X) \in \{2^X, C_n(X), F_n(X)\}$, the *induced function from* $\mathcal{H}(X)$ into $\mathcal{H}(Y)$ is the function $\mathcal{H}(f) = f^*|_{\mathcal{H}(X)} \colon \mathcal{H}(X) \to \mathcal{H}(Y)$ which is a mapping (see [20, Theorem 13.3, p. 106]).

Let $A, B \in 2^X$. An order arc from A to B is a mapping $\alpha \colon I \to 2^X$ such that $\alpha(0) = A$, $\alpha(1) = B$, and $\alpha(r)$ is a proper subset of $\alpha(s)$ whenever r < s (see [27, (1.2)-(1.8), p. 57-59]). For any finitely many subsets U_1, \ldots, U_r of X, we define

$$\langle U_1, \dots, U_r \rangle = \left\{ A \in 2^X \colon A \subset \bigcup_{i=1}^r U_i, A \cap U_i \neq \emptyset, \text{ for each } i = 1, \dots, r \right\}$$

The set $\{\langle U_1, \ldots, U_r \rangle$: for each $i \in \{1, \ldots, r\}$, U_i is an open subset of $X, r \in \mathbb{N}\}$ is a base for a topology on 2^X . This topology is called the *Vietoris topology* and matches with the topology induced by H_d (see [20, Theorem 3.2, p. 18]). In this paper, $\langle U_1, \ldots, U_r \rangle_n$ denote the set $\langle U_1, \ldots, U_r \rangle \cap C_n(X)$.

An onto mapping $f: X \to Y$ between continua is said to be:

- almost monotone provided that for each subcontinuum Q of Y with $\operatorname{Int}_Y(Q) \neq \emptyset$, $f^{-1}(Q)$ is connected;
- *atriodic* if for every subcontinuum Q of Y, there exist two components C and D of $f^{-1}(Q)$ such that $f(C) \cup f(D) = Q$ and for each component E of $f^{-1}(Q)$, we have that either f(E) = Q, or $f(E) \subset f(C)$ or $f(E) \subset f(D)$;
- confluent if for every subcontinuum K of Y and for each component M of $f^{-1}(K)$, f(M) = K;
- freely decomposable if whenever A and B are proper subcontinua of Y such that $Y = A \cup B$, then there exist two proper subcontinua A' and B' of X, such that $X = A' \cup B'$, $f(A') \subset A$ and $f(B') \subset B$;
- joining provided that for each subcontinuum Q of Y and for any two components C and D of $f^{-1}(Q)$, we have that $f(C) \cap f(D) \neq \emptyset$;
- *light* if $f^{-1}(y)$ is totally disconnected for each $y \in Y$;
- monotone if $f^{-1}(y)$ is connected for each $y \in Y$;
- open if f(U) is open in Y for each open subset U of X;
- *OM* if there exist a continuum Z and mappings $g: X \to Z$ and $h: Z \to Y$ such that $f = h \circ g$, g is monotone and h is open;
- pseudo-confluent provided that for each irreducible subcontinuum B of Y, there exists a component C of $f^{-1}(B)$ such that f(C) = B;

- quasi-monotone provided that for any subcontinuum B of Y with $\operatorname{Int}_Y(B) \neq \emptyset$, $f^{-1}(B)$ has only finitely many components and each of these components maps onto B under f;
- semi-confluent if for every subcontinuum B of Y and every pair of components C and D of $f^{-1}(B)$, either $f(C) \subset f(D)$ or $f(D) \subset f(C)$;
- semi-open if for every open subset U of X, $\operatorname{Int}_Y(f(U)) \neq \emptyset$;
- strongly freely decomposable if whenever A and B are proper subcontinua of Y such that $Y = A \cup B$, we obtain that $f^{-1}(A)$ and $f^{-1}(B)$ are connected;
- weakly confluent if for each subcontinuum K of Y, there exists a subcontinuum M of X such that f(M) = K;
- weakly monotone provided that for each subcontinuum B of Y with $\operatorname{Int}_Y(B) \neq \emptyset$, each component of $f^{-1}(B)$ is mapped by f onto B.

3. Preliminary results. Let X be a continuum and let L be a subcontinuum of X. We denote by X/L the quotient space obtained by shrinking L to a point. By [29, Theorem 3.10, p. 40], X/L is a continuum. Let X, Y be continua, let L be a subcontinuum of X, and let $f: X \to Y$ be an onto mapping. Let $q_X: X \to X/L$ and $q_Y: Y \to Y/f(L)$ be the quotient mappings. We will denote $q_X(L)$ and $q_Y(f(L))$ by L_X and L_Y , respectively. Note that f induces a function $\tilde{f}: X/L \to Y/f(L)$ (see [13, Theorem 7.7, p. 17]) given by

$$\tilde{f}(\mathcal{A}) = \begin{cases} q_Y(f((q_X)^{-1}(\mathcal{A}))) & \text{if } \mathcal{A} \neq L_X, \\ L_Y & \text{if } \mathcal{A} = L_X. \end{cases}$$

The continuity of \tilde{f} follows from [13, Theorem 4.3, p. 126]. Observe that $\tilde{f} \circ q_X = q_Y \circ f$.

Suppose that \mathbb{A} is any of the following classes of mappings between continua: monotone, OM, confluent, semi-confluent, weakly confluent, pseudo-confluent, quasi-monotone, weakly monotone, joining, almost monotone, atriodic, freely decomposable or strongly freely decomposable. With the previous notation, we have the following result.

Proposition 1. If $f \in \mathbb{A}$, then $\tilde{f} \in \mathbb{A}$.

Proof. In [4, Theorem 3.2, p. 493] is proved that if f is either almost monotone, or atriodic, or freely decomposable or strongly freely decomposable, then \tilde{f} is almost monotone, or atriodic, or freely decomposable or strongly freely decomposable, respectively. Let \mathbb{A} be one of the other classes of mappings of the statement. Since q_Y is monotone, $q_Y \in \mathbb{A}$. By [26, (5.1), (5.4), (5.5), (5.6)], and Propositions 4.1, 4.3 and 4.4 of [6], $q_Y \circ f \in \mathbb{A}$. Now, by [26, (5.15), (5.16), (5.19), (5.20) and (5.21)], \mathbb{A} has the composition factor property. Since $q_Y \circ f = \tilde{f} \circ q_X, \ \tilde{f} \circ q_X \in \mathbb{A}$. Therefore $\tilde{f} \in \mathbb{A}$.

Since $q_X|_{X-L}$ and $q_Y|_{Y-f(L)}$ are homeomorphisms and $f|_{f^{-1}(Y-f(L))} = q_Y^{-1}|_{Y-f(L)} \circ \tilde{f} \circ q_X$, we have the following proposition.

Proposition 2. Let $f: X \to Y$ be a mapping between continua and let L be a subcontinuum of X.

- (1) If \tilde{f} is confluent, then for each subcontinuum $B \subset Y f(L)$ and each component A of $f^{-1}(B), f(A) = B$.
- (2) If f is weakly confluent, then for each subcontinuum $B \subset Y f(L)$, there exists A a subcontinuum of X such that f(A) = B.

