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Given a continuum X and n ∈ N. Let Cn(X) be the hyperspace of all nonempty closed
subsets of X with at most n components. Let CnK(X) be the hyperspace of all elements in
Cn(X) containing K where K is a compact subset of X. The quotient space Cn(X)/CnK(X)
will be denote by Cn

K(X). Given a mapping f : X → Y between continua, let Cn(f) : Cn(X)→
Cn(Y ) be the mapping induced by f , defined by Cn(f)(A) = f(A). We denote the natural
induced mapping between Cn

K(X) and Cn
f(K)(Y ) by Cn

K(f). In this paper, we study relati-
onships among the mappings f , Cn(f) and Cn

K(f) for the following classes of mappings:
almost monotone, atriodic, confluent, joining, light, monotone, open, OM, pseudo-confluent,
quasi-monotone, semi-confluent, strongly freely decomposable, weakly confluent, and weakly
monotone.

1. Introduction. A continuum is a nonempty compact connected metric space. A subconti-
nuum of a continuum X is a subset of X which is a continuum. A mapping is a continuous
function. We will denote by N the set of positive integers, by I the unit interval [0, 1], and
by S1 the unit circle {(x, y) ∈ R2 : x2 + y2 = 1}.

Given a continuum X and n ∈ N, we consider the following hyperspaces of X

2X = {A ⊂ X : A is nonempty and closed in X},
Cn(X) = {A ∈ 2X : A has at most n components},
Fn(X) = {A ∈ 2X : A has at most n points }.

All the hyperspaces topologized with the Hausdorff metric (see the definition below). Given
a nonempty compact subset K of X, the subspace CnK(X) of Cn(X) defined by

CnK(X) = {A ∈ Cn(X) : K ⊂ A}
is called the containment hyperspace for K in Cn(X).

The hyperspace Cn(X) is called the n-fold hyperspace of X, his structure topologic is
different to other hyperspaces, see [22] and [23]. For example, by [18, Lemma 2.3, p. 349],
C2(I) is not homeomorphic to C2(S

1). In fact, C2(I) is homeomorphic to a 4-dimensional cell
(see [18, Lemma 2.2, p. 349]) and C2(S

1) is homeomorphic to the cone over the solid torus
(see [19]). The hyperspace C1(X) is called the hyperspace of subcontinua, some geometric
models of C1(X) are (see [20, Chapter II]):

• C1(I) is a triangle;

• C1(S
1) is the unit disk;
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• C1(T ) is a cube with three triangles, where T is the cone over three points;

• C1(X) is the n-dimensional polyhedron built by attaching n two dimensional cell with
an n-dimensional cell where X is the cone over n points, n ∈ N.

• C1(P ) is a 3-dimensional polyhedron (see [20, Figure 6, p. 37]), where P is the union of
a simple closed curve and an arc whose intersection is one of the end points of the arc.

For a continuum X, since CnK(X) is a nonempty closed subset of Cn(X),
{CnK(X)} ∪ {{A} : A ∈ Cn(X)− CnK(X)}

is an upper semi-continuous decomposition of Cn(X). By [29, Theorem 3.10, p. 40], the
space Cn(X)/CnK(X) is a continuum, which is denoted by Cn

K(X), where πXK stands for the
quotient mapping πXK : Cn(X) → Cn

K(X). For each A ∈ Cn(X) − CnK(X) we denote the
class of A by A, and let CX

nK = πXK (CnK(X)). Thus, πXK is given by

πXK (A) =

{
A if A /∈ CnK(X),

CX
nK if A ∈ CnK(X).

In 1979 S. B. Nadler Jr., see [28], began the study of the quotient space C1(X)/F1(X),
which he called the hyperspace suspension of X. Later, in 2004, R. Escobedo, M. de J. López
and S. Maćıas extended the study of hyperspace suspension in [14].

Subsequently, S. Maćıas generalized the study of hyperspace suspension, considering the
quotient space Cn(X)/Fn(X), which he called the n-fold hyperspace suspension of X, see
[24], continuing with the study in 2006, see [25]. In the year 2008, J. C. Maćıas analyzes the
quotient space Cn(X)/F1(X), which he called the n-fold pseudo-hyperspace suspension of X,
see [21]. J. Camargo and S. Maćıas in 2016 considered the quotient space Cn(X)/C1(X),
they show several of their properties, see [9]. With respect to the space Cn

K(X) in [2] is
demonstrated that Cn

K(I) is homeomorphic to the suspension over CnK(I), where K ∈
{{0}, {1}}. In particular, Cn

K(I) is homeomorphic to a 2-dimensional cell for n = 1 (see [2,
Corollary 3.11]). Other example is that Cn

K(S
1) is homeomorphic to a 2-dimensional cell for

n = 1 and K ∈ 2S
1 (see [2, Theorem 3.13]).

On the other hand, given a mapping f : X → Y between continua, the mapping
Cn(f) : Cn(X)→ Cn(Y )

defined by Cn(f)(A) = f(A) for each A ∈ Cn(X) is called the induced mapping by f . Let
Cn
K(f) : C

n
K(X)→ Cn

K(Y ) be the function defined by
Cn
K(f)(π

X
K (A)) = πYf(K)(Cn(f)(A)) = πYf(K)(f(A))

for each A ∈ Cn(X). By [13, Theorem 4.3, p. 126], Cn
K(f) is a mapping.

Let A be a class of mappings between continua. A general problem is to determine all
possible relationships among the following statements:
(1) f ∈ A; (2) Cn(f) ∈ A; (3) Cn

K(f) ∈ A for each K ∈ 2X ;
(4) Cn

K(f) ∈ A for some K ∈ 2X .
There are particular results concerning this problem, which relate (1) and (2). Readers

especially interested in this topic are referred, for example, to [5], [7], [8], [11], [12], [16], [17].
Regarding induced mappings in quotient hyperspaces we refer the reader, for example, to
[1], [3], [4], [6], [10].

