J. G. Anaya, E. Castañeda-Alvarado, J. A. Martínez-Cortez

INDUCED MAPPINGS ON $C_{n}(X) / C_{n K}(X)$

J. G. Anaya, E. Castañeda-Alvarado, J. A. Martínez-Cortez. Induced mappings on $C_{n}(X) / C_{n K}(X)$, Mat. Stud. 56 (2021), 83-95.

Given a continuum X and $n \in \mathbb{N}$. Let $C_{n}(X)$ be the hyperspace of all nonempty closed subsets of X with at most n components. Let $C_{n K}(X)$ be the hyperspace of all elements in $C_{n}(X)$ containing K where K is a compact subset of X. The quotient space $C_{n}(X) / C_{n K}(X)$ will be denote by $C_{K}^{n}(X)$. Given a mapping $f: X \rightarrow Y$ between continua, let $C_{n}(f): C_{n}(X) \rightarrow$ $C_{n}(Y)$ be the mapping induced by f, defined by $C_{n}(f)(A)=f(A)$. We denote the natural induced mapping between $C_{K}^{n}(X)$ and $C_{f(K)}^{n}(Y)$ by $C_{K}^{n}(f)$. In this paper, we study relationships among the mappings $f, C_{n}(f)$ and $C_{K}^{n}(f)$ for the following classes of mappings: almost monotone, atriodic, confluent, joining, light, monotone, open, OM, pseudo-confluent, quasi-monotone, semi-confluent, strongly freely decomposable, weakly confluent, and weakly monotone.

1. Introduction. A continuum is a nonempty compact connected metric space. A subcontinuum of a continuum X is a subset of X which is a continuum. A mapping is a continuous function. We will denote by \mathbb{N} the set of positive integers, by I the unit interval $[0,1]$, and by S^{1} the unit circle $\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\}$.

Given a continuum X and $n \in \mathbb{N}$, we consider the following hyperspaces of X

$$
\begin{gathered}
2^{X}=\{A \subset X: A \text { is nonempty and closed in } X\}, \\
C_{n}(X)=\left\{A \in 2^{X}: A \text { has at most } n \text { components }\right\}, \\
F_{n}(X)=\left\{A \in 2^{X}: A \text { has at most } n \text { points }\right\}
\end{gathered}
$$

All the hyperspaces topologized with the Hausdorff metric (see the definition below). Given a nonempty compact subset K of X, the subspace $C_{n K}(X)$ of $C_{n}(X)$ defined by

$$
C_{n K}(X)=\left\{A \in C_{n}(X): K \subset A\right\}
$$

is called the containment hyperspace for K in $C_{n}(X)$.
The hyperspace $C_{n}(X)$ is called the n-fold hyperspace of X, his structure topologic is different to other hyperspaces, see [22] and [23]. For example, by [18, Lemma 2.3, p. 349], $C_{2}(I)$ is not homeomorphic to $C_{2}\left(S^{1}\right)$. In fact, $C_{2}(I)$ is homeomorphic to a 4-dimensional cell (see [18, Lemma 2.2, p. 349]) and $C_{2}\left(S^{1}\right)$ is homeomorphic to the cone over the solid torus (see [19]). The hyperspace $C_{1}(X)$ is called the hyperspace of subcontinua, some geometric models of $C_{1}(X)$ are (see [20, Chapter II]):

- $C_{1}(I)$ is a triangle;
- $C_{1}\left(S^{1}\right)$ is the unit disk;

2010 Mathematics Subject Classification: 54C05, 54C10, 54B20, 54B15.
Keywords: induced mapping; hyperspaces; continuum; containment hyperspaces; quotient space. doi:10.30970/ms.56.1.83-95

- $C_{1}(T)$ is a cube with three triangles, where T is the cone over three points;
- $C_{1}(X)$ is the n-dimensional polyhedron built by attaching n two dimensional cell with an n-dimensional cell where X is the cone over n points, $n \in \mathbb{N}$.
- $C_{1}(P)$ is a 3 -dimensional polyhedron (see [20, Figure 6, p. 37]), where P is the union of a simple closed curve and an arc whose intersection is one of the end points of the arc.
For a continuum X, since $C_{n K}(X)$ is a nonempty closed subset of $C_{n}(X)$,

$$
\left\{C_{n K}(X)\right\} \cup\left\{\{A\}: A \in C_{n}(X)-C_{n_{K}}(X)\right\}
$$

is an upper semi-continuous decomposition of $C_{n}(X)$. By [29, Theorem 3.10, p. 40], the space $C_{n}(X) / C_{n}(X)$ is a continuum, which is denoted by $C_{K}^{n}(X)$, where π_{K}^{X} stands for the quotient mapping $\pi_{K}^{X}: C_{n}(X) \rightarrow C_{K}^{n}(X)$. For each $A \in C_{n}(X)-C_{n K}(X)$ we denote the class of A by \mathcal{A}, and let $C_{n K}^{X}=\pi_{K}^{X}\left(C_{n K}(X)\right)$. Thus, π_{K}^{X} is given by

$$
\pi_{K}^{X}(A)= \begin{cases}\mathcal{A} & \text { if } A \notin C_{n K}(X) \\ C_{n K}^{X} & \text { if } A \in C_{n K}(X)\end{cases}
$$

In 1979 S. B. Nadler Jr., see [28], began the study of the quotient space $C_{1}(X) / F_{1}(X)$, which he called the hyperspace suspension of X. Later, in 2004, R. Escobedo, M. de J. López and S . Macías extended the study of hyperspace suspension in [14].

Subsequently, S. Macías generalized the study of hyperspace suspension, considering the quotient space $C_{n}(X) / F_{n}(X)$, which he called the n-fold hyperspace suspension of X, see [24], continuing with the study in 2006, see [25]. In the year 2008, J. C. Macías analyzes the quotient space $C_{n}(X) / F_{1}(X)$, which he called the n-fold pseudo-hyperspace suspension of X, see [21]. J. Camargo and S. Macías in 2016 considered the quotient space $C_{n}(X) / C_{1}(X)$, they show several of their properties, see [9]. With respect to the space $C_{K}^{n}(X)$ in [2] is demonstrated that $C_{K}^{n}(I)$ is homeomorphic to the suspension over $C_{n K}(I)$, where $K \in$ $\{\{0\},\{1\}\}$. In particular, $C_{K}^{n}(I)$ is homeomorphic to a 2-dimensional cell for $n=1$ (see [2, Corollary 3.11]). Other example is that $C_{K}^{n}\left(S^{1}\right)$ is homeomorphic to a 2-dimensional cell for $n=1$ and $K \in 2^{S^{1}}$ (see [2, Theorem 3.13]).

On the other hand, given a mapping $f: X \rightarrow Y$ between continua, the mapping

$$
C_{n}(f): C_{n}(X) \rightarrow C_{n}(Y)
$$

defined by $C_{n}(f)(A)=f(A)$ for each $A \in C_{n}(X)$ is called the induced mapping by f. Let $C_{K}^{n}(f): C_{K}^{n}(X) \rightarrow C_{K}^{n}(Y)$ be the function defined by

$$
C_{K}^{n}(f)\left(\pi_{K}^{X}(A)\right)=\pi_{f(K)}^{Y}\left(C_{n}(f)(A)\right)=\pi_{f(K)}^{Y}(f(A))
$$

for each $A \in C_{n}(X)$. By [13, Theorem 4.3, p. 126], $C_{K}^{n}(f)$ is a mapping.
Let \mathbb{A} be a class of mappings between continua. A general problem is to determine all possible relationships among the following statements:
(1) $f \in \mathbb{A} ; \quad$ (2) $C_{n}(f) \in \mathbb{A} ; ~(3) C_{K}^{n}(f) \in \mathbb{A}$ for each $K \in 2^{X}$;
(4) $C_{K}^{n}(f) \in \mathbb{A}$ for some $K \in 2^{X}$.