(3) If \hat{f} is quasi-monotone (weakly monotone), then for each subcontinuum $B \subset Y - f(L)$ with $\operatorname{Int}_Y(B) \neq \emptyset$ and each component A of $f^{-1}(B)$, f(A) = B.

The following proposition is a consequence of [4, Theorem 3.1, p. 492].

Proposition 3. Let X, Y be continua and let K be a compact subset of X. If $f: X \to Y$ is an onto mapping, then the following hold:

- (1) The mappings π_K^X and $\pi_{f(K)}^Y$ are monotone;
- (2) The mappings $\pi_K^X|_{C_n(X)-C_{nK}(X)}: C_n(X) C_{nK}(X) \to C_K^n(X) \{C_{nK}^X\}$ and $\pi_{f(K)}^Y|_{C_n(Y)-C_{nf(K)}(Y)}: C_n(Y) C_{nf(K)}(Y) \to C_{f(K)}^n(Y) \{C_{nf(K)}^Y\}$ are homeomorphisms;
- (3) If $C_{nK}(X)$ and $C_{nf(K)}(Y)$ are nowhere dense in $C_n(X)$ and $C_n(Y)$, respectively, then π_K^X and $\pi_{f(K)}^Y$ are semi-open mappings.

Lemma 1. Let $f: X \to Y$ be an onto mapping between continua and $n, r \in \mathbb{N}$ such that $r \leq n$. Let L_1, \ldots, L_r be nonempty disjoint closed subsets of Y. For each $i \in \{1, \ldots, r\}$, let M_i be a component of $f^{-1}(L_i)$. Then:

- (1) $\langle M_1, \ldots, M_r \rangle_n$ is a component of $C_n(f)^{-1}(\langle L_1, \ldots, L_r \rangle_n)$.
- (2) If M is a component of $f^{-1}(L_i)$ such that $M \neq M_i$ and r < n, then $\langle M_1, \ldots, M_r, M \rangle_n$ is a component of $C_n(f)^{-1}(\langle L_1, \ldots, L_r \rangle_n)$.
- (3) If $K \in 2^X$ and $f(K) \not\subset \bigcup_{i=1}^r L_i$, then $\pi_K^X(\langle M_1, \ldots, M_r \rangle_n)$ is a component of $C_K^n(f)^{-1}(\pi_{f(K)}^Y(\langle L_1, \ldots, L_r \rangle_n)).$

Proof. The statements (1) and (2) are proved in [1, Proposition 2.4, p. 478]. We prove (3), let \mathfrak{D} be the component of $C_K^n(f)^{-1}(\pi_{f(K)}^Y(\langle L_1,\ldots,L_r\rangle_n))$ containing $\pi_K^X(\langle M_1,\ldots,M_r\rangle_n)$. Note that $\langle M_1,\ldots,M_r\rangle_n \subset (\pi_K^X)^{-1}(\mathfrak{D})$. Since $f(K) \not\subset \bigcup_{i=1}^r L_i, \langle L_1,\ldots,L_r\rangle_n \cap C_{nf(K)}(Y) = \emptyset$. Thus, $\pi_{f(K)}^Y(C_{nf(K)}(Y)) \notin \pi_{f(K)}^Y(\langle L_1,\ldots,L_r\rangle_n)$. Hence, $\pi_K^X(C_{nK}(X)) \notin \mathfrak{D}$ and $C_{nK}(X) \cap (\pi_K^X)^{-1}(\mathfrak{D}) = \emptyset$. Since $C_K^n(f) \circ \pi_K^X = \pi_{f(K)}^Y \circ C_n(f), (\pi_K^X)^{-1}(\mathfrak{D}) \subset C_n(f)^{-1}(\langle L_1,\ldots,L_r\rangle_n)$. By (1) of this proposition and (1) of Proposition 3, we have that $(\pi_K^X)^{-1}(\mathfrak{D}) \subset \langle M_1,\ldots,M_r\rangle_n$.

The following result is a consequence of $C_{nK}(X) = \{X\}$, when K = X.

Proposition 4. Let \mathcal{H} be a nondegenerate connected subset of $C_n(X)$. If $X \in \mathcal{H}$, then there exists $K \in 2^X$ such that $C_{nK}(X) \subset \mathcal{H}$.

Lemma 2. Let $f: X \to Y$ be an onto mapping between continua, $n \in \mathbb{N}$, and let \mathcal{Q} be a closed subset of $C_n(Y)$.

(1) If $X \notin C_n(f)^{-1}(\mathcal{Q})$, then there exists $m \in \mathbb{N}$ such that $C_{nK}(X) \cap C_n(f)^{-1}(\mathcal{Q}) = \emptyset$ for each $K \in B^H_{\perp}(X)$.

(2) If $X \in C_n^m(f)^{-1}(\mathcal{Q})$, then there exists $K \in 2^X$ such that $C_{nK}(X) \subset C_n(f)^{-1}(\mathcal{Q})$.

Proof. Suppose that for each $m \in \mathbb{N}$, there exists $K_m \in B^H_{\frac{1}{m}}(X)$ such that $C_{nK_m}(X) \cap C_n(f)^{-1}(\mathcal{Q}) \neq \emptyset$. Then, we may assume that $\{K_m\}_{m \in \mathbb{N}}$ is a sequence in $C_n(X)$ such that $\{K_m\}_{m \in \mathbb{N}}$ converges to X. We consider $L_m \in C_{nK_m}(X) \cap C_n(f)^{-1}(\mathcal{Q})$ for each $m \in \mathbb{N}$. Note that $\{L_m\}_{m \in \mathbb{N}}$ is a sequence in $C_n(f)^{-1}(\mathcal{Q})$ such that $K_m \subset L_m$. Thus, $\{L_m\}_{m \in \mathbb{N}}$ converges to X. Then, $X \in C_n(f)^{-1}(\mathcal{Q})$, this is a contradiction.

To prove (2), let \mathcal{H} be a component of $C_n(f)^{-1}(\mathcal{Q})$ such that $X \in \mathcal{H}$. If \mathcal{H} is degenerate, is easy to verify (2). In another case, by Proposition 4, we conclude (2).

Lemma 3. Let $f: X \to Y$ be a mapping between continua, $K \in 2^X$ and $n \in \mathbb{N}$. If $f(K) \in F_1(Y)$, then

$$C_K^n(f)^{-1}(C_{nf(K)}^Y) = \pi_K^X \Big(\bigcup_{p \in f^{-1}(f(K))} C_{n\{p\}}(X)\Big).$$

Proof. Let $\mathcal{A} \in \pi_K^X \Big(\bigcup_{p \in f^{-1}(f(K))} C_{n\{p\}}(X) \Big)$, there exist $p \in f^{-1}(f(K))$ and $B \in C_{n\{p\}}(X)$ such that $\pi_K^X(B) = \mathcal{A}$. Then $C_K^n(f)(\mathcal{A}) = C_K^n(f)(\pi_K^X(B)) = \pi_{f(K)}^Y(C_n(f)(B))$ and $f(p) \in f(B)$. Since $f(K) \in F_1(Y)$, $f(\{p\}) = f(K)$. Thus, $\pi_{f(K)}^Y(C_n(f)(B)) = C_{nf(K)}^Y$. Therefore, $\mathcal{A} \in C_K^n(f)^{-1}(C_{nf(K)}^Y)$.