Following this line of research, in this paper we study interrelations among the statements
(1)–(4), for the following classes of mappings: almost monotone, atriodic, confluent, joini-
ng, light, monotone, open, OM, pseudo-confluent, quasi-monotone, semi-confluent, strongly
freely decomposable, weakly confluent, and weakly monotone.
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2. Definitions and notations. Given a topological space Z, we denote the closure and
interior of a subset A of Z by ClZ(A) and IntZ(A), respectively. Let X be a continuum,
with metric d, and ε > 0. The open ball in X of radius ε and center x will be denoted by
Bd
ε (x). The hyperspace 2X is considered with the Hausdorff metric induced by d, which is

denoted by Hd and defined as follows (see [27, (0.1), p. 1] or [20, Definition 2.1, p. 11]): for
any A,B ∈ 2X ,

Hd(A,B) = inf{ε > 0: A ⊂ Nd(B, ε) and B ⊂ Nd(A, ε)}, where Nd(A, ε) =
⋃
x∈A

Bd
ε (x).

Given a mapping f : X → Y between continua. The induced function from 2X into 2Y is the
function f ∗ defined by f ∗(A) = f(A) for each A ∈ 2X . For eachH(X) ∈ {2X , Cn(X), Fn(X)},
the induced function from H(X) into H(Y ) is the function H(f) = f ∗|H(X) : H(X)→ H(Y )
which is a mapping (see [20, Theorem 13.3, p. 106]).

Let A, B ∈ 2X . An order arc from A to B is a mapping α : I → 2X such that α(0) = A,
α(1) = B, and α(r) is a proper subset of α(s) whenever r < s (see [27, (1.2)-(1.8), p. 57-59]).
For any finitely many subsets U1, . . . , Ur of X, we define

〈U1, . . . , Ur〉 =
{
A ∈ 2X : A ⊂

r⋃
i=1

Ui, A ∩ Ui 6= ∅, for each i = 1, . . . , r
}
.

The set {〈U1, . . . , Ur〉 : for each i ∈ {1, . . . , r}, Ui is an open subset of X, r ∈ N} is a
base for a topology on 2X . This topology is called the Vietoris topology and matches with the
topology induced by Hd (see [20, Theorem 3.2, p. 18]). In this paper, 〈U1, . . . , Ur〉n denote
the set 〈U1, . . . , Ur〉 ∩ Cn(X).

An onto mapping f : X → Y between continua is said to be:

• almost monotone provided that for each subcontinuum Q of Y with IntY (Q) 6= ∅,
f−1(Q) is connected;

• atriodic if for every subcontinuum Q of Y , there exist two components C and D of
f−1(Q) such that f(C)∪ f(D) = Q and for each component E of f−1(Q), we have that
either f(E) = Q, or f(E) ⊂ f(C) or f(E) ⊂ f(D);

• confluent if for every subcontinuum K of Y and for each component M of f−1(K),
f(M) = K;

• freely decomposable if whenever A and B are proper subcontinua of Y such that Y =
A∪B, then there exist two proper subcontinua A′ and B′ of X, such that X = A′∪B′,
f(A′) ⊂ A and f(B′) ⊂ B;

• joining provided that for each subcontinuum Q of Y and for any two components C
and D of f−1(Q), we have that f(C) ∩ f(D) 6= ∅;

• light if f−1(y) is totally disconnected for each y ∈ Y ;

• monotone if f−1(y) is connected for each y ∈ Y ;

• open if f(U) is open in Y for each open subset U of X;

• OM if there exist a continuum Z and mappings g : X → Z and h : Z → Y such that
f = h ◦ g, g is monotone and h is open;

• pseudo-confluent provided that for each irreducible subcontinuum B of Y , there exists
a component C of f−1(B) such that f(C) = B;
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• quasi-monotone provided that for any subcontinuum B of Y with IntY (B) 6= ∅, f−1(B)
has only finitely many components and each of these components maps onto B under f ;

• semi-confluent if for every subcontinuum B of Y and every pair of components C and
D of f−1(B), either f(C) ⊂ f(D) or f(D) ⊂ f(C);

• semi-open if for every open subset U of X, IntY (f(U)) 6= ∅;

• strongly freely decomposable if whenever A and B are proper subcontinua of Y such
that Y = A ∪B, we obtain that f−1(A) and f−1(B) are connected;

• weakly confluent if for each subcontinuum K of Y , there exists a subcontinuum M of
X such that f(M) = K;

• weakly monotone provided that for each subcontinuum B of Y with IntY (B) 6= ∅, each
component of f−1(B) is mapped by f onto B.

3. Preliminary results. Let X be a continuum and let L be a subcontinuum of X. We
denote by X/L the quotient space obtained by shrinking L to a point. By [29, Theorem 3.10,
p. 40], X/L is a continuum. Let X, Y be continua, let L be a subcontinuum of X, and let
f : X → Y be an onto mapping. Let qX : X → X/L and qY : Y → Y/f(L) be the quotient
mappings. We will denote qX(L) and qY (f(L)) by LX and LY , respectively. Note that f
induces a function f̃ : X/L→ Y/f(L) (see [13, Theorem 7.7, p. 17]) given by

f̃(A) =

{
qY (f((qX)

−1(A))) if A 6= LX ,

LY if A = LX .

The continuity of f̃ follows from [13, Theorem 4.3, p. 126]. Observe that f̃ ◦ qX = qY ◦ f .
Suppose that A is any of the following classes of mappings between continua: monotone,

OM, confluent, semi-confluent, weakly confluent, pseudo-confluent, quasi-monotone, weakly
monotone, joining, almost monotone, atriodic, freely decomposable or strongly freely decom-
posable. With the previous notation, we have the following result.

Proposition 1. If f ∈ A, then f̃ ∈ A.