There are particular results concerning this problem, which relate (1) and (2). Readers especially interested in this topic are referred, for example, to [5], [7], [8], [11], [12], [16], [17]. Regarding induced mappings in quotient hyperspaces we refer the reader, for example, to [1], [3], [4], [6], [10].

Following this line of research, in this paper we study interrelations among the statements (1)-(4), for the following classes of mappings: almost monotone, atriodic, confluent, joining, light, monotone, open, OM, pseudo-confluent, quasi-monotone, semi-confluent, strongly freely decomposable, weakly confluent, and weakly monotone.
2. Definitions and notations. Given a topological space Z, we denote the closure and interior of a subset A of Z by $\mathrm{Cl}_{Z}(A)$ and $\operatorname{Int}_{Z}(A)$, respectively. Let X be a continuum, with metric d, and $\epsilon>0$. The open ball in X of radius ϵ and center x will be denoted by $B_{\epsilon}^{d}(x)$. The hyperspace 2^{X} is considered with the Hausdorff metric induced by d, which is denoted by H_{d} and defined as follows (see [27, (0.1), p. 1] or [20, Definition 2.1, p. 11]): for any $A, B \in 2^{X}$,

$$
H_{d}(A, B)=\inf \left\{\epsilon>0: A \subset N_{d}(B, \epsilon) \text { and } B \subset N_{d}(A, \epsilon)\right\}, \text { where } N_{d}(A, \epsilon)=\bigcup_{x \in A} B_{\epsilon}^{d}(x)
$$

Given a mapping $f: X \rightarrow Y$ between continua. The induced function from 2^{X} into 2^{Y} is the function f^{*} defined by $f^{*}(A)=f(A)$ for each $A \in 2^{X}$. For each $\mathcal{H}(X) \in\left\{2^{X}, C_{n}(X), F_{n}(X)\right\}$, the induced function from $\mathcal{H}(X)$ into $\mathcal{H}(Y)$ is the function $\mathcal{H}(f)=\left.f^{*}\right|_{\mathcal{H}(X)}: \mathcal{H}(X) \rightarrow \mathcal{H}(Y)$ which is a mapping (see [20, Theorem 13.3, p. 106]).

Let $A, B \in 2^{X}$. An order arc from A to B is a mapping $\alpha: I \rightarrow 2^{X}$ such that $\alpha(0)=A$, $\alpha(1)=B$, and $\alpha(r)$ is a proper subset of $\alpha(s)$ whenever $r<s$ (see [27, (1.2)-(1.8), p. 57-59]). For any finitely many subsets U_{1}, \ldots, U_{r} of X, we define

$$
\left\langle U_{1}, \ldots, U_{r}\right\rangle=\left\{A \in 2^{X}: A \subset \bigcup_{i=1}^{r} U_{i}, A \cap U_{i} \neq \varnothing, \text { for each } i=1, \ldots, r\right\}
$$

The set $\left\{\left\langle U_{1}, \ldots, U_{r}\right\rangle\right.$: for each $i \in\{1, \ldots, r\}, U_{i}$ is an open subset of $\left.X, r \in \mathbb{N}\right\}$ is a base for a topology on 2^{X}. This topology is called the Vietoris topology and matches with the topology induced by H_{d} (see [20, Theorem 3.2, p. 18]). In this paper, $\left\langle U_{1}, \ldots, U_{r}\right\rangle_{n}$ denote the set $\left\langle U_{1}, \ldots, U_{r}\right\rangle \cap C_{n}(X)$.

An onto mapping $f: X \rightarrow Y$ between continua is said to be:

- almost monotone provided that for each subcontinuum Q of Y with $\operatorname{Int}_{Y}(Q) \neq \varnothing$, $f^{-1}(Q)$ is connected;
- atriodic if for every subcontinuum Q of Y, there exist two components C and D of $f^{-1}(Q)$ such that $f(C) \cup f(D)=Q$ and for each component E of $f^{-1}(Q)$, we have that either $f(E)=Q$, or $f(E) \subset f(C)$ or $f(E) \subset f(D)$;
- confluent if for every subcontinuum K of Y and for each component M of $f^{-1}(K)$, $f(M)=K$;
- freely decomposable if whenever A and B are proper subcontinua of Y such that $Y=$ $A \cup B$, then there exist two proper subcontinua A^{\prime} and B^{\prime} of X, such that $X=A^{\prime} \cup B^{\prime}$, $f\left(A^{\prime}\right) \subset A$ and $f\left(B^{\prime}\right) \subset B ;$
- joining provided that for each subcontinuum Q of Y and for any two components C and D of $f^{-1}(Q)$, we have that $f(C) \cap f(D) \neq \varnothing$;
- light if $f^{-1}(y)$ is totally disconnected for each $y \in Y$;
- monotone if $f^{-1}(y)$ is connected for each $y \in Y$;
- open if $f(U)$ is open in Y for each open subset U of X;
- $O M$ if there exist a continuum Z and mappings $g: X \rightarrow Z$ and $h: Z \rightarrow Y$ such that $f=h \circ g, g$ is monotone and h is open;
- pseudo-confluent provided that for each irreducible subcontinuum B of Y, there exists a component C of $f^{-1}(B)$ such that $f(C)=B$;
- quasi-monotone provided that for any subcontinuum B of Y with $\operatorname{Int}_{Y}(B) \neq \varnothing, f^{-1}(B)$ has only finitely many components and each of these components maps onto B under f;
- semi-confluent if for every subcontinuum B of Y and every pair of components C and D of $f^{-1}(B)$, either $f(C) \subset f(D)$ or $f(D) \subset f(C)$;
- semi-open if for every open subset U of $X, \operatorname{Int}_{Y}(f(U)) \neq \varnothing$;
- strongly freely decomposable if whenever A and B are proper subcontinua of Y such that $Y=A \cup B$, we obtain that $f^{-1}(A)$ and $f^{-1}(B)$ are connected;
- weakly confluent if for each subcontinuum K of Y, there exists a subcontinuum M of X such that $f(M)=K$;
- weakly monotone provided that for each subcontinuum B of Y with $\operatorname{Int}_{Y}(B) \neq \varnothing$, each component of $f^{-1}(B)$ is mapped by f onto B.