Now, let $\mathcal{A} \in C_K^n(f)^{-1}(C_{nf(K)}^Y)$. Then $C_K^n(f)(\mathcal{A}) = C_{nf(K)}^Y$. Let $A \in C_n(X)$ such that $\pi_K^X(A) = \mathcal{A}$. Since $C_{nf(K)}^Y = C_K^n(f)(\mathcal{A}) = C_K^n(f)(\pi_K^X(A)) = \pi_{f(K)}^Y(C_n(f)(A))$ and $f(A) = C_n(f)(A)$, $f(K) \subset f(A)$. Take $p \in f^{-1}(f(K)) \cap A$, thus $A \in C_{n\{p\}}(X)$. Hence, $\mathcal{A} \in \pi_K^X(\bigcup_{p \in f^{-1}(f(K))} C_{n\{p\}}(X))$.

Proposition 5. Let $f: X \to Y$ be a mapping between continua, $K \in 2^X$ and $n \in \mathbb{N}$. Then $C_K^n(f)^{-1}(C_{nf(K)}^Y)$ is connected.

Proof. Suppose that \mathcal{H} and \mathcal{L} are different components of $C_K^n(f)^{-1}(C_{nf(K)}^Y)$. We may assume that $C_{nK}^X \in \mathcal{H}$. By (1) of Proposition 3, $(\pi_K^X)^{-1}(\mathcal{H})$ and $(\pi_K^X)^{-1}(\mathcal{L})$ are disjoint connected subsets of $C_n(X)$ such that $C_{nK}(X) \subset (\pi_K^X)^{-1}(\mathcal{H})$. Now, let $L \in (\pi_K^X)^{-1}(\mathcal{L})$. Note that $C_K^n(f)(\pi_K^X(L)) = C_{nf(K)}^Y$, and for each order arc $\alpha \colon I \to C_n(X)$ from L to X, we have $C_K^n(f)(\pi_K^X(\alpha(I))) = \{C_{nf(K)}^Y\}$. Then, $X \in (\pi_K^X)^{-1}(\mathcal{H}) \cap (\pi_K^X)^{-1}(\mathcal{L})$, this is a contradiction. Therefore, $C_K^n(f)^{-1}(C_{nf(K)}^Y)$ is connected. \Box

4. Homeomorphism and open mappings.

Theorem 1. Let $f: X \to Y$ be a mapping between continua and $n \in \mathbb{N}$. Then the following conditions are equivalent:

(1) f is one to one; (2) $C_n(f)$ is one to one; (3) $C_K^n(f)$ is one to one for each $K \in 2^X$;

(4) $C_K^n(f)$ is one to one for some $K \in 2^X$.

Proof. It is easy to see that (1) and (2) are equivalent, (2) implies (3), and (3) implies (4). In order to prove that (4) implies (1), let $x, y \in X$ such that f(x) = f(y). Then $\pi_{f(K)}^{Y}(\{f(x)\}) = \pi_{f(K)}^{Y}(\{f(y)\})$. Since $C_{K}^{n}(f)(\pi_{K}^{X}(A)) = \pi_{f(K)}^{Y}(f(A))$ for each $A \in C_{n}(X)$ and $C_{K}^{n}(f)$ is one to one, $\pi_{K}^{X}(\{x\}) = \pi_{K}^{X}(\{y\})$. Then, $\{x\} = \{y\}$ or $K \subset \{x\} \cap \{y\}$. In any case, x = y. Therefore f is one to one.

Theorem 2. Let $f: X \to Y$ be a mapping between continua and $n \in \mathbb{N}$. We consider the following conditions:

(1)] f is onto; (2) $C_n(f)$ is onto; (3) $C_K^n(f)$ is onto for each $K \in 2^X$; (4) $C_K^n(f)$ is onto for some $K \in 2^X$. Then, (2) \Leftrightarrow (3), (3) \Rightarrow (4), (2) \Rightarrow (1), (3) \Rightarrow (1), and (4) \Rightarrow (1).

Proof. Note that (2) implies (3) and (3) implies (4). We will prove that (3) implies (2). Let $B \in C_n(Y)$. If $f^{-1}(B) = X$, then $C_n(f)(X) = B$. Now suppose that $f^{-1}(B) \subsetneq X$, let $K \in 2^X$ such that $K \cap f^{-1}(B) = \emptyset$. Since $C_K^n(f)$ is onto, there exists $\mathcal{A} \in C_K^n(X)$ such that $C_K^n(f)(\mathcal{A}) = \pi_{f(K)}^Y(B)$. Also, there exists $A \in C_n(X)$ such that $\pi_K^X(A) = \mathcal{A}$. Then, $C_K^n(f)(\mathcal{A}) = C_K^n(f)(\pi_K^X(A)) = \pi_{f(K)}^Y(C_n(f)(A)) = \pi_{f(K)}^Y(B)$. Since $\pi_{f(K)}^Y(B) \neq C_{nf(K)}^Y, C_n(f)(A) = B$. Hence, $C_n(f)$ is onto.

Now, let us prove (4) implies (1). Let $K \in 2^X$ such that $C_K^n(f)$ is onto and $y \in Y$. If $y \in f(K)$, there exists $k_1 \in K$ such that $f(k_1) = y$. Now, suppose that $y \notin f(K)$, $\{y\} \notin C_{nf(K)}(Y)$. Then $\pi_{f(K)}^Y(\{y\}) \neq C_{nf(K)}^Y$. Since $C_K^n(f)$ is onto, there exists $\mathcal{A} \in C_K^n(X)$ such that $C_K^n(f)(\mathcal{A}) = \pi_{f(K)}^Y(\{y\})$. Moreover, there is $A \in C_n(X)$ such that $\pi_K^X(A) = \mathcal{A}$. Since $C_K^n(f) \circ \pi_K^X = \pi_{f(K)}^Y \circ C_n(f)$, $C_K^n(f)(\pi_K^X(A)) = \pi_{f(K)}^Y(C_n(f)(A)) = \pi_{f(K)}^Y(\{y\})$. Thus, there exists $a \in A$ such that f(a) = y.

By Theorem 2 and [12, Proposition 1, p. 784] we have the following result.

Corollary 1. Let $f: X \to Y$ be a mapping between continua and $n \in \mathbb{N}$. Then $C_K^n(f): C_K^n(X) \to C_{f(K)}^n(Y)$

is onto for every $K \in 2^X$ if and only if f is weakly confluent.

The next example shows us that there are continua X, Y and a mapping $f: X \to Y$ such that f is not weakly confluent and $C_K^n(f)$ is onto for some $K \in 2^X$.

Example 1. Let $f: I \to S^1$ be defined by $f(t) = (\cos(2\pi t), \sin(2\pi t))$. Then, f is not pseudoconfluent, weakly monotone, or freely decomposable. If $K = \{0\}$, then $C_K^n(f)$ is a monotone mapping for every $n \ge 1$.