Proof. In [4, Theorem 3.2, p. 493] is proved that if f is either almost monotone, or atrio-
dic, or freely decomposable or strongly freely decomposable, then f̃ is almost monotone,
or atriodic, or freely decomposable or strongly freely decomposable, respectively. Let A be
one of the other classes of mappings of the statement. Since qY is monotone, qY ∈ A. By
[26, (5.1), (5.4), (5.5), (5.6)], and Propositions 4.1, 4.3 and 4.4 of [6], qY ◦ f ∈ A. Now, by
[26, (5.15), (5.16), (5.19), (5.20) and (5.21)], A has the composition factor property. Since
qY ◦ f = f̃ ◦ qX , f̃ ◦ qX ∈ A. Therefore f̃ ∈ A.

Since qX |X−L and qY |Y−f(L) are homeomorphisms and f |f−1(Y−f(L)) = q−1Y |Y−f(L) ◦ f̃ ◦ qX ,
we have the following proposition.

Proposition 2. Let f : X → Y be a mapping between continua and let L be a subcontinuum
of X.

(1) If f̃ is confluent, then for each subcontinuum B ⊂ Y − f(L) and each component A of
f−1(B), f(A) = B.

(2) If f̃ is weakly confluent, then for each subcontinuum B ⊂ Y − f(L), there exists A a
subcontinuum of X such that f(A) = B.
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(3) If f̃ is quasi-monotone (weakly monotone), then for each subcontinuum B ⊂ Y − f(L)
with IntY (B) 6= ∅ and each component A of f−1(B), f(A) = B.

The following proposition is a consequence of [4, Theorem 3.1, p. 492].

Proposition 3. Let X, Y be continua and let K be a compact subset of X. If f : X → Y
is an onto mapping, then the following hold:

(1) The mappings πXK and πYf(K) are monotone;

(2) The mappings πXK |Cn(X)−CnK(X) : Cn(X)− CnK(X)→ Cn
K(X)− {CX

nK} and
πYf(K)|Cn(Y )−Cnf(K)(Y ) : Cn(Y )−Cnf(K)(Y )→ Cn

f(K)(Y )−{CY
nf(K)} are homeomorphisms;

(3) If CnK(X) and Cnf(K)(Y ) are nowhere dense in Cn(X) and Cn(Y ), respectively, then
πXK and πYf(K) are semi-open mappings.

Lemma 1. Let f : X → Y be an onto mapping between continua and n, r ∈ N such that
r ≤ n. Let L1, . . . , Lr be nonempty disjoint closed subsets of Y . For each i ∈ {1, . . . , r}, let
Mi be a component of f−1(Li). Then:

(1) 〈M1, . . . ,Mr〉n is a component of Cn(f)−1(〈L1, . . . , Lr〉n).
(2) If M is a component of f−1(Li) such that M 6= Mi and r < n, then 〈M1, . . . ,Mr,M〉n

is a component of Cn(f)−1(〈L1, . . . , Lr〉n).
(3) If K ∈ 2X and f(K) 6⊂

⋃r
i=1 Li, then π

X
K (〈M1, . . . ,Mr〉n) is a component of

Cn
K(f)

−1(πYf(K)(〈L1, . . . , Lr〉n)).

Proof. The statements (1) and (2) are proved in [1, Proposition 2.4, p. 478]. We prove (3), let
D be the component of Cn

K(f)
−1(πYf(K)(〈L1, . . . , Lr〉n)) containing πXK (〈M1, . . . ,Mr〉n). Note

that 〈M1, . . . ,Mr〉n ⊂ (πXK )
−1(D). Since f(K) 6⊂

⋃r
i=1 Li, 〈L1, . . . , Lr〉n ∩ Cnf(K)(Y ) = ∅.

Thus, πYf(K)(Cnf(K)(Y )) /∈ πYf(K)(〈L1, . . . , Lr〉n). Hence, πXK (CnK(X)) /∈ D and CnK(X) ∩
(πXK )

−1(D) = ∅. Since Cn
K(f) ◦ πXK = πYf(K) ◦ Cn(f), (πXK )−1(D) ⊂ Cn(f)

−1(〈L1, . . . , Lr〉n).
By (1) of this proposition and (1) of Proposition 3, we have that (πXK )−1(D) ⊂ 〈M1, . . . ,Mr〉n.
Therefore D = πXK (〈M1, . . . ,Mr〉n).

The following result is a consequence of CnK(X) = {X}, when K = X.

Proposition 4. Let H be a nondegenerate connected subset of Cn(X). If X ∈ H, then there
exists K ∈ 2X such that CnK(X) ⊂ H.

Lemma 2. Let f : X → Y be an onto mapping between continua, n ∈ N, and let Q be a
closed subset of Cn(Y ).
(1) If X /∈ Cn(f)−1(Q), then there exists m ∈ N such that CnK(X) ∩ Cn(f)−1(Q) = ∅ for
each K ∈ BH

1
m

(X).
(2) If X ∈ Cn(f)−1(Q), then there exists K ∈ 2X such that CnK(X) ⊂ Cn(f)

−1(Q).

Proof. Suppose that for each m ∈ N, there exists Km ∈ BH
1
m

(X) such that CnKm
(X) ∩

Cn(f)
−1(Q) 6= ∅. Then, we may assume that {Km}m∈N is a sequence in Cn(X) such that

{Km}m∈N converges to X. We consider Lm ∈ CnKm
(X) ∩Cn(f)−1(Q) for each m ∈ N. Note

that {Lm}m∈N is a sequence in Cn(f)−1(Q) such that Km ⊂ Lm. Thus, {Lm}m∈N converges
to X. Then, X ∈ Cn(f)−1(Q), this is a contradiction.

To prove (2), let H be a component of Cn(f)−1(Q) such that X ∈ H. If H is degenerate,
is easy to verify (2). In another case, by Proposition 4, we conclude (2).
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Lemma 3. Let f : X → Y be a mapping between continua, K ∈ 2X and n ∈ N. If f(K) ∈
F1(Y ), then

Cn
K(f)

−1(CY
nf(K)) = πXK

( ⋃
p∈f−1(f(K))

Cn{p}(X)
)
.