3. Preliminary results. Let X be a continuum and let L be a subcontinuum of X. We denote by X / L the quotient space obtained by shrinking L to a point. By [29, Theorem 3.10, p. 40], X / L is a continuum. Let X, Y be continua, let L be a subcontinuum of X, and let $f: X \rightarrow Y$ be an onto mapping. Let $q_{X}: X \rightarrow X / L$ and $q_{Y}: Y \rightarrow Y / f(L)$ be the quotient mappings. We will denote $q_{X}(L)$ and $q_{Y}(f(L))$ by L_{X} and L_{Y}, respectively. Note that f induces a function $\tilde{f}: X / L \rightarrow Y / f(L)$ (see [13, Theorem 7.7, p. 17]) given by

$$
\tilde{f}(\mathcal{A})= \begin{cases}q_{Y}\left(f\left(\left(q_{X}\right)^{-1}(\mathcal{A})\right)\right) & \text { if } \mathcal{A} \neq L_{X} \\ L_{Y} & \text { if } \mathcal{A}=L_{X}\end{cases}
$$

The continuity of \tilde{f} follows from [13, Theorem 4.3, p. 126]. Observe that $\tilde{f} \circ q_{X}=q_{Y} \circ f$.
Suppose that \mathbb{A} is any of the following classes of mappings between continua: monotone, OM, confluent, semi-confluent, weakly confluent, pseudo-confluent, quasi-monotone, weakly monotone, joining, almost monotone, atriodic, freely decomposable or strongly freely decomposable. With the previous notation, we have the following result.

Proposition 1. If $f \in \mathbb{A}$, then $\tilde{f} \in \mathbb{A}$.
Proof. In [4, Theorem 3.2, p. 493] is proved that if f is either almost monotone, or atriodic, or freely decomposable or strongly freely decomposable, then \tilde{f} is almost monotone, or atriodic, or freely decomposable or strongly freely decomposable, respectively. Let \mathbb{A} be one of the other classes of mappings of the statement. Since q_{Y} is monotone, $q_{Y} \in \mathbb{A}$. By $[26,(5.1),(5.4),(5.5),(5.6)]$, and Propositions 4.1, 4.3 and 4.4 of $[6], q_{Y} \circ f \in \mathbb{A}$. Now, by $[26,(5.15),(5.16),(5.19),(5.20)$ and $(5.21)], \mathbb{A}$ has the composition factor property. Since $q_{Y} \circ f=\tilde{f} \circ q_{X}, \tilde{f} \circ q_{X} \in \mathbb{A}$. Therefore $\tilde{f} \in \mathbb{A}$.

Since $\left.q_{X}\right|_{X-L}$ and $\left.q_{Y}\right|_{Y-f(L)}$ are homeomorphisms and $\left.f\right|_{f^{-1}(Y-f(L))}=\left.q_{Y}^{-1}\right|_{Y-f(L)} \circ \tilde{f} \circ q_{X}$, we have the following proposition.

Proposition 2. Let $f: X \rightarrow Y$ be a mapping between continua and let L be a subcontinuum of X.
(1) If \tilde{f} is confluent, then for each subcontinuum $B \subset Y-f(L)$ and each component A of $f^{-1}(B), f(A)=B$.
(2) If \tilde{f} is weakly confluent, then for each subcontinuum $B \subset Y-f(L)$, there exists A a subcontinuum of X such that $f(A)=B$.
(3) If \tilde{f} is quasi-monotone (weakly monotone), then for each subcontinuum $B \subset Y-f(L)$ with $\operatorname{Int}_{Y}(B) \neq \varnothing$ and each component A of $f^{-1}(B), f(A)=B$.

The following proposition is a consequence of [4, Theorem 3.1, p. 492].
Proposition 3. Let X, Y be continua and let K be a compact subset of X. If $f: X \rightarrow Y$ is an onto mapping, then the following hold:
(1) The mappings π_{K}^{X} and $\pi_{f(K)}^{Y}$ are monotone;
(2) The mappings $\left.\pi_{K}^{X}\right|_{C_{n}(X)-C_{n K}(X)}: C_{n}(X)-C_{n K}(X) \rightarrow C_{K}^{n}(X)-\left\{C_{n K}^{X}\right\}$ and $\pi_{f(K)}^{Y} \mid C_{n}(Y)-C_{n f(K)}(Y): C_{n}(Y)-C_{n f(K)}(Y) \rightarrow C_{f(K)}^{n}(Y)-\left\{C_{n f(K)}^{Y}\right\}$ are homeomorphisms;
(3) If $C_{n K}(X)$ and $C_{n f(K)}(Y)$ are nowhere dense in $C_{n}(X)$ and $C_{n}(Y)$, respectively, then π_{K}^{X} and $\pi_{f(K)}^{Y}$ are semi-open mappings.
Lemma 1. Let $f: X \rightarrow Y$ be an onto mapping between continua and $n, r \in \mathbb{N}$ such that $r \leq n$. Let L_{1}, \ldots, L_{r} be nonempty disjoint closed subsets of Y. For each $i \in\{1, \ldots, r\}$, let M_{i} be a component of $f^{-1}\left(L_{i}\right)$. Then:
(1) $\left\langle M_{1}, \ldots, M_{r}\right\rangle_{n}$ is a component of $C_{n}(f)^{-1}\left(\left\langle L_{1}, \ldots, L_{r}\right\rangle_{n}\right)$.
(2) If M is a component of $f^{-1}\left(L_{i}\right)$ such that $M \neq M_{i}$ and $r<n$, then $\left\langle M_{1}, \ldots, M_{r}, M\right\rangle_{n}$ is a component of $C_{n}(f)^{-1}\left(\left\langle L_{1}, \ldots, L_{r}\right\rangle_{n}\right)$.
(3) If $K \in 2^{X}$ and $f(K) \not \subset \bigcup_{i=1}^{r} L_{i}$, then $\pi_{K}^{X}\left(\left\langle M_{1}, \ldots, M_{r}\right\rangle_{n}\right)$ is a component of $C_{K}^{n}(f)^{-1}\left(\pi_{f(K)}^{Y}\left(\left\langle L_{1}, \ldots, L_{r}\right\rangle_{n}\right)\right)$.

Proof. The statements (1) and (2) are proved in [1, Proposition 2.4, p. 478]. We prove (3), let \mathfrak{D} be the component of $C_{K}^{n}(f)^{-1}\left(\pi_{f(K)}^{Y}\left(\left\langle L_{1}, \ldots, L_{r}\right\rangle_{n}\right)\right)$ containing $\pi_{K}^{X}\left(\left\langle M_{1}, \ldots, M_{r}\right\rangle_{n}\right)$. Note that $\left\langle M_{1}, \ldots, M_{r}\right\rangle_{n} \subset\left(\pi_{K}^{X}\right)^{-1}(\mathfrak{D})$. Since $f(K) \not \subset \bigcup_{i=1}^{r} L_{i},\left\langle L_{1}, \ldots, L_{r}\right\rangle_{n} \cap C_{n f(K)}(Y)=\varnothing$. Thus, $\pi_{f(K)}^{Y}\left(C_{n f(K)}(Y)\right) \notin \pi_{f(K)}^{Y}\left(\left\langle L_{1}, \ldots, L_{r}\right\rangle_{n}\right)$. Hence, $\pi_{K}^{X}\left(C_{n K}(X)\right) \notin \mathfrak{D}$ and $C_{n K}(X) \cap$ $\left(\pi_{K}^{X}\right)^{-1}(\mathfrak{D})=\varnothing$. Since $C_{K}^{n}(f) \circ \pi_{K}^{X}=\pi_{f(K)}^{Y} \circ C_{n}(f),\left(\pi_{K}^{X}\right)^{-1}(\mathfrak{D}) \subset C_{n}(f)^{-1}\left(\left\langle L_{1}, \ldots, L_{r}\right\rangle_{n}\right)$. By (1) of this proposition and (1) of Proposition 3, we have that $\left(\pi_{K}^{X}\right)^{-1}(\mathfrak{D}) \subset\left\langle M_{1}, \ldots, M_{r}\right\rangle_{n}$. Therefore $\mathfrak{D}=\pi_{K}^{X}\left(\left\langle M_{1}, \ldots, M_{r}\right\rangle_{n}\right)$.