Proof. Note that f is not pseudo-confluent, weakly monotone, or freely decomposable. Now, let $K = \{0\}$ and $n \in \mathbb{N}$. We shall prove that $C_K^n(f)$ is monotone. Let $\mathcal{B} \in C_{f(K)}^n(S^1)$. Suppose that $\mathcal{B} = C_{nf(K)}^{S^1}$, by Proposition 5, $C_K^n(f)^{-1}(\mathcal{B})$ is connected. In another case, by Lemma 3,

$$C_K^n(f)^{-1}(C_{nf(K)}^{S^1}) = \pi_K^I \left(\bigcup_{p \in f^{-1}(f(K))} C_{n\{p\}}(I)\right).$$

Then, $C_n(I) - \bigcup_{p \in f^{-1}(f(K))} C_n\{p\}(I) = \langle (0,1) \rangle_n$. Since $f|_{(0,1)}$ is one to one, $C_K^n(f)|_{\pi_K^I(\langle (0,1) \rangle_n)}$ is one to one. Therefore, $C_K^n(f)^{-1}(\mathcal{B})$ is connected.

Example 2. In the interval I, we identify the point 0 with the point $\frac{1}{3}$, and the point $\frac{2}{3}$ with the point 1. Let g be the quotient mapping, note that g is onto and is not weakly confluent. Thus, by [12, Proposition 1, p. 784], $C_n(g)$ is not onto. Moreover, note that for no $K \in 2^X$, $C_K^n(g)$ is onto.

Theorem 3. Let $f: X \to Y$ be a mapping between continua and $n \in \mathbb{N}$. Then the following conditions are equivalent:

(1) f is a homeomorphism; (2) $C_n(f)$ is a homeomorphism; (3) $C_K^n(f)$ is a homeomorphism for each $K \in 2^X$; (4) $C_K^n(f)$ is a homeomorphism for some $K \in 2^X$.

Proof. By [12, Theorem 46, p. 801] (1) implies (2). Note that (2) implies (3) and (3) implies (4). By Theorem 1 and Theorem 2 f is bijective. Thus, f is a homeomorphism. Therefore (4) implies (1).

Theorem 4. Let $f : X \to Y$ be a mapping between continua and $n \in \mathbb{N}$. Consider the following conditions:

(1) f is a homeomorphism; (2) $C_n(f)$ is open; (3) $C_K^n(f)$ is open for each $K \in 2^X$;

(4) $C_K^n(f)$ is open for some $K \in 2^X$. Then,

 $(1) \Leftrightarrow (2) \Leftrightarrow (3), (1) \Rightarrow (4), (2) \Rightarrow (4), \text{ and } (3) \Rightarrow (4).$

Proof. Clearly each of the conditions (1), (2) or (3) implies (4). By [5, Corollary 3.3, p. 122], (1) and (2) are equivalent. By Theorem 3, we have that (2) implies (3). Now, we prove that (3) implies (2). Let \mathcal{U} be an open subset of $C_n(X)$.

First, we may assume that $X \in \mathcal{U}$. Since \mathcal{U} is an open subset of $C_n(X)$, there exists $\epsilon > 0$ such that $B_{\epsilon}^{H_d}(X) \cap C_n(X) \subset \mathcal{U}$. Let $0 < \delta < \epsilon$ such that $B_{\delta}^{H_d}(X) \cap C_n(X) \subset Cl_{C_n(X)}(B_{\delta}^{H_d}(X) \cap C_n(X)) \subset \mathcal{U}$. Moreover, using order arcs, it is easy to see that $B_{\delta}^{H_d}(X) \cap C_n(X) \cap C_n(X)$ is connected. By Proposition 4, there exists $K \in 2^X$ such that

$$C_{nK}(X) \subset \operatorname{Cl}_{C_n(X)}(B^{H_d}_{\delta}(X) \cap C_n(X)) \subset \mathcal{U}.$$

By [2, Lemma 6.10], $\pi_K^X(\mathcal{U})$ is an open subset of $C_K^n(X)$ containing C_{nK}^X . Since $C_K^n(f)$ is an open mapping, $C_K^n(f)(\pi_K^X(\mathcal{U}))$ is an open subset of $C_{f(K)}^n(Y)$ containing $C_{nf(K)}^Y$. Moreover, note that $C_K^n(f)(\pi_K^X(\mathcal{U})) = \pi_{f(K)}^Y(C_n(f)(\mathcal{U}))$. Thus, $(\pi_{f(K)}^Y)^{-1}(\pi_{f(K)}^Y(C_n(f)(\mathcal{U}))) = C_n(f)(\mathcal{U})$ is an open subset of $C_n(Y)$.

Otherwise, if $X \notin \mathcal{U}$, set K = X then $C_{nK}(X) \cap \mathcal{U} = \emptyset$. Hence, $\pi_K^X(\mathcal{U})$ and $C_K^n(f)(\pi_K^X(\mathcal{U}))$ are open subsets of $C_K^n(X)$ and $C_{f(K)}^n(Y)$, respectively. Note that $C_{nK}^X \notin \pi_K^X(\mathcal{U})$ and $C_{nf(K)}^Y \notin C_K^n(f)(\pi_K^X(\mathcal{U}))$. Since $C_K^n(f)(\pi_K^X(\mathcal{U})) = \pi_{f(K)}^Y(C_n(f)(\mathcal{U}))$, we have $(\pi_{f(K)}^Y)^{-1}(\pi_{f(K)}^Y(C_n(f)(\mathcal{U}))) = C_n(f)(\mathcal{U})$

is an open subset of $C_n(Y)$. Therefore, $C_n(f)$ is an open mapping.

Example 3. Let $f: [-1,1] \to I$ be the mapping defined by f(t) = |t|. Then, f is not a homeomorphism. If $K = \{0\}$, then $C_K^n(f)$ is an open mapping for every $n \ge 1$.

5. Monotone-type mappings. Let \mathbb{M} be any of the following classes of mappings: monotone, almost monotone, quasi-monotone, weakly monotone.

Theorem 5. Let $f: X \to Y$ be a mapping between continua and $n \in \mathbb{N}$. If $C_K^n(f) \in \mathbb{M}$ for each $K \in 2^X$, then $f \in \mathbb{M}$.