Proof. Let A ∈ πXK
(⋃

p∈f−1(f(K))Cn{p}(X)
)
, there exist p ∈ f−1(f(K)) and B ∈ Cn{p}(X)

such that πXK (B) = A. Then Cn
K(f)(A) = Cn

K(f)(π
X
K (B)) = πYf(K)(Cn(f)(B)) and f(p) ∈

f(B). Since f(K) ∈ F1(Y ), f({p}) = f(K). Thus, πYf(K)(Cn(f)(B)) = CY
nf(K). Therefore,

A ∈ Cn
K(f)

−1(CY
nf(K)).

Now, let A ∈ Cn
K(f)

−1(CY
nf(K)). Then Cn

K(f)(A) = CY
nf(K). Let A ∈ Cn(X) such that

πXK (A) = A. Since CY
nf(K) = Cn

K(f)(A) = Cn
K(f)(π

X
K (A)) = πYf(K)(Cn(f)(A))) and f(A) =

Cn(f)(A), f(K) ⊂ f(A). Take p ∈ f−1(f(K)) ∩ A, thus A ∈ Cn{p}(X). Hence, A ∈
πXK

(⋃
p∈f−1(f(K))Cn{p}(X)

)
.

Proposition 5. Let f : X → Y be a mapping between continua, K ∈ 2X and n ∈ N. Then
Cn
K(f)

−1(CY
nf(K)) is connected.

Proof. Suppose that H and L are different components of Cn
K(f)

−1(CY
nf(K)). We may assume

that CX
nK ∈ H. By (1) of Proposition 3, (πXK )−1(H) and (πXK )

−1(L) are disjoint connected
subsets of Cn(X) such that CnK(X) ⊂ (πXK )

−1(H). Now, let L ∈ (πXK )
−1(L). Note that

Cn
K(f)(π

X
K (L)) = CY

nf(K), and for each order arc α : I → Cn(X) from L to X, we have
Cn
K(f)(π

X
K (α(I))) = {CY

nf(K)}. Then, X ∈ (πXK )
−1(H) ∩ (πXK )

−1(L), this is a contradiction.
Therefore, Cn

K(f)
−1(CY

nf(K)) is connected.

4. Homeomorphism and open mappings.

Theorem 1. Let f : X → Y be a mapping between continua and n ∈ N. Then the following
conditions are equivalent:
(1) f is one to one; (2) Cn(f) is one to one; (3) Cn

K(f) is one to one for each K ∈ 2X ;
(4) Cn

K(f) is one to one for some K ∈ 2X .

Proof. It is easy to see that (1) and (2) are equivalent, (2) implies (3), and (3) implies (4). In
order to prove that (4) implies (1), let x, y ∈ X such that f(x) = f(y). Then πYf(K)({f(x)}) =
πYf(K)({f(y)}). Since Cn

K(f)(π
X
K (A)) = πYf(K)(f(A)) for each A ∈ Cn(X) and Cn

K(f) is one to
one, πXK ({x}) = πXK ({y}). Then, {x} = {y} or K ⊂ {x} ∩ {y}. In any case, x = y. Therefore
f is one to one.

Theorem 2. Let f : X → Y be a mapping between continua and n ∈ N. We consider the
following conditions:
(1)] f is onto; (2) Cn(f) is onto; (3) Cn

K(f) is onto for each K ∈ 2X ;
(4) Cn

K(f) is onto for some K ∈ 2X .
Then, (2) ⇔ (3), (3) ⇒ (4), (2) ⇒ (1), (3) ⇒ (1), and (4) ⇒ (1).

Proof. Note that (2) implies (3) and (3) implies (4). We will prove that (3) implies (2).
Let B ∈ Cn(Y ). If f−1(B) = X, then Cn(f)(X) = B. Now suppose that f−1(B) ( X, let
K ∈ 2X such that K ∩ f−1(B) = ∅. Since Cn

K(f) is onto, there exists A ∈ Cn
K(X) such that

Cn
K(f)(A) = πYf(K)(B). Also, there exists A ∈ Cn(X) such that πXK (A) = A.
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Then, Cn
K(f)(A) = Cn

K(f)(π
X
K (A)) = πYf(K)(Cn(f)(A)) = πYf(K)(B). Since πYf(K)(B) 6=

CY
nf(K), Cn(f)(A) = B. Hence, Cn(f) is onto.
Now, let us prove (4) implies (1). Let K ∈ 2X such that Cn

K(f) is onto and y ∈ Y .
If y ∈ f(K), there exists k1 ∈ K such that f(k1) = y. Now, suppose that y /∈ f(K),
{y} /∈ Cnf(K)(Y ). Then πYf(K)({y}) 6= CY

nf(K). Since C
n
K(f) is onto, there exists A ∈ Cn

K(X)

such that Cn
K(f)(A) = πYf(K)({y}). Moreover, there is A ∈ Cn(X) such that πXK (A) = A.

Since Cn
K(f) ◦ πXK = πYf(K) ◦ Cn(f), Cn

K(f)(π
X
K (A)) = πYf(K)(Cn(f)(A)) = πYf(K)({y}). Thus,

there exists a ∈ A such that f(a) = y.

By Theorem 2 and [12, Proposition 1, p. 784] we have the following result.

Corollary 1. Let f : X → Y be a mapping between continua and n ∈ N. Then
Cn
K(f) : C

n
K(X)→ Cn

f(K)(Y )

is onto for every K ∈ 2X if and only if f is weakly confluent.

The next example shows us that there are continua X, Y and a mapping f : X → Y such
that f is not weakly confluent and Cn

K(f) is onto for some K ∈ 2X .

Example 1. Let f : I → S1 be defined by f(t) = (cos(2πt), sin(2πt)). Then, f is not pseudo-
confluent, weakly monotone, or freely decomposable. If K = {0}, then Cn

K(f) is a monotone
mapping for every n ≥ 1.