The following result is a consequence of $C_{n K}(X)=\{X\}$, when $K=X$.
Proposition 4. Let \mathcal{H} be a nondegenerate connected subset of $C_{n}(X)$. If $X \in \mathcal{H}$, then there exists $K \in 2^{X}$ such that $C_{n K}(X) \subset \mathcal{H}$.

Lemma 2. Let $f: X \rightarrow Y$ be an onto mapping between continua, $n \in \mathbb{N}$, and let \mathcal{Q} be a closed subset of $C_{n}(Y)$.
(1) If $X \notin C_{n}(f)^{-1}(\mathcal{Q})$, then there exists $m \in \mathbb{N}$ such that $C_{n K}(X) \cap C_{n}(f)^{-1}(\mathcal{Q})=\varnothing$ for each $K \in B_{\frac{1}{2}}^{H}(X)$.
(2) If $X \in C_{n}^{m}(f)^{-1}(\mathcal{Q})$, then there exists $K \in 2^{X}$ such that $C_{n K}(X) \subset C_{n}(f)^{-1}(\mathcal{Q})$.

Proof. Suppose that for each $m \in \mathbb{N}$, there exists $K_{m} \in B_{\frac{1}{m}}^{H}(X)$ such that $C_{n K_{m}}(X) \cap$ $C_{n}(f)^{-1}(\mathcal{Q}) \neq \varnothing$. Then, we may assume that $\left\{K_{m}\right\}_{m \in \mathbb{N}}$ is a sequence in $C_{n}(X)$ such that $\left\{K_{m}\right\}_{m \in \mathbb{N}}$ converges to X. We consider $L_{m} \in C_{n K_{m}}(X) \cap C_{n}(f)^{-1}(\mathcal{Q})$ for each $m \in \mathbb{N}$. Note that $\left\{L_{m}\right\}_{m \in \mathbb{N}}$ is a sequence in $C_{n}(f)^{-1}(\mathcal{Q})$ such that $K_{m} \subset L_{m}$. Thus, $\left\{L_{m}\right\}_{m \in \mathbb{N}}$ converges to X. Then, $X \in C_{n}(f)^{-1}(\mathcal{Q})$, this is a contradiction.

To prove (2), let \mathcal{H} be a component of $C_{n}(f)^{-1}(\mathcal{Q})$ such that $X \in \mathcal{H}$. If \mathcal{H} is degenerate, is easy to verify (2). In another case, by Proposition 4, we conclude (2).

Lemma 3. Let $f: X \rightarrow Y$ be a mapping between continua, $K \in 2^{X}$ and $n \in \mathbb{N}$. If $f(K) \in$ $F_{1}(Y)$, then

$$
C_{K}^{n}(f)^{-1}\left(C_{n f(K)}^{Y}\right)=\pi_{K}^{X}\left(\bigcup_{p \in f^{-1}(f(K))} C_{n\{p\}}(X)\right) .
$$

Proof. Let $\mathcal{A} \in \pi_{K}^{X}\left(\bigcup_{p \in f^{-1}(f(K))} C_{n\{p\}}(X)\right)$, there exist $p \in f^{-1}(f(K))$ and $B \in C_{n\{p\}}(X)$ such that $\pi_{K}^{X}(B)=\mathcal{A}$. Then $C_{K}^{n}(f)(\mathcal{A})=C_{K}^{n}(f)\left(\pi_{K}^{X}(B)\right)=\pi_{f(K)}^{Y}\left(C_{n}(f)(B)\right)$ and $f(p) \in$ $f(B)$. Since $f(K) \in F_{1}(Y), f(\{p\})=f(K)$. Thus, $\pi_{f(K)}^{Y}\left(C_{n}(f)(B)\right)=C_{n f(K)}^{Y}$. Therefore, $\mathcal{A} \in C_{K}^{n}(f)^{-1}\left(C_{n f(K)}^{Y}\right)$.

Now, let $\mathcal{A} \in C_{K}^{n}(f)^{-1}\left(C_{n f(K)}^{Y}\right)$. Then $C_{K}^{n}(f)(\mathcal{A})=C_{n f(K)}^{Y}$. Let $A \in C_{n}(X)$ such that $\pi_{K}^{X}(A)=\mathcal{A}$. Since $\left.C_{n f(K)}^{Y}=C_{K}^{n}(f)(\mathcal{A})=C_{K}^{n}(f)\left(\pi_{K}^{X}(A)\right)=\pi_{f(K)}^{Y}\left(C_{n}(f)(A)\right)\right)$ and $f(A)=$ $C_{n}(f)(A), f(K) \subset f(A)$. Take $p \in f^{-1}(f(K)) \cap A$, thus $A \in C_{n\{p\}}(X)$. Hence, $\mathcal{A} \in$ $\pi_{K}^{X}\left(\bigcup_{p \in f^{-1}(f(K))} C_{n\{p\}}(X)\right)$.
Proposition 5. Let $f: X \rightarrow Y$ be a mapping between continua, $K \in 2^{X}$ and $n \in \mathbb{N}$. Then $C_{K}^{n}(f)^{-1}\left(C_{n f(K)}^{Y}\right)$ is connected.

Proof. Suppose that \mathcal{H} and \mathcal{L} are different components of $C_{K}^{n}(f)^{-1}\left(C_{n f(K)}^{Y}\right)$. We may assume that $C_{n K}^{X} \in \mathcal{H}$. By (1) of Proposition $3,\left(\pi_{K}^{X}\right)^{-1}(\mathcal{H})$ and $\left(\pi_{K}^{X}\right)^{-1}(\mathcal{L})$ are disjoint connected subsets of $C_{n}(X)$ such that $C_{n K}(X) \subset\left(\pi_{K}^{X}\right)^{-1}(\mathcal{H})$. Now, let $L \in\left(\pi_{K}^{X}\right)^{-1}(\mathcal{L})$. Note that $C_{K}^{n}(f)\left(\pi_{K}^{X}(L)\right)=C_{n f(K)}^{Y}$, and for each order arc $\alpha: I \rightarrow C_{n}(X)$ from L to X, we have $C_{K}^{n}(f)\left(\pi_{K}^{X}(\alpha(I))\right)=\left\{C_{n f(K)}^{Y}\right\}$. Then, $X \in\left(\pi_{K}^{X}\right)^{-1}(\mathcal{H}) \cap\left(\pi_{K}^{X}\right)^{-1}(\mathcal{L})$, this is a contradiction. Therefore, $C_{K}^{n}(f)^{-1}\left(C_{n f(K)}^{Y}\right)$ is connected.

4. Homeomorphism and open mappings.

Theorem 1. Let $f: X \rightarrow Y$ be a mapping between continua and $n \in \mathbb{N}$. Then the following conditions are equivalent:
(1) f is one to one; (2) $C_{n}(f)$ is one to one; (3) $C_{K}^{n}(f)$ is one to one for each $K \in 2^{X}$;
(4) $C_{K}^{n}(f)$ is one to one for some $K \in 2^{X}$.