Proof. Let $B \in C(Y) - \{Y\}$ (with $Int_Y(B) \neq \emptyset$ for the cases: almost monotone, quasimonotone and weakly monotone). If $f^{-1}(B) = X$, then $C_n(f)(X) = B$. Now suppose that $f^{-1}(B) \subseteq X$, let $K \in 2^X$ such that $K \cap f^{-1}(B) = \emptyset$. Then $C_n(B)$ is a subcontinuum of $C_n(Y)$ (with $\operatorname{Int}_{C_n(Y)}(C_n(B)) \neq \emptyset$) such that $C_n(B) \cap C_{nf(K)}(Y) = \emptyset$. Thus, we conclude that $\pi_{f(K)}^{Y}(C_n(B)) \text{ is a subcontinuum of } C_{f(K)}^n(Y) - \{C_{nf(K)}^Y\} (\operatorname{Int}_{C_{f(K)}^n(Y)}(\pi_{f(K)}^Y(C_n(B))) \neq \emptyset).$ (a) If $C_K^n(f)$ is monotone (or almost monotone), then $C_K^n(f)^{-1}(\pi_{f(K)}^Y(C_n(B)))$ is connected. Since π_K^X is monotone, it follows that $(\pi_K^X)^{-1}(C_K^n(f)^{-1}(\pi_{f(K)}^Y(C_n(B))))$ is connected. Thus, $C_n(f)^{-1}(C_n(B)) = (\pi_K^X)^{-1}(C_K^n(f)^{-1}(\pi_{f(K)}^Y(C_n(B))))$ is connected. Then $C_n(f)^{-1}(C_n(B)) =$ $\langle f^{-1}(B) \rangle_n$. Hence, $f^{-1}(B)$ is connected. Therefore, f is monotone (or almost monotone). (b) If $C_K^n(f)$ is quasi-monotone (or weakly monotone), then $C_K^n(f)^{-1}(\pi_{f(K)}^Y(C_n(B)))$ has only finitely many components, $\mathfrak{L}_1, \ldots, \mathfrak{L}_m$ such that $C_K^n(f)(\mathfrak{L}_i) = \pi_{f(K)}^Y(C_n(B))$ for each $i \in \{1, \ldots, m\}$. Now let L be a component of $f^{-1}(B)$. By (3) of Lemma 1, $\pi_K^X(\langle L \rangle_n)$ is a component of $C_K^n(f)^{-1}(\pi_{f(K)}^Y(C_n(B)))$. Consequently, each component of $f^{-1}(B)$ determines one component of $C_K^n(f)^{-1}(\pi_{f(K)}^Y(C_n(B)))$. Therefore, $f^{-1}(B)$ has only finitely many components and by (3) of Proposition 2, f(L) = B. Hence, f is quasi-monotone (or weakly monotone).

Theorem 6. Let $f: X \to Y$ be a mapping between continua and $n \in \mathbb{N}$. Then the following conditions are equivalent:

(1) f is monotone; (2) $C_n(f)$ is monotone; (3) $C_K^n(f)$ is monotone for each $K \in 2^X$. Moreover, each of them implies that (4) $C_K^n(f)$ is monotone for some $K \in 2^X$.

Proof. By [12, Theorem 4, p.784], (1) and (2) are equivalent. By Proposition 1 and Theorem 5, (2) implies (3) and (3) implies (1), respectively. Clearly, (3) implies (4). \Box

By Proposition 1 and Theorem 5, we have the following result.

Theorem 7. Let $f: X \to Y$ be a mapping between continua and $n \in \mathbb{N}$. We consider the following conditions:

(1) $f \in \mathbb{M}$; (2) $C_n(f) \in \mathbb{M}$; (3) $C_K^n(f) \in \mathbb{M}$ for each $K \in 2^X$; (4) $C_K^n(f) \in \mathbb{M}$ for some $K \in 2^X$. Then following implications hold:

 $(2) \Rightarrow (3), (2) \Rightarrow (4), (3) \Rightarrow (4), (2) \Rightarrow (1), and (3) \Rightarrow (1).$

Example 1 shows us that there are continua X, Y and a mapping $f: X \to Y$ such that f is not monotone, almost monotone, quasi-monotone, or weakly confluent. But $C_K^n(f)$ is monotone for some $K \in 2^X$.

6. Strongly freely decomposable mappings.

Theorem 8. Let $f: X \to Y$ be a mapping between continua and let $n \in \mathbb{N}$. Then, $C_K^n(f)$ is almost monotone if and only if $C_K^n(f)$ is strongly freely decomposable.

Proof. Suppose that $C_K^n(f)$ is strongly freely decomposable. Since $C_K^n(X)$ is unicoherent (see [2, Theorem 2.1]), by [7, Theorem 4.2, p. 894] $C_K^n(f)$ is almost monotone. Since every almost monotone mapping is strongly freely decomposable, we have proved this theorem.

The next result follows from Theorem 7 for almost monotone mappings and Theorem 8.

Corollary 2. Let $f: X \to Y$ be a mapping between continua and let $n \in \mathbb{N}$. If $C_K^n(f)$ is strongly freely decomposable, then f is an almost monotone mapping.

7. Confluent-type mappings. Let \mathbb{C} be any of the following classes of mappings: confluent, semi-confluent, weakly confluent, pseudo-confluent, joining.

Remark 1. Given a continuum X and $n \in \mathbb{N}$. If B is a subcontinuum of X and $x_1, \ldots, x_{n-1} \in X$, then $\mathcal{B} = \langle \{x_1\}, \ldots, \{x_{n-1}\}, B \rangle_n \subset C_n(X)$ is homeomorphic to B. In particular, if B is an irreducible continuum, then \mathcal{B} is an irreducible continuum.

Theorem 9. Let $f: X \to Y$ be a mapping between continua and $n \in \mathbb{N}$. If $C_K^n(f) \in \mathbb{C}$ for each $K \in 2^X$, then $f \in \mathbb{C}$.

Proof. Let B be a proper subcontinuum (irreducible for the case of pseudo-confluent) of Y. Let D_1 and D_2 be two components of $f^{-1}(B)$. If $f^{-1}(B) = X$, then $C_n(f)(X) = B$. Now suppose that $f^{-1}(B) \subsetneq X$. Note that we can choose $K \in 2^X$ such that $K \cap f^{-1}(B) = \emptyset$ for which there exist $y_1, \ldots, y_{n-1} \in Y - (B \cup f(K))$ such that $y_i \neq y_j$ for $i \neq j$. Let M_i be a component of $f^{-1}(y_i)$ for each $i \in \{1, \ldots, n-1\}$. Then, by (3) of Lemma 1, for each $i \in \{1, 2\} \ \pi_K^X(\langle M_1, \ldots, M_{n-1}, D_i \rangle_n)$ is a component of $C_K^n(f)^{-1}(\pi_{f(K)}^Y(\mathcal{B}))$ where $\mathcal{B} = \langle \{x_1\}, \ldots, \{x_{n-1}\}, B \rangle_n$. Note that $\mathcal{B} \cap C_{nf(K)}(Y) = \emptyset$ (by Remark 1, this implies that $\pi_{f(K)}^Y(\mathcal{B})$ is a irreducible subcontinuum of $C_{f(K)}^n(Y)$ such that $C_{nf(K)}^Y \notin \pi_{f(K)}^Y(\mathcal{B})$). (a) If $C_K^n(f)$ is confluent, then by (1) of Proposition 2 for each component D of $f^{-1}(B)$, $C_n(f)(\langle M_1, \ldots, M_{n-1}, D \rangle_n) = \mathcal{B}$. Hence, f(D) = B. Therefore, f is confluent.

(b) If $C_K^n(f)$ is semi-confluent, without loss of generality we can suppose that

$$C_K^n(f)(\pi_K^X(\langle M_1, \dots, M_{n-1}, D_1 \rangle_n)) \subset C_K^n(f)(\pi_K^X(\langle M_1, \dots, M_{n-1}, D_2 \rangle_n)).$$

Then $C_n(f)(\langle M_1, \ldots, M_{n-1}, D_1 \rangle_n) \subset C_n(f)(\langle M_1, \ldots, M_{n-1}, D_2 \rangle_n)$. Thus, $f(D_1) \subset f(D_2)$. Therefore, f is semi-confluent.