Proof. Note that f is not pseudo-confluent, weakly monotone, or freely decomposable.
Now, let K = {0} and n ∈ N. We shall prove that Cn

K(f) is monotone. Let B ∈ Cn
f(K)(S

1).
Suppose that B = CS1

nf(K), by Proposition 5, Cn
K(f)

−1(B) is connected. In another case, by
Lemma 3,

Cn
K(f)

−1(CS1

nf(K)) = πIK

( ⋃
p∈f−1(f(K))

Cn{p}(I)

)
.

Then, Cn(I)−
⋃
p∈f−1(f(K))Cn{p}(I) = 〈(0, 1)〉n. Since f |(0,1) is one to one, Cn

K(f)|πI
K(〈(0,1)〉n)

is one to one. Therefore, Cn
K(f)

−1(B) is connected.
Example 2. In the interval I, we identify the point 0 with the point 1

3
, and the point 2

3
with

the point 1. Let g be the quotient mapping, note that g is onto and is not weakly confluent.
Thus, by [12, Proposition 1, p. 784], Cn(g) is not onto. Moreover, note that for no K ∈ 2X ,
Cn
K(g) is onto.

Theorem 3. Let f : X → Y be a mapping between continua and n ∈ N. Then the following
conditions are equivalent:
(1) f is a homeomorphism; (2) Cn(f) is a homeomorphism; (3) Cn

K(f) is a homeomorphism
for each K ∈ 2X ; (4) Cn

K(f) is a homeomorphism for some K ∈ 2X .

Proof. By [12, Theorem 46, p. 801] (1) implies (2). Note that (2) implies (3) and (3) impli-
es (4). By Theorem 1 and Theorem 2 f is bijective. Thus, f is a homeomorphism. Therefore
(4) implies (1).

Theorem 4. Let f : X → Y be a mapping between continua and n ∈ N. Consider the
following conditions:
(1) f is a homeomorphism; (2) Cn(f) is open; (3) Cn

K(f) is open for each K ∈ 2X ;
(4) Cn

K(f) is open for some K ∈ 2X . Then,
(1) ⇔ (2) ⇔ (3), (1) ⇒ (4), (2) ⇒ (4), and (3) ⇒ (4).
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Proof. Clearly each of the conditions (1), (2) or (3) implies (4). By [5, Corollary 3.3, p. 122],
(1) and (2) are equivalent. By Theorem 3, we have that (2) implies (3). Now, we prove that
(3) implies (2). Let U be an open subset of Cn(X).

First, we may assume that X ∈ U . Since U is an open subset of Cn(X), there exists
ε > 0 such that BHd

ε (X) ∩ Cn(X) ⊂ U . Let 0 < δ < ε such that BHd
δ (X) ∩ Cn(X) ⊂

ClCn(X)(B
Hd
δ (X) ∩Cn(X)) ⊂ U . Moreover, using order arcs, it is easy to see that BHd

δ (X) ∩
Cn(X) is connected. By Proposition 4, there exists K ∈ 2X such that

CnK(X) ⊂ ClCn(X)(B
Hd
δ (X) ∩ Cn(X)) ⊂ U .

By [2, Lemma 6.10], πXK (U) is an open subset of Cn
K(X) containing CX

nK . Since Cn
K(f) is an

open mapping, Cn
K(f)(π

X
K (U)) is an open subset of Cn

f(K)(Y ) containing CY
nf(K). Moreover,

note that Cn
K(f)(π

X
K (U)) = πYf(K)(Cn(f)(U)). Thus, (πYf(K))

−1(πYf(K)(Cn(f)(U))) = Cn(f)(U)
is an open subset of Cn(Y ).

Otherwise, ifX /∈ U , setK = X then CnK(X)∩U = ∅. Hence, πXK (U) and Cn
K(f)(π

X
K (U))

are open subsets of Cn
K(X) and Cn

f(K)(Y ), respectively. Note that CX
nK /∈ πXK (U) and CY

nf(K) /∈
Cn
K(f)(π

X
K (U)). Since Cn

K(f)(π
X
K (U)) = πYf(K)(Cn(f)(U)), we have

(πYf(K))
−1(πYf(K)(Cn(f)(U))) = Cn(f)(U)

is an open subset of Cn(Y ). Therefore, Cn(f) is an open mapping.

Example 3. Let f : [−1, 1] → I be the mapping defined by f(t) = |t|. Then, f is not a
homeomorphism. If K = {0}, then Cn

K(f) is an open mapping for every n ≥ 1.

5. Monotone-type mappings. Let M be any of the following classes of mappings: mono-
tone, almost monotone, quasi-monotone, weakly monotone.

Theorem 5. Let f : X → Y be a mapping between continua and n ∈ N. If Cn
K(f) ∈ M for

each K ∈ 2X , then f ∈M.

Proof. Let B ∈ C(Y ) − {Y } (with IntY (B) 6= ∅ for the cases: almost monotone, quasi-
monotone and weakly monotone). If f−1(B) = X, then Cn(f)(X) = B. Now suppose that
f−1(B) ( X, let K ∈ 2X such that K ∩ f−1(B) = ∅. Then Cn(B) is a subcontinuum of
Cn(Y ) (with IntCn(Y )(Cn(B)) 6= ∅) such that Cn(B)∩Cnf(K)(Y ) = ∅. Thus, we conclude that
πYf(K)(Cn(B)) is a subcontinuum of Cn

f(K)(Y )− {CY
nf(K)} (IntCn

f(K)
(Y )(π

Y
f(K)(Cn(B))) 6= ∅).

(a) If Cn
K(f) is monotone (or almost monotone), then Cn

K(f)
−1(πYf(K)(Cn(B))) is connected.