Proof. It is easy to see that (1) and (2) are equivalent, (2) implies (3), and (3) implies (4). In order to prove that (4) implies (1), let $x, y \in X$ such that $f(x)=f(y)$. Then $\pi_{f(K)}^{Y}(\{f(x)\})=$ $\pi_{f(K)}^{Y}(\{f(y)\})$. Since $C_{K}^{n}(f)\left(\pi_{K}^{X}(A)\right)=\pi_{f(K)}^{Y}(f(A))$ for each $A \in C_{n}(X)$ and $C_{K}^{n}(f)$ is one to one, $\pi_{K}^{X}(\{x\})=\pi_{K}^{X}(\{y\})$. Then, $\{x\}=\{y\}$ or $K \subset\{x\} \cap\{y\}$. In any case, $x=y$. Therefore f is one to one.

Theorem 2. Let $f: X \rightarrow Y$ be a mapping between continua and $n \in \mathbb{N}$. We consider the following conditions:
(1)] f is onto; (2) $C_{n}(f)$ is onto; (3) $C_{K}^{n}(f)$ is onto for each $K \in 2^{X}$;
(4) $C_{K}^{n}(f)$ is onto for some $K \in 2^{X}$.

Then, $(2) \Leftrightarrow(3),(3) \Rightarrow(4),(2) \Rightarrow(1),(3) \Rightarrow(1)$, and $(4) \Rightarrow(1)$.
Proof. Note that (2) implies (3) and (3) implies (4). We will prove that (3) implies (2). Let $B \in C_{n}(Y)$. If $f^{-1}(B)=X$, then $C_{n}(f)(X)=B$. Now suppose that $f^{-1}(B) \subsetneq X$, let $K \in 2^{X}$ such that $K \cap f^{-1}(B)=\varnothing$. Since $C_{K}^{n}(f)$ is onto, there exists $\mathcal{A} \in C_{K}^{n}(X)$ such that $C_{K}^{n}(f)(\mathcal{A})=\pi_{f(K)}^{Y}(B)$. Also, there exists $A \in C_{n}(X)$ such that $\pi_{K}^{X}(A)=\mathcal{A}$.

Then, $C_{K}^{n}(f)(\mathcal{A})=C_{K}^{n}(f)\left(\pi_{K}^{X}(A)\right)=\pi_{f(K)}^{Y}\left(C_{n}(f)(A)\right)=\pi_{f(K)}^{Y}(B)$. Since $\pi_{f(K)}^{Y}(B) \neq$ $C_{n f(K)}^{Y}, C_{n}(f)(A)=B$. Hence, $C_{n}(f)$ is onto.

Now, let us prove (4) implies (1). Let $K \in 2^{X}$ such that $C_{K}^{n}(f)$ is onto and $y \in Y$. If $y \in f(K)$, there exists $k_{1} \in K$ such that $f\left(k_{1}\right)=y$. Now, suppose that $y \notin f(K)$, $\{y\} \notin C_{n f(K)}(Y)$. Then $\pi_{f(K)}^{Y}(\{y\}) \neq C_{n f(K)}^{Y}$. Since $C_{K}^{n}(f)$ is onto, there exists $\mathcal{A} \in C_{K}^{n}(X)$ such that $C_{K}^{n}(f)(\mathcal{A})=\pi_{f(K)}^{Y}(\{y\})$. Moreover, there is $A \in C_{n}(X)$ such that $\pi_{K}^{X}(A)=\mathcal{A}$. Since $C_{K}^{n}(f) \circ \pi_{K}^{X}=\pi_{f(K)}^{Y} \circ C_{n}(f), C_{K}^{n}(f)\left(\pi_{K}^{X}(A)\right)=\pi_{f(K)}^{Y}\left(C_{n}(f)(A)\right)=\pi_{f(K)}^{Y}(\{y\})$. Thus, there exists $a \in A$ such that $f(a)=y$.

By Theorem 2 and [12, Proposition 1, p. 784] we have the following result.
Corollary 1. Let $f: X \rightarrow Y$ be a mapping between continua and $n \in \mathbb{N}$. Then

$$
C_{K}^{n}(f): C_{K}^{n}(X) \rightarrow C_{f(K)}^{n}(Y)
$$

is onto for every $K \in 2^{X}$ if and only if f is weakly confluent.
The next example shows us that there are continua X, Y and a mapping $f: X \rightarrow Y$ such that f is not weakly confluent and $C_{K}^{n}(f)$ is onto for some $K \in 2^{X}$.
Example 1. Let $f: I \rightarrow S^{1}$ be defined by $f(t)=(\cos (2 \pi t), \sin (2 \pi t))$. Then, f is not pseudoconfluent, weakly monotone, or freely decomposable. If $K=\{0\}$, then $C_{K}^{n}(f)$ is a monotone mapping for every $n \geq 1$.
Proof. Note that f is not pseudo-confluent, weakly monotone, or freely decomposable.
Now, let $K=\{0\}$ and $n \in \mathbb{N}$. We shall prove that $C_{K}^{n}(f)$ is monotone. Let $\mathcal{B} \in C_{f(K)}^{n}\left(S^{1}\right)$. Suppose that $\mathcal{B}=C_{n f(K)}^{S^{1}}$, by Proposition $5, C_{K}^{n}(f)^{-1}(\mathcal{B})$ is connected. In another case, by Lemma 3,

$$
C_{K}^{n}(f)^{-1}\left(C_{n f(K)}^{S^{1}}\right)=\pi_{K}^{I}\left(\bigcup_{p \in f^{-1}(f(K))} C_{n\{p\}}(I)\right)
$$

Then, $C_{n}(I)-\bigcup_{p \in f^{-1}(f(K))} C_{n\{p\}}(I)=\langle(0,1)\rangle_{n}$. Since $\left.f\right|_{(0,1)}$ is one to one, $\left.C_{K}^{n}(f)\right|_{\pi_{K}^{I}\left(\langle(0,1)\rangle_{n}\right)}$ is one to one. Therefore, $C_{K}^{n}(f)^{-1}(\mathcal{B})$ is connected.
Example 2. In the interval I, we identify the point 0 with the point $\frac{1}{3}$, and the point $\frac{2}{3}$ with the point 1 . Let g be the quotient mapping, note that g is onto and is not weakly confluent. Thus, by [12, Proposition 1, p. 784], $C_{n}(g)$ is not onto. Moreover, note that for no $K \in 2^{X}$, $C_{K}^{n}(g)$ is onto.
Theorem 3. Let $f: X \rightarrow Y$ be a mapping between continua and $n \in \mathbb{N}$. Then the following conditions are equivalent:
(1) f is a homeomorphism; (2) $C_{n}(f)$ is a homeomorphism; (3) $C_{K}^{n}(f)$ is a homeomorphism for each $K \in 2^{X}$; (4) $C_{K}^{n}(f)$ is a homeomorphism for some $K \in 2^{X}$.
Proof. By [12, Theorem 46, p. 801] (1) implies (2). Note that (2) implies (3) and (3) implies (4). By Theorem 1 and Theorem $2 f$ is bijective. Thus, f is a homeomorphism. Therefore (4) implies (1).

Theorem 4. Let $f: X \rightarrow Y$ be a mapping between continua and $n \in \mathbb{N}$. Consider the following conditions:
(1) f is a homeomorphism; (2) $C_{n}(f)$ is open; (3) $C_{K}^{n}(f)$ is open for each $K \in 2^{X}$;
(4) $C_{K}^{n}(f)$ is open for some $K \in 2^{X}$. Then,
$(1) \Leftrightarrow(2) \Leftrightarrow(3),(1) \Rightarrow(4),(2) \Rightarrow(4)$, and $(3) \Rightarrow(4)$.