(c) If $C_K^n(f)$ is weakly confluent, then by (2) of Proposition 2, there exists a continuum \mathfrak{M} of $C_n(f)^{-1}(\mathcal{B})$ such that $C_n(f)(\mathfrak{M}) = \mathcal{B}$. Since $\mathfrak{M} \cap C_{nK}(X) = \emptyset$, we can find a subset M_n of X, such that M_n is a component of $f^{-1}(B)$ and $\langle M_1, \ldots, M_n \rangle_n \cap \mathfrak{M} \neq \emptyset$. By (2) of Lemma 1, $\langle M_1, \ldots, M_n \rangle_n$ is a component of $C_n(f)^{-1}(\mathcal{B})$. Thus, $\mathfrak{M} = \langle M_1, \ldots, M_n \rangle_n$ and $f(M_n) = B$. Therefore f is weakly confluent.

(d) If $C_K^n(f)$ is pseudo-confluent, then there exists a component \mathfrak{C} of $C_K^n(f)^{-1}(\pi_{f(K)}^Y(\mathcal{B}))$ such that $C_K^n(f)(\mathfrak{C}) = \pi_{f(K)}^Y(\mathcal{B})$. Since $C_{nK}^X \notin \mathfrak{C}$, it follows that $(\pi_K^X)^{-1}(\mathfrak{C})$ is a component of $(\pi_K^X)^{-1}(C_K^n(f)^{-1}(\pi_{f(K)}^Y(\mathcal{B}))) = C_n(f)^{-1}(\mathcal{B})$. Note that $C_n(f)((\pi_K^X)^{-1}(\mathfrak{C})) = \mathcal{B}$.

On the other hand, by [15, Lemma 1, p. 1578], $\bigcup(\pi_K^X)^{-1}(\mathfrak{C})$ has at most n components. But $\bigcup(\pi_K^X)^{-1}(\mathfrak{C}) \subset f^{-1}(y_1) \cup \cdots \cup f^{-1}(y_{n-1}) \cup f^{-1}(B)$. Moreover, $f^{-1}(y_i) \cap (\bigcup(\pi_K^X)^{-1}(\mathfrak{C})) \neq \emptyset$ for each $i = 1, \ldots, n-1$ and $(\bigcup(\pi_K^X)^{-1}(\mathfrak{C})) \cap f^{-1}(B) \neq \emptyset$. Then $\bigcup(\pi_K^X)^{-1}(\mathfrak{C})$ has exactly n components, let's say C_1, \ldots, C_n . Without loss of generality, we assume that $C_i \subset f^{-1}(y_i)$ for $i = 1, \ldots, n-1$ and $C_n \subset f^{-1}(B)$. Let C be the component of $f^{-1}(B)$ such that $C_n \subset C$. Claim. f(C) = B.

Let $b \in B$ and let $E = \{y_1, \ldots, y_{n-1}\} \cup b$. Then $E \in \mathcal{B}$. Hence, there exists $A \in (\pi_K^X)^{-1}(C)$ such that f(A) = E. This implies that $b \in f(A) \subset f(\bigcup(\pi_K^X)^{-1}(\mathfrak{C})) = f(C_1) \cup \cdots \cup f(C_n)$. If there exists $j \in \{1, \ldots, n-1\}$ such that $b \in f(C_j)$, then $b = y_j$, this is a contradiction. Hence, $b \in f(C_n)$. Thus, $b \in f(C)$. It follows that $B \subset f(C)$. Therefore, f is pseudo-confluent. (e) If $C_K^n(f)$ is joining, then

$$C_K^n(f)(\pi_K^X(\langle M_1,\ldots,M_{n-1},D_1\rangle_n))\cap C_K^n(f)(\pi_K^X(\langle M_1,\ldots,M_{n-1},D_2\rangle_n))\neq\varnothing.$$

Thus, $C_n(f)(\langle M_1, \ldots, M_{n-1}, D_1 \rangle_n) \cap C_n(f)(\langle M_1, \ldots, M_{n-1}, D_2 \rangle_n) \neq \emptyset$ and, in consequence, $f(D_1) \cap f(D_2) \neq \emptyset$. Therefore, f is joining.

By Proposition 1 and Theorem 9, we have the following result.

Theorem 10. Let $f: X \to Y$ be a mapping between continua and $n \in \mathbb{N}$. We consider the following conditions:

(1) $f \in \mathbb{C}$; (2) $C_n(f) \in \mathbb{C}$; (3) $C_K^n(f) \in \mathbb{C}$ for each $K \in 2^X$; (4) $C_K^n(f) \in \mathbb{C}$ for some $K \in 2^X$. Then following implications hold:

$$(2) \Rightarrow (3), (2) \Rightarrow (4), (3) \Rightarrow (4), (2) \Rightarrow (1), \text{ and } (3) \Rightarrow (1).$$

Example 1 shows us that there are continua X, Y and a mapping $f: X \to Y$ such that f is not pseudo-confluent, weakly confluent, semi-confluent, or confluent, but $C_K^n(f)$ is confluent for some $K \in 2^X$.

7. OM, atriodic and light mappings. Let X be a continuum. Given a sequence $\{A_m\}_{m \in \mathbb{N}}$ of nonempty subsets of X we define $\limsup_{m\to\infty} A_m$ as the set of points $x \in X$ such that there exists a sequence of positive integers $m_1 < m_2 < \cdots$ and points $x_{m_s} \in A_{m_s}$ such that $\lim x_{m_s} = x$.

Lemma 4. ([12, Lemma 12, p. 788]) A mapping $f: X \to Y$ between continua is OM if and only if for each point $y \in Y$ and each sequence of points $y_m \in Y$ converging to y, the set $\limsup_{m\to\infty} f^{-1}(y_m)$ meets each component of $f^{-1}(y)$.

Theorem 11. Let $f: X \to Y$ be a mapping between continua and $n \in \mathbb{N}$. We consider the following conditions:

(1) f is OM; (2) $C_n(f)$ is OM; (3) $C_K^n(f)$ is OM for each $K \in 2^X$; (4) $C_K^n(f)$ is OM for some $K \in 2^X$. Then following implications hold:

$$(2) \Rightarrow (3), (2) \Rightarrow (4), (3) \Rightarrow (4), (2) \Rightarrow (1), \text{ and } (3) \Rightarrow (1).$$