Since πXK is monotone, it follows that (πXK )
−1(Cn

K(f)
−1(πYf(K)(Cn(B)))) is connected. Thus,

Cn(f)
−1(Cn(B)) = (πXK )

−1(Cn
K(f)

−1(πYf(K)(Cn(B)))) is connected. Then Cn(f)−1(Cn(B)) =

〈f−1(B)〉n. Hence, f−1(B) is connected. Therefore, f is monotone (or almost monotone).
(b) If Cn

K(f) is quasi-monotone (or weakly monotone), then Cn
K(f)

−1(πYf(K)(Cn(B))) has
only finitely many components, L1, . . . ,Lm such that Cn

K(f)(Li) = πYf(K)(Cn(B)) for each
i ∈ {1, . . . ,m}. Now let L be a component of f−1(B). By (3) of Lemma 1, πXK (〈L〉n) is a
component of Cn

K(f)
−1(πYf(K)(Cn(B))). Consequently, each component of f−1(B) determi-

nes one component of Cn
K(f)

−1(πYf(K)(Cn(B))). Therefore, f−1(B) has only finitely many
components and by (3) of Proposition 2, f(L) = B. Hence, f is quasi-monotone (or weakly
monotone).

Theorem 6. Let f : X → Y be a mapping between continua and n ∈ N. Then the following
conditions are equivalent:
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(1) f is monotone; (2) Cn(f) is monotone; (3) Cn
K(f) is monotone for each K ∈ 2X .

Moreover, each of them implies that
(4) Cn

K(f) is monotone for some K ∈ 2X .

Proof. By [12, Theorem 4, p.784], (1) and (2) are equivalent. By Proposition 1 and Theo-
rem 5, (2) implies (3) and (3) implies (1), respectively. Clearly, (3) implies (4).

By Proposition 1 and Theorem 5, we have the following result.

Theorem 7. Let f : X → Y be a mapping between continua and n ∈ N. We consider the
following conditions:
(1) f ∈ M; (2) Cn(f) ∈ M; (3) Cn

K(f) ∈ M for each K ∈ 2X ; (4) Cn
K(f) ∈ M for some

K ∈ 2X . Then following implications hold:
(2) ⇒ (3), (2) ⇒ (4), (3) ⇒ (4), (2) ⇒ (1), and (3) ⇒ (1).

Example 1 shows us that there are continua X, Y and a mapping f : X → Y such that
f is not monotone, almost monotone, quasi-monotone, or weakly confluent. But Cn

K(f) is
monotone for some K ∈ 2X .
6. Strongly freely decomposable mappings.

Theorem 8. Let f : X → Y be a mapping between continua and let n ∈ N. Then, Cn
K(f)

is almost monotone if and only if Cn
K(f) is strongly freely decomposable.

Proof. Suppose that Cn
K(f) is strongly freely decomposable. Since Cn

K(X) is unicoherent (see
[2, Theorem 2.1]), by [7, Theorem 4.2, p. 894] Cn

K(f) is almost monotone. Since every almost
monotone mapping is strongly freely decomposable, we have proved this theorem.

The next result follows from Theorem 7 for almost monotone mappings and Theorem 8.

Corollary 2. Let f : X → Y be a mapping between continua and let n ∈ N. If Cn
K(f) is

strongly freely decomposable, then f is an almost monotone mapping.

7. Confluent-type mappings. Let C be any of the following classes of mappings: confluent,
semi-confluent, weakly confluent, pseudo-confluent, joining.

Remark 1. Given a continuumX and n ∈ N. IfB is a subcontinuum ofX and x1, . . . , xn−1 ∈
X, then B = 〈{x1}, . . . , {xn−1}, B〉n ⊂ Cn(X) is homeomorphic to B. In particular, if B is
an irreducible continuum, then B is an irreducible continuum.

Theorem 9. Let f : X → Y be a mapping between continua and n ∈ N. If Cn
K(f) ∈ C for

each K ∈ 2X , then f ∈ C.

Proof. Let B be a proper subcontinuum (irreducible for the case of pseudo-confluent) of Y .
Let D1 and D2 be two components of f−1(B). If f−1(B) = X, then Cn(f)(X) = B. Now
suppose that f−1(B) ( X. Note that we can choose K ∈ 2X such that K ∩ f−1(B) = ∅
for which there exist y1, . . . , yn−1 ∈ Y − (B ∪ f(K)) such that yi 6= yj for i 6= j. Let
Mi be a component of f−1(yi) for each i ∈ {1, . . . , n − 1}. Then, by (3) of Lemma 1,
for each i ∈ {1, 2} πXK (〈M1, . . . ,Mn−1, Di〉n) is a component of Cn

K(f)
−1(πYf(K)(B)) where

B = 〈{x1}, . . . , {xn−1}, B〉n. Note that B ∩ Cnf(K)(Y ) = ∅ (by Remark 1, this implies that
πYf(K)(B) is a irreducible subcontinuum of Cn

f(K)(Y ) such that CY
nf(K) /∈ πYf(K)(B)).
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(a) If Cn
K(f) is confluent, then by (1) of Proposition 2 for each component D of f−1(B),

Cn(f)(〈M1, . . . ,Mn−1, D〉n) = B. Hence, f(D) = B. Therefore, f is confluent.
(b) If Cn

K(f) is semi-confluent, without loss of generality we can suppose that
Cn
K(f)(π

X
K (〈M1, . . . ,Mn−1, D1〉n)) ⊂ Cn

K(f)(π
X
K (〈M1, . . . ,Mn−1, D2〉n)).