Proof. Clearly each of the conditions (1), (2) or (3) implies (4). By [5, Corollary 3.3, p. 122], (1) and (2) are equivalent. By Theorem 3, we have that (2) implies (3). Now, we prove that (3) implies (2). Let \mathcal{U} be an open subset of $C_{n}(X)$.

First, we may assume that $X \in \mathcal{U}$. Since \mathcal{U} is an open subset of $C_{n}(X)$, there exists $\epsilon>0$ such that $B_{\epsilon}^{H_{d}}(X) \cap C_{n}(X) \subset \mathcal{U}$. Let $0<\delta<\epsilon$ such that $B_{\delta}^{H_{d}}(X) \cap C_{n}(X) \subset$ $\mathrm{Cl}_{C_{n}(X)}\left(B_{\delta}^{H_{d}}(X) \cap C_{n}(X)\right) \subset \mathcal{U}$. Moreover, using order arcs, it is easy to see that $B_{\delta}^{H_{d}}(X) \cap$ $C_{n}(X)$ is connected. By Proposition 4, there exists $K \in 2^{X}$ such that

$$
C_{n K}(X) \subset \mathrm{Cl}_{C_{n}(X)}\left(B_{\delta}^{H_{d}}(X) \cap C_{n}(X)\right) \subset \mathcal{U}
$$

By [2, Lemma 6.10], $\pi_{K}^{X}(\mathcal{U})$ is an open subset of $C_{K}^{n}(X)$ containing $C_{n K}^{X}$. Since $C_{K}^{n}(f)$ is an open mapping, $C_{K}^{n}(f)\left(\pi_{K}^{X}(\mathcal{U})\right)$ is an open subset of $C_{f(K)}^{n}(Y)$ containing $C_{n f(K)}^{Y}$. Moreover, note that $C_{K}^{n}(f)\left(\pi_{K}^{X}(\mathcal{U})\right)=\pi_{f(K)}^{Y}\left(C_{n}(f)(\mathcal{U})\right)$. Thus, $\left(\pi_{f(K)}^{Y}\right)^{-1}\left(\pi_{f(K)}^{Y}\left(C_{n}(f)(\mathcal{U})\right)\right)=C_{n}(f)(\mathcal{U})$ is an open subset of $C_{n}(Y)$.

Otherwise, if $X \notin \mathcal{U}$, set $K=X$ then $C_{n K}(X) \cap \mathcal{U}=\varnothing$. Hence, $\pi_{K}^{X}(\mathcal{U})$ and $C_{K}^{n}(f)\left(\pi_{K}^{X}(\mathcal{U})\right)$ are open subsets of $C_{K}^{n}(X)$ and $C_{f(K)}^{n}(Y)$, respectively. Note that $C_{n K}^{X} \notin \pi_{K}^{X}(\mathcal{U})$ and $C_{n f(K)}^{Y} \notin$ $C_{K}^{n}(f)\left(\pi_{K}^{X}(\mathcal{U})\right)$. Since $C_{K}^{n}(f)\left(\pi_{K}^{X}(\mathcal{U})\right)=\pi_{f(K)}^{Y}\left(C_{n}(f)(\mathcal{U})\right)$, we have

$$
\left(\pi_{f(K)}^{Y}\right)^{-1}\left(\pi_{f(K)}^{Y}\left(C_{n}(f)(\mathcal{U})\right)\right)=C_{n}(f)(\mathcal{U})
$$

is an open subset of $C_{n}(Y)$. Therefore, $C_{n}(f)$ is an open mapping.
Example 3. Let $f:[-1,1] \rightarrow I$ be the mapping defined by $f(t)=|t|$. Then, f is not a homeomorphism. If $K=\{0\}$, then $C_{K}^{n}(f)$ is an open mapping for every $n \geq 1$.
5. Monotone-type mappings. Let \mathbb{M} be any of the following classes of mappings: monotone, almost monotone, quasi-monotone, weakly monotone.

Theorem 5. Let $f: X \rightarrow Y$ be a mapping between continua and $n \in \mathbb{N}$. If $C_{K}^{n}(f) \in \mathbb{M}$ for each $K \in 2^{X}$, then $f \in \mathbb{M}$.

Proof. Let $B \in C(Y)-\{Y\}$ (with $\operatorname{Int}_{Y}(B) \neq \varnothing$ for the cases: almost monotone, quasimonotone and weakly monotone). If $f^{-1}(B)=X$, then $C_{n}(f)(X)=B$. Now suppose that $f^{-1}(B) \subsetneq X$, let $K \in 2^{X}$ such that $K \cap f^{-1}(B)=\varnothing$. Then $C_{n}(B)$ is a subcontinuum of $C_{n}(Y)\left(\right.$ with $\left.\operatorname{Int}_{C_{n}(Y)}\left(C_{n}(B)\right) \neq \varnothing\right)$ such that $C_{n}(B) \cap C_{n f(K)}(Y)=\varnothing$. Thus, we conclude that $\pi_{f(K)}^{Y}\left(C_{n}(B)\right)$ is a subcontinuum of $C_{f(K)}^{n}(Y)-\left\{C_{n f(K)}^{Y}\right\}\left(\operatorname{Int}_{C_{f(K)}^{n}(Y)}\left(\pi_{f(K)}^{Y}\left(C_{n}(B)\right)\right) \neq \varnothing\right)$.
(a) If $C_{K}^{n}(f)$ is monotone (or almost monotone), then $C_{K}^{n}(f)^{-1}\left(\pi_{f(K)}^{Y}\left(C_{n}(B)\right)\right)$ is connected. Since π_{K}^{X} is monotone, it follows that $\left(\pi_{K}^{X}\right)^{-1}\left(C_{K}^{n}(f)^{-1}\left(\pi_{f(K)}^{Y}\left(C_{n}(B)\right)\right)\right.$) is connected. Thus, $C_{n}(f)^{-1}\left(C_{n}(B)\right)=\left(\pi_{K}^{X}\right)^{-1}\left(C_{K}^{n}(f)^{-1}\left(\pi_{f(K)}^{Y}\left(C_{n}(B)\right)\right)\right)$ is connected. Then $C_{n}(f)^{-1}\left(C_{n}(B)\right)=$ $\left\langle f^{-1}(B)\right\rangle_{n}$. Hence, $f^{-1}(B)$ is connected. Therefore, f is monotone (or almost monotone).
(b) If $C_{K}^{n}(f)$ is quasi-monotone (or weakly monotone), then $C_{K}^{n}(f)^{-1}\left(\pi_{f(K)}^{Y}\left(C_{n}(B)\right)\right.$) has only finitely many components, $\mathfrak{L}_{1}, \ldots, \mathfrak{L}_{m}$ such that $C_{K}^{n}(f)\left(\mathfrak{L}_{i}\right)=\pi_{f(K)}^{Y}\left(C_{n}(B)\right)$ for each $i \in\{1, \ldots, m\}$. Now let L be a component of $f^{-1}(B)$. By (3) of Lemma $1, \pi_{K}^{X}\left(\langle L\rangle_{n}\right)$ is a component of $C_{K}^{n}(f)^{-1}\left(\pi_{f(K)}^{Y}\left(C_{n}(B)\right)\right)$. Consequently, each component of $f^{-1}(B)$ determines one component of $C_{K}^{n}(f)^{-1}\left(\pi_{f(K)}^{Y}\left(C_{n}(B)\right)\right)$. Therefore, $f^{-1}(B)$ has only finitely many components and by (3) of Proposition 2, $f(L)=B$. Hence, f is quasi-monotone (or weakly monotone).