Proof. Clearly, (2) implies (1) and (3) implies (4). By Proposition 1, (2) implies (3). Set $y \in Y$. Let $\{y_i\}_{i\in\mathbb{N}}$ be a sequence of points in Y converging to y. We consider $K \in 2^X$ such that $f(K) \cap \{y, y_1, \ldots\} = \emptyset$. Take $z_1, \ldots, z_{n-1} \in Y - (f(K) \cup \{y, y_1, \ldots\})$ such that $z_j \neq z_l$ for $j \neq l$. Let M_j be a component of $f^{-1}(z_j)$ for each $j \in \{1, \ldots, n-1\}$ and let M_n be a component of $f^{-1}(y)$. By (3) of Lemma 1, $\pi_K^X(\langle M_1, \ldots, M_n \rangle_n)$ is a component of $C_K^n(f)^{-1}(\pi_{f(K)}^Y(\{z_1, \ldots, z_{n-1}, y\}))$. Since the sequence $\{\pi_{f(K)}^Y(\{z_1, \ldots, z_{n-1}, y_i\})\}_{i\in\mathbb{N}}$ converges to $\pi_{f(K)}^Y(\{z_1, \ldots, z_{n-1}, y\})$, by Lemma 4,

$$\pi_K^X(\langle M_1,\ldots,M_n\rangle_n)\cap \limsup_{t\to\infty} C_K^n(f)^{-1}(\pi_{f(K)}^Y(\{z_1,\ldots,z_{n-1},y_t\}))\neq\varnothing$$

Let $A \in \langle M_1, \ldots, M_n \rangle_n$ be such that $\pi_K^X(A) \in \limsup_{t \to \infty} C_K^n(f)^{-1}(\pi_{f(K)}^Y(\{z_1, \ldots, z_{n-1}, y_t\}))$. Then, there exists a subsequence $\{\pi_K^X(A_{t_r})\}_{r \in \mathbb{N}}$ such that for each $r \in \mathbb{N}, \pi_K^X(A_{t_r}) \in C_K^n(f)^{-1}(\pi_{f(K)}^Y(\{z_1, \ldots, z_{n-1}, y_{t_r}\}))$ and $\lim_{r \to \infty} \pi_K^X(A_{t_r}) = \pi_K^X(A)$. Let $a \in A \cap M_n$. Since $\lim_{r \to \infty} A_{t_r} = A_n$, there exists a sequence $\{a_{t_r}\}_{r \in \mathbb{N}}$, with $a_{t_r} \in A_{t_r}$, such that it converges to $a \in A$. Thus, there exists a positive integer m_0 such that $f(a_{t_r}) = y_{t_r}$ for each $r \geq m_0$. Hence $a \in A \cap M_n \cap \limsup_{t \to \infty} f^{-1}(y_t)$. Therefore, by Lemma 4, f is OM.

The mapping $f: X \to Y$ of Example 1 is not OM but $C_K^n(f)$ is OM for some $K \in 2^X$.

Theorem 12. Let $f: X \to Y$ be a mapping between continua and $n \in \mathbb{N}$. We consider the following conditions:

(1) f is atriodic; (2) $C_n(f)$ is atriodic; (3) $C_K^n(f)$ is atriodic for each $K \in 2^X$; (4) $C_K^n(f)$ is atriodic for some $K \in 2^X$. Then following implications hold:

$$(2) \Rightarrow (3), (2) \Rightarrow (4), (3) \Rightarrow (4), (2) \Rightarrow (1), \text{ and } (3) \Rightarrow (1).$$

Proof. Note that (2) implies (1) and (3) implies (4). By Proposition 1, (2) implies (3). Let *B* be a proper subcontinuum of *Y*. If $f^{-1}(B) = X$, then $C_n(f)(X) = B$. Now suppose that $f^{-1}(B) \subsetneq X$, let $K \in 2^X$ such that $K \cap f^{-1}(B) = \emptyset$. We consider $y_1, \ldots, y_{n-1} \in$ $Y - (B \cup f(K))$ with $y_i \neq y_j$ for $i \neq j$. Set $\mathcal{B} = \langle \{y_1\}, \ldots, \{y_{n-1}\}, B \rangle_n$. Since $C_K^n(f)$ is an atriodic mapping, there exist two components \mathfrak{D}_1 and \mathfrak{D}_2 of $C_K^n(f)^{-1}(\pi_{f(K)}^Y(\mathcal{B}))$ such that:

(a)
$$C_K^n(f)(\mathfrak{D}_1) \cup C_K^n(f)(\mathfrak{D}_1) = \pi_{f(K)}^Y(\mathcal{B})$$

(b) for each component \mathfrak{C} of $C_K^n(f)^{-1}(\pi_{f(K)}^Y(\mathcal{B}))$, we have either $C_K^n(f)(\mathfrak{C}) = \pi_{f(K)}^Y(\mathcal{B})$, or $C_K^n(f)(\mathfrak{C}) \subset C_K^n(f)(\mathfrak{D}_1)$ or $C_K^n(f)(\mathfrak{C}) \subset C_K^n(f)(\mathfrak{D}_2)$.

For each j = 1, 2, we have that $(\pi_K^X)^{-1}(\mathfrak{D}_j) \cap C_{nK}(X) = \emptyset$. Then there exist M_1^j, \ldots, M_n^j of X such that M_i^j is a component of $f^{-1}(y_i)$ for each $i = 1, \ldots, n-1$ and M_n^j is a component of $f^{-1}(B)$. We may assume that $\mathfrak{D}_j \cap \pi_K^X(\langle M_1^j, \ldots, M_n^j \rangle_n) \neq \emptyset$. Since \mathfrak{D}_j is a component of $C_K^n(f)^{-1}(\pi_{f(K)}^Y(\mathcal{B}))$, by (3) of Lemma 1, $\mathfrak{D}_j = \pi_K^X(\langle M_1^j, \ldots, M_n^j \rangle_n)$. Thus, by (a), $f(M_n^1) \cup$ $f(M_n^2) = B$. Now, let C be a component of $f^{-1}(B)$. Since $\pi_K^X(\langle M_1^1, \ldots, M_{n-1}^1, C \rangle_n)$ is a component of $C_K^n(f)^{-1}(\pi_{f(K)}^Y(\mathcal{B}))$, by (a), we have either f(C) = B, or $f(C) \subset f(M_n^1)$ or $f(C) \subset f(M_n^2)$.

Theorem 13. Let $f: X \to Y$ be a mapping between continua and $n \in \mathbb{N}$. We consider the following conditions:

(1) f is light; (2) $C_n(f)$ is light; (3) $C_K^n(f)$ is light for each $K \in 2^X$; (4) $C_K^n(f)$ is light for some $K \in 2^X$. Then following implications hold:

$$(2) \Rightarrow (1), (3) \Rightarrow (1), \text{ and } (3) \Rightarrow (4).$$

Proof. Clearly, (3) implies (4). It follows from [11, Theorem 3.10, p. 185] that (2) implies (1). Now, suppose that $C_K^n(f)$ is a light mapping. To prove that f is a light mapping, we may assume that exists $y \in Y$ such that $f^{-1}(y)$ is not totally disconnected. Note that $f^{-1}(y) \neq$ X, in the contrary case, $C_K^n(f)$ is a constant mapping. Now, let M be a nondegenerate component of $f^{-1}(y)$. Let $K \in 2^X$ such that $K \cap f^{-1}(y) = \emptyset$ and let $y_1, \ldots, y_{n-1} \in Y (f(K) \cup \{y\})$ such that $y_i \neq y_j$ for $i \neq j$. Let M_i be a component of $f^{-1}(y_i)$ for each i = $1, \ldots, n-1$. By (3) of Lemma 1, $\pi_K^X(\langle M_1, \ldots, M_{n-1}, M \rangle_n)$ is a subcontinuum nondegenerate of $C_K^n(f)^{-1}(\pi_{f(K)}^Y(\{y_1, \ldots, y_{n-1}, y\}))$, this is a contradiction. \Box

Example 4. Let $f: [-1,1] \to I$ be the mapping defined by f(t) = |t|. Then, f is light. If $K = \{1\}$, then $C_K^n(f)$ is not light for every $n \ge 1$.