Then Cn(f)(〈M1, . . . ,Mn−1, D1〉n) ⊂ Cn(f)(〈M1, . . . ,Mn−1, D2〉n). Thus, f(D1) ⊂ f(D2).
Therefore, f is semi-confluent.
(c) If Cn

K(f) is weakly confluent, then by (2) of Proposition 2, there exists a continuum M
of Cn(f)−1(B) such that Cn(f)(M) = B. Since M ∩ CnK(X) = ∅, we can find a subset
Mn of X, such that Mn is a component of f−1(B) and 〈M1, . . . ,Mn〉n ∩M 6= ∅. By (2)
of Lemma 1, 〈M1, . . . ,Mn〉n is a component of Cn(f)−1(B). Thus, M = 〈M1, . . . ,Mn〉n and
f(Mn) = B. Therefore f is weakly confluent.
(d) If Cn

K(f) is pseudo-confluent, then there exists a component C of Cn
K(f)

−1(πYf(K)(B))
such that Cn

K(f)(C) = πYf(K)(B). Since CX
nK /∈ C, it follows that (πXK )−1(C) is a component of

(πXK )
−1(Cn

K(f)
−1(πYf(K)(B))) = Cn(f)

−1(B). Note that Cn(f)((πXK )−1(C)) = B.
On the other hand, by [15, Lemma 1, p. 1578],

⋃
(πXK )

−1(C) has at most n components. But⋃
(πXK )

−1(C) ⊂ f−1(y1) ∪ · · · ∪ f−1(yn−1) ∪ f−1(B). Moreover, f−1(yi) ∩ (
⋃
(πXK )

−1(C)) 6= ∅
for each i = 1, . . . , n− 1 and (

⋃
(πXK )

−1(C)) ∩ f−1(B) 6= ∅. Then
⋃
(πXK )

−1(C) has exactly n
components, let’s say C1, . . . , Cn. Without loss of generality, we assume that Ci ⊂ f−1(yi)
for i = 1, . . . , n−1 and Cn ⊂ f−1(B). Let C be the component of f−1(B) such that Cn ⊂ C.
Claim. f(C) = B.
Let b ∈ B and let E = {y1, . . . , yn−1} ∪ b. Then E ∈ B. Hence, there exists A ∈ (πXK )

−1(C)
such that f(A) = E. This implies that b ∈ f(A) ⊂ f(

⋃
(πXK )

−1(C)) = f(C1)∪ · · · ∪ f(Cn). If
there exists j ∈ {1, . . . , n−1} such that b ∈ f(Cj), then b = yj, this is a contradiction. Hence,
b ∈ f(Cn). Thus, b ∈ f(C). It follows that B ⊂ f(C). Therefore, f is pseudo-confluent.
(e) If Cn

K(f) is joining, then

Cn
K(f)(π

X
K (〈M1, . . . ,Mn−1, D1〉n)) ∩ Cn

K(f)(π
X
K (〈M1, . . . ,Mn−1, D2〉n)) 6= ∅.

Thus, Cn(f)(〈M1, . . . ,Mn−1, D1〉n) ∩ Cn(f)(〈M1, . . . ,Mn−1, D2〉n) 6= ∅ and, in consequence,
f(D1) ∩ f(D2) 6= ∅. Therefore, f is joining.

By Proposition 1 and Theorem 9, we have the following result.

Theorem 10. Let f : X → Y be a mapping between continua and n ∈ N. We consider the
following conditions:
(1) f ∈ C; (2) Cn(f) ∈ C; (3) Cn

K(f) ∈ C for each K ∈ 2X ; (4) Cn
K(f) ∈ C for some K ∈ 2X .

Then following implications hold:
(2) ⇒ (3), (2) ⇒ (4), (3) ⇒ (4), (2) ⇒ (1), and (3) ⇒ (1).

Example 1 shows us that there are continua X, Y and a mapping f : X → Y such
that f is not pseudo-confluent, weakly confluent, semi-confluent, or confluent, but Cn

K(f) is
confluent for some K ∈ 2X .

7. OM, atriodic and light mappings. Let X be a continuum. Given a sequence {Am}m∈N
of nonempty subsets of X we define lim supm→∞Am as the set of points x ∈ X such that
there exists a sequence of positive integers m1 < m2 < · · · and points xms ∈ Ams such that
limxms = x.
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Lemma 4. ([12, Lemma 12, p. 788]) A mapping f : X → Y between continua is OM if and
only if for each point y ∈ Y and each sequence of points ym ∈ Y converging to y, the set
lim supm→∞ f

−1(ym) meets each component of f−1(y).

Theorem 11. Let f : X → Y be a mapping between continua and n ∈ N. We consider the
following conditions:
(1) f is OM; (2) Cn(f) is OM; (3) Cn

K(f) is OM for each K ∈ 2X ; (4) Cn
K(f) is OM for some

K ∈ 2X . Then following implications hold:
(2) ⇒ (3), (2) ⇒ (4), (3) ⇒ (4), (2) ⇒ (1), and (3) ⇒ (1).

Proof. Clearly, (2) implies (1) and (3) implies (4). By Proposition 1, (2) implies (3). Set
y ∈ Y . Let {yi}i∈N be a sequence of points in Y converging to y. We consider K ∈ 2X

such that f(K) ∩ {y, y1, . . .} = ∅. Take z1, . . . , zn−1 ∈ Y − (f(K) ∪ {y, y1, . . .}) such that
zj 6= zl for j 6= l. Let Mj be a component of f−1(zj) for each j ∈ {1, . . . , n − 1} and let
Mn be a component of f−1(y). By (3) of Lemma 1, πXK (〈M1, . . . ,Mn〉n) is a component of
Cn
K(f)

−1(πYf(K)({z1, . . . , zn−1, y})). Since the sequence {πYf(K)({z1, . . . , zn−1, yi})}i∈N conver-
ges to πYf(K)({z1, . . . , zn−1, y}), by Lemma 4,

πXK (〈M1, . . . ,Mn〉n) ∩ lim sup
t→∞

Cn
K(f)

−1(πYf(K)({z1, . . . , zn−1, yt})) 6= ∅.