Theorem 6. Let $f: X \rightarrow Y$ be a mapping between continua and $n \in \mathbb{N}$. Then the following conditions are equivalent:
(1) f is monotone; (2) $C_{n}(f)$ is monotone; (3) $C_{K}^{n}(f)$ is monotone for each $K \in 2^{X}$.

Moreover, each of them implies that
(4) $C_{K}^{n}(f)$ is monotone for some $K \in 2^{X}$.

Proof. By [12, Theorem 4, p.784], (1) and (2) are equivalent. By Proposition 1 and Theorem 5, (2) implies (3) and (3) implies (1), respectively. Clearly, (3) implies (4).

By Proposition 1 and Theorem 5, we have the following result.
Theorem 7. Let $f: X \rightarrow Y$ be a mapping between continua and $n \in \mathbb{N}$. We consider the following conditions:
(1) $f \in \mathbb{M}$; (2) $C_{n}(f) \in \mathbb{M}$; (3) $C_{K}^{n}(f) \in \mathbb{M}$ for each $K \in 2^{X}$; (4) $C_{K}^{n}(f) \in \mathbb{M}$ for some $K \in 2^{X}$. Then following implications hold:

$$
(2) \Rightarrow(3),(2) \Rightarrow(4),(3) \Rightarrow(4),(2) \Rightarrow(1), \text { and }(3) \Rightarrow(1)
$$

Example 1 shows us that there are continua X, Y and a mapping $f: X \rightarrow Y$ such that f is not monotone, almost monotone, quasi-monotone, or weakly confluent. But $C_{K}^{n}(f)$ is monotone for some $K \in 2^{X}$.

6. Strongly freely decomposable mappings.

Theorem 8. Let $f: X \rightarrow Y$ be a mapping between continua and let $n \in \mathbb{N}$. Then, $C_{K}^{n}(f)$ is almost monotone if and only if $C_{K}^{n}(f)$ is strongly freely decomposable.

Proof. Suppose that $C_{K}^{n}(f)$ is strongly freely decomposable. Since $C_{K}^{n}(X)$ is unicoherent (see [2, Theorem 2.1]), by [7, Theorem 4.2, p. 894] $C_{K}^{n}(f)$ is almost monotone. Since every almost monotone mapping is strongly freely decomposable, we have proved this theorem.

The next result follows from Theorem 7 for almost monotone mappings and Theorem 8 .
Corollary 2. Let $f: X \rightarrow Y$ be a mapping between continua and let $n \in \mathbb{N}$. If $C_{K}^{n}(f)$ is strongly freely decomposable, then f is an almost monotone mapping.
7. Confluent-type mappings. Let \mathbb{C} be any of the following classes of mappings: confluent, semi-confluent, weakly confluent, pseudo-confluent, joining.

Remark 1. Given a continuum X and $n \in \mathbb{N}$. If B is a subcontinuum of X and $x_{1}, \ldots, x_{n-1} \in$ X, then $\mathcal{B}=\left\langle\left\{x_{1}\right\}, \ldots,\left\{x_{n-1}\right\}, B\right\rangle_{n} \subset C_{n}(X)$ is homeomorphic to B. In particular, if B is an irreducible continuum, then \mathcal{B} is an irreducible continuum.

Theorem 9. Let $f: X \rightarrow Y$ be a mapping between continua and $n \in \mathbb{N}$. If $C_{K}^{n}(f) \in \mathbb{C}$ for each $K \in 2^{X}$, then $f \in \mathbb{C}$.

Proof. Let B be a proper subcontinuum (irreducible for the case of pseudo-confluent) of Y. Let D_{1} and D_{2} be two components of $f^{-1}(B)$. If $f^{-1}(B)=X$, then $C_{n}(f)(X)=B$. Now suppose that $f^{-1}(B) \subsetneq X$. Note that we can choose $K \in 2^{X}$ such that $K \cap f^{-1}(B)=\varnothing$ for which there exist $y_{1}, \ldots, y_{n-1} \in Y-(B \cup f(K))$ such that $y_{i} \neq y_{j}$ for $i \neq j$. Let M_{i} be a component of $f^{-1}\left(y_{i}\right)$ for each $i \in\{1, \ldots, n-1\}$. Then, by (3) of Lemma 1 , for each $i \in\{1,2\} \pi_{K}^{X}\left(\left\langle M_{1}, \ldots, M_{n-1}, D_{i}\right\rangle_{n}\right)$ is a component of $C_{K}^{n}(f)^{-1}\left(\pi_{f(K)}^{Y}(\mathcal{B})\right)$ where $\mathcal{B}=\left\langle\left\{x_{1}\right\}, \ldots,\left\{x_{n-1}\right\}, B\right\rangle_{n}$. Note that $\mathcal{B} \cap C_{n f(K)}(Y)=\varnothing$ (by Remark 1, this implies that $\pi_{f(K)}^{Y}(\mathcal{B})$ is a irreducible subcontinuum of $C_{f(K)}^{n}(Y)$ such that $\left.C_{n f(K)}^{Y} \notin \pi_{f(K)}^{Y}(\mathcal{B})\right)$.
(a) If $C_{K}^{n}(f)$ is confluent, then by (1) of Proposition 2 for each component D of $f^{-1}(B)$, $C_{n}(f)\left(\left\langle M_{1}, \ldots, M_{n-1}, D\right\rangle_{n}\right)=\mathcal{B}$. Hence, $f(D)=B$. Therefore, f is confluent.
(b) If $C_{K}^{n}(f)$ is semi-confluent, without loss of generality we can suppose that

$$
C_{K}^{n}(f)\left(\pi_{K}^{X}\left(\left\langle M_{1}, \ldots, M_{n-1}, D_{1}\right\rangle_{n}\right)\right) \subset C_{K}^{n}(f)\left(\pi_{K}^{X}\left(\left\langle M_{1}, \ldots, M_{n-1}, D_{2}\right\rangle_{n}\right)\right) .
$$