Proof. Since $f^{-1}(f(K)) = \{-1, 1\}$, by Lemma 3, $C_K^n(f)^{-1}(C_{nf(K)}^I)$ is nondegenerate. By Proposition 5, $C_K^n(f)^{-1}(C_{nf(K)}^I)$ is a connected subset of $C_K^n([-1, 1])$. Therefore, $C_K^n(f)$ is not light.

REFERENCES

- J.G. Anaya, F. Capulín, M.A. Lara, F. Orozco-Zitli, Induced mappings between quotient spaces of n-fold hyperspaces of continua, Glas. Mat., III. Ser. 51 (2016), №2, 475–490. doi:10.3336/gm.51.2.13
- 2. J.G. Anaya, E. Castañeda-Alvarado, J.A. Martínez-Cortez, On the hyperspace $C_n(X)/C_{nK}(X)$, accepted for publication in Comment. Math. Univ. Carolin.
- F. Barragán, Induced maps on n-fold symmetric product suspensions, Topology Appl. 158 (2011), №10, 1192–1205. doi.org/10.1016/j.topol.2011.04.006
- F. Barragán, S. Macías, J.F. Tenorio, More on induced maps on n-fold symmetric product suspensions, Glas. Mat., III. Ser. 50 (2015), №2, 489–512. doi:10.3336/gm.50.2.15
- 5. J. Camargo, Openness of the induced map $C_n(f)$, Bol. Mat. (N.S.) 16 (2009), Nº2, 115–123. https: // revistas.unal.edu.co/index.php/bolma/article/view/40781
- J. Camargo, Some relationships between induced mappings, Topology Appl. 157 (2010), №13, 2038–2047. doi.org/10.1016/j.topol.2010.04.014
- J. Camargo, S. Macías, On freely decomposable maps, Topology Appl. 159 (2012), №3, 891–899. doi.org/10.1016/j.topol.2011.12.006
- J. Camargo, S. Macías, On strongly freely decomposable and induced maps, Glas. Mat., III. Ser. 48 (2013), №2, 429–442. doi:10.3336/gm.48.2.14
- J. Camargo, S. Macías, *Quotients of n-fold hyperspaces*, Topology Appl. **197** (2016) 154–166. doi.org/10.1016/j.topol.2015.10.001
- E. Castañeda-Alvarado, F. Oozco-Zitli, J. Sánchez-Martínez, Induced mappings between quotient spaces of symmetric products of continua, Topology Appl. 163 (2014), 66–76. doi:10.1016/j.topol.2013.10.007
- J.J. Charatonik, W.J. Charatonik, Lightness of induced mappings, Tsukuba J. Math. 22 (1998), №1, 179–192. doi:10.21099/tkbjm/1496163479

- 12. J.J. Charatonik, A. Illanes, S. Macías, Induced mappings on the hyperspaces $C_n(X)$ of a continuum X, Houston J. Math. **28** (2002), Nº4, 781–805.
- 13. J. Dugundji, Topology, ser. Allyn and Bacon series in advanced mathematics. Allyn and Bacon, 1966. https:// books.google.com.mx/books?id=FgFRAAAAMAAJ
- R. Escobedo, Ma. de J. López and S. Macías, On the hyperspace suspension of a continuum, Topology Appl. 138 (2004), 109–124. doi.org/10.1016/j.topol.2003.08.024
- R. Hernández-Gutiérrez, V. Martínez de la Vega, *Rigidity of symmetric products*, Topology Appl. 160 (2013), №13, 1577–1587. doi.org/10.1016/j.topol.2013.06.001
- 16. H. Hosokawa, *Induced mappings on hyperspaces*, Tsukuba J. Math. **21** (1997), №1, 239–259. doi:10.21099/tkbjm/1496163175
- 17. H. Hosokawa, *Induced mappings on hyperspaces II*, Tsukuba J. Math. **21** (1997), №3, 773–783. doi:10.21099/tkbjm/1496163380
- A. Illanes, The hyperspace C₂(X) for a finite graph X is unique, Glas. Mat., III. Ser. 37 (2002), №2, 347–363. https:// web.math.pmf.unizg.hr/glasnik/vol_37/no2_11.html
- 19. A. Illanes, A model for the hyperspace $C_2(S^1)$, Quest. Answers Gen. Topology **22** (2004), No 2 117–130.
- 20. A. Illanes, S.B. Nadler Jr., Hyperspaces: fundamentals and recent advances, ser. Chapman & Hall/CRC Pure and Applied Mathematics. Taylor & Francis, 1999. https:// books.google.com.mx/books?id=TWo2h710HysC
- J.C. Macías, On the n-fold pseudo-hyperspace suspension of continua, Glas. Mat., III. Ser. 43 (2008), №2, 439–449. doi:10.3336/gm.43.2.14
- 22. S. Macías, On the hyperspaces $C_n(X)$ of a continuum X, II, Topology Proc. 25 (2000), 255–276. http://topology.nipissingu.ca/tp/reprints/v25/tp25118.pdf
- 23. S. Macías, On the hyperspaces $C_n(X)$ of a continuum X, Topology Appl. **109** (2001), 237–256. doi.org/10.1016/S0166-8641(99)00151-0
- S. Macías, On the n-fold hyperspace suspension of continua, Topology Appl. 138 (2004), №1–3, 125–138. doi.org/10.1016/j.topol.2003.08.023
- S. Macías, On the n-fold hyperspace suspension of continua. II, Glas. Mat., III. Ser. 41 (2006), №2, 335–343. doi.org/10.3336/gm.41.2.16
- T. Maćkowiak, Continuous mappings on continua, Dissertationes Math. (RozprawyMat.) 158 (1979). http:// eudml.org/doc/268590
- 27. S.B. Nadler Jr., Hyperspaces of Sets. A text with research questions, ser. Monographs and Textbooks in Pure and Applied Mathematics. Dekker, 1978.

 $https:// \ books.google.com.mx/books?id{=}XTIOPQAACAAJ$

- 28. S.B. Nadler Jr., A fixed point theorem for hyperspace suspensions, Houston J. Math. 5 (1979), 125–132.
- S.B. Nadler Jr., Continuum Theory, An introduction, ser. Chapman & Hall/CRC Pure and Applied Mathematics. Taylor & Francis, 1992. https:// books.google.com.mx/books?id=QPVrKhv36ZAC

Universidad Autónoma del Estado de México, Facultad de Ciencias, Instituto Literario No. 100, Col. Centro, C.P. 50000, Toluca, Estado de México, México jgao@uaemex.mx eca@uaemex.mx jamartinezc@uaemex.mx

> Received 02.07.2020 Revised 09.09.2021