Let A ∈ 〈M1, . . . ,Mn〉n be such that πXK (A) ∈ lim supt→∞C
n
K(f)

−1(πYf(K)({z1, . . . , zn−1, yt})).
Then, there exists a subsequence {πXK (Atr)}r∈N such that for each r ∈ N, πXK (Atr) ∈
Cn
K(f)

−1(πYf(K)({z1, . . . , zn−1, ytr})) and limr→∞ π
X
K (Atr) = πXK (A). Let a ∈ A ∩Mn. Since

limr→∞Atr = An, there exists a sequence {atr}r∈N, with atr ∈ Atr , such that it converges
to a ∈ A. Thus, there exists a positive integer m0 such that f(atr) = ytr for each r ≥ m0.
Hence a ∈ A ∩Mn ∩ lim supt→∞ f

−1(yt). Therefore, by Lemma 4, f is OM.

The mapping f : X → Y of Example 1 is not OM but Cn
K(f) is OM for some K ∈ 2X .

Theorem 12. Let f : X → Y be a mapping between continua and n ∈ N. We consider the
following conditions:
(1) f is atriodic; (2) Cn(f) is atriodic; (3) Cn

K(f) is atriodic for each K ∈ 2X ; (4) Cn
K(f) is

atriodic for some K ∈ 2X . Then following implications hold:
(2) ⇒ (3), (2) ⇒ (4), (3) ⇒ (4), (2) ⇒ (1), and (3) ⇒ (1).

Proof. Note that (2) implies (1) and (3) implies (4). By Proposition 1, (2) implies (3). Let
B be a proper subcontinuum of Y . If f−1(B) = X, then Cn(f)(X) = B. Now suppose
that f−1(B) ( X, let K ∈ 2X such that K ∩ f−1(B) = ∅. We consider y1, . . . , yn−1 ∈
Y − (B ∪ f(K)) with yi 6= yj for i 6= j. Set B = 〈{y1}, . . . , {yn−1}, B〉n. Since Cn

K(f) is an
atriodic mapping, there exist two components D1 and D2 of Cn

K(f)
−1(πYf(K)(B)) such that:

(a) Cn
K(f)(D1) ∪ Cn

K(f)(D1) = πYf(K)(B),

(b) for each component C of Cn
K(f)

−1(πYf(K)(B)), we have either Cn
K(f)(C) = πYf(K)(B), or

Cn
K(f)(C) ⊂ Cn

K(f)(D1) or Cn
K(f)(C) ⊂ Cn

K(f)(D2).
For each j = 1, 2, we have that (πXK )−1(Dj)∩CnK(X) = ∅. Then there exist M j

1 , . . . ,M
j
n

of X such thatM j
i is a component of f−1(yi) for each i = 1, . . . , n−1 andM j

n is a component
of f−1(B). We may assume that Dj ∩ πXK (〈M

j
1 , . . . ,M

j
n〉n) 6= ∅. Since Dj is a component of

Cn
K(f)

−1(πYf(K)(B)), by (3) of Lemma 1, Dj = πXK (〈M
j
1 , . . . ,M

j
n〉n). Thus, by (a), f(M1

n) ∪
f(M2

n) = B. Now, let C be a component of f−1(B). Since πXK (〈M1
1 , . . . ,M

1
n−1, C〉n) is a
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component of Cn
K(f)

−1(πYf(K)(B)), by (a), we have either f(C) = B, or f(C) ⊂ f(M1
n) or

f(C) ⊂ f(M2
n).

Theorem 13. Let f : X → Y be a mapping between continua and n ∈ N. We consider the
following conditions:
(1) f is light; (2) Cn(f) is light; (3) Cn

K(f) is light for each K ∈ 2X ; (4) Cn
K(f) is light for

some K ∈ 2X . Then following implications hold:
(2) ⇒ (1), (3) ⇒ (1), and (3) ⇒ (4).

Proof. Clearly, (3) implies (4). It follows from [11, Theorem 3.10, p. 185] that (2) implies (1).
Now, suppose that Cn

K(f) is a light mapping. To prove that f is a light mapping, we may
assume that exists y ∈ Y such that f−1(y) is not totally disconnected. Note that f−1(y) 6=
X, in the contrary case, Cn

K(f) is a constant mapping. Now, let M be a nondegenerate
component of f−1(y). Let K ∈ 2X such that K ∩ f−1(y) = ∅ and let y1, . . . , yn−1 ∈ Y −
(f(K) ∪ {y}) such that yi 6= yj for i 6= j. Let Mi be a component of f−1(yi) for each i =
1, . . . , n− 1. By (3) of Lemma 1, πXK (〈M1, . . . ,Mn−1,M〉n) is a subcontinuum nondegenerate
of Cn

K(f)
−1(πYf(K)({y1, . . . , yn−1, y})), this is a contradiction.

Example 4. Let f : [−1, 1] → I be the mapping defined by f(t) = |t|. Then, f is light. If
K = {1}, then Cn

K(f) is not light for every n ≥ 1.

Proof. Since f−1(f(K)) = {−1, 1}, by Lemma 3, Cn
K(f)

−1(CI
nf(K)) is nondegenerate. By

Proposition 5, Cn
K(f)

−1(CI
nf(K)) is a connected subset of Cn

K([−1, 1]). Therefore, Cn
K(f) is

not light.
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26. T. Maćkowiak, Continuous mappings on continua, Dissertationes Math. (RozprawyMat.) 158 (1979).
http:// eudml.org/doc/268590

27. S.B. Nadler Jr., Hyperspaces of Sets. A text with research questions, ser. Monographs and Textbooks
in Pure and Applied Mathematics. Dekker, 1978.
https:// books.google.com.mx/books?id=XTIOPQAACAAJ

28. S.B. Nadler Jr., A fixed point theorem for hyperspace suspensions, Houston J. Math. 5 (1979), 125–132.
29. S.B. Nadler Jr., Continuum Theory, An introduction, ser. Chapman & Hall/CRC Pure and Applied

Mathematics. Taylor & Francis, 1992. https:// books.google.com.mx/books?id=QPVrKhv36ZAC

Universidad Autónoma del Estado de México, Facultad de Ciencias,
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