Then $C_{n}(f)\left(\left\langle M_{1}, \ldots, M_{n-1}, D_{1}\right\rangle_{n}\right) \subset C_{n}(f)\left(\left\langle M_{1}, \ldots, M_{n-1}, D_{2}\right\rangle_{n}\right)$. Thus, $f\left(D_{1}\right) \subset f\left(D_{2}\right)$. Therefore, f is semi-confluent.
(c) If $C_{K}^{n}(f)$ is weakly confluent, then by (2) of Proposition 2 , there exists a continuum \mathfrak{M} of $C_{n}(f)^{-1}(\mathcal{B})$ such that $C_{n}(f)(\mathfrak{M})=\mathcal{B}$. Since $\mathfrak{M} \cap C_{n K}(X)=\varnothing$, we can find a subset M_{n} of X, such that M_{n} is a component of $f^{-1}(B)$ and $\left\langle M_{1}, \ldots, M_{n}\right\rangle_{n} \cap \mathfrak{M} \neq \varnothing$. By (2) of Lemma $1,\left\langle M_{1}, \ldots, M_{n}\right\rangle_{n}$ is a component of $C_{n}(f)^{-1}(\mathcal{B})$. Thus, $\mathfrak{M}=\left\langle M_{1}, \ldots, M_{n}\right\rangle_{n}$ and $f\left(M_{n}\right)=B$. Therefore f is weakly confluent.
(d) If $C_{K}^{n}(f)$ is pseudo-confluent, then there exists a component \mathfrak{C} of $C_{K}^{n}(f)^{-1}\left(\pi_{f(K)}^{Y}(\mathcal{B})\right)$ such that $C_{K}^{n}(f)(\mathfrak{C})=\pi_{f(K)}^{Y}(\mathcal{B})$. Since $C_{n K}^{X} \notin \mathfrak{C}$, it follows that $\left(\pi_{K}^{X}\right)^{-1}(\mathfrak{C})$ is a component of $\left(\pi_{K}^{X}\right)^{-1}\left(C_{K}^{n}(f)^{-1}\left(\pi_{f(K)}^{Y}(\mathcal{B})\right)\right)=C_{n}(f)^{-1}(\mathcal{B})$. Note that $C_{n}(f)\left(\left(\pi_{K}^{X}\right)^{-1}(\mathfrak{C})\right)=\mathcal{B}$.
On the other hand, by [15, Lemma 1, p. 1578], $\bigcup\left(\pi_{K}^{X}\right)^{-1}(\mathfrak{C})$ has at most n components. But $\bigcup\left(\pi_{K}^{X}\right)^{-1}(\mathfrak{C}) \subset f^{-1}\left(y_{1}\right) \cup \cdots \cup f^{-1}\left(y_{n-1}\right) \cup f^{-1}(B)$. Moreover, $f^{-1}\left(y_{i}\right) \cap\left(\bigcup\left(\pi_{K}^{X}\right)^{-1}(\mathfrak{C})\right) \neq \varnothing$ for each $i=1, \ldots, n-1$ and $\left(\bigcup\left(\pi_{K}^{X}\right)^{-1}(\mathfrak{C})\right) \cap f^{-1}(B) \neq \varnothing$. Then $\bigcup\left(\pi_{K}^{X}\right)^{-1}(\mathfrak{C})$ has exactly n components, let's say C_{1}, \ldots, C_{n}. Without loss of generality, we assume that $C_{i} \subset f^{-1}\left(y_{i}\right)$ for $i=1, \ldots, n-1$ and $C_{n} \subset f^{-1}(B)$. Let C be the component of $f^{-1}(B)$ such that $C_{n} \subset C$. Claim. $f(C)=B$.
Let $b \in B$ and let $E=\left\{y_{1}, \ldots, y_{n-1}\right\} \cup b$. Then $E \in \mathcal{B}$. Hence, there exists $A \in\left(\pi_{K}^{X}\right)^{-1}(C)$ such that $f(A)=E$. This implies that $b \in f(A) \subset f\left(\bigcup\left(\pi_{K}^{X}\right)^{-1}(\mathfrak{C})\right)=f\left(C_{1}\right) \cup \cdots \cup f\left(C_{n}\right)$. If there exists $j \in\{1, \ldots, n-1\}$ such that $b \in f\left(C_{j}\right)$, then $b=y_{j}$, this is a contradiction. Hence, $b \in f\left(C_{n}\right)$. Thus, $b \in f(C)$. It follows that $B \subset f(C)$. Therefore, f is pseudo-confluent.
(e) If $C_{K}^{n}(f)$ is joining, then

$$
C_{K}^{n}(f)\left(\pi_{K}^{X}\left(\left\langle M_{1}, \ldots, M_{n-1}, D_{1}\right\rangle_{n}\right)\right) \cap C_{K}^{n}(f)\left(\pi_{K}^{X}\left(\left\langle M_{1}, \ldots, M_{n-1}, D_{2}\right\rangle_{n}\right)\right) \neq \varnothing .
$$

Thus, $C_{n}(f)\left(\left\langle M_{1}, \ldots, M_{n-1}, D_{1}\right\rangle_{n}\right) \cap C_{n}(f)\left(\left\langle M_{1}, \ldots, M_{n-1}, D_{2}\right\rangle_{n}\right) \neq \varnothing$ and, in consequence, $f\left(D_{1}\right) \cap f\left(D_{2}\right) \neq \varnothing$. Therefore, f is joining.

By Proposition 1 and Theorem 9, we have the following result.
Theorem 10. Let $f: X \rightarrow Y$ be a mapping between continua and $n \in \mathbb{N}$. We consider the following conditions:
(1) $f \in \mathbb{C}$; (2) $C_{n}(f) \in \mathbb{C}$; (3) $C_{K}^{n}(f) \in \mathbb{C}$ for each $K \in 2^{X}$; (4) $C_{K}^{n}(f) \in \mathbb{C}$ for some $K \in 2^{X}$. Then following implications hold:

$$
(2) \Rightarrow(3),(2) \Rightarrow(4),(3) \Rightarrow(4),(2) \Rightarrow(1), \text { and }(3) \Rightarrow(1) .
$$

Example 1 shows us that there are continua X, Y and a mapping $f: X \rightarrow Y$ such that f is not pseudo-confluent, weakly confluent, semi-confluent, or confluent, but $C_{K}^{n}(f)$ is confluent for some $K \in 2^{X}$.
7. OM, atriodic and light mappings. Let X be a continuum. Given a sequence $\left\{A_{m}\right\}_{m \in \mathbb{N}}$ of nonempty subsets of X we define $\lim \sup _{m \rightarrow \infty} A_{m}$ as the set of points $x \in X$ such that there exists a sequence of positive integers $m_{1}<m_{2}<\cdots$ and points $x_{m_{s}} \in A_{m_{s}}$ such that $\lim x_{m_{s}}=x$.

Lemma 4. ([12, Lemma 12, p. 788]) A mapping $f: X \rightarrow Y$ between continua is $O M$ if and only if for each point $y \in Y$ and each sequence of points $y_{m} \in Y$ converging to y, the set $\limsup \operatorname{sum}_{m \rightarrow \infty} f^{-1}\left(y_{m}\right)$ meets each component of $f^{-1}(y)$.

Theorem 11. Let $f: X \rightarrow Y$ be a mapping between continua and $n \in \mathbb{N}$. We consider the following conditions:
(1) f is $O M$; (2) $C_{n}(f)$ is $O M$; (3) $C_{K}^{n}(f)$ is $O M$ for each $K \in 2^{X}$; (4) $C_{K}^{n}(f)$ is OM for some $K \in 2^{X}$. Then following implications hold:

$$
(2) \Rightarrow(3),(2) \Rightarrow(4),(3) \Rightarrow(4),(2) \Rightarrow(1), \text { and }(3) \Rightarrow(1)
$$

Proof. Clearly, (2) implies (1) and (3) implies (4). By Proposition 1, (2) implies (3). Set $y \in Y$. Let $\left\{y_{i}\right\}_{i \in \mathbb{N}}$ be a sequence of points in Y converging to y. We consider $K \in 2^{X}$ such that $f(K) \cap\left\{y, y_{1}, \ldots\right\}=\varnothing$. Take $z_{1}, \ldots, z_{n-1} \in Y-\left(f(K) \cup\left\{y, y_{1}, \ldots\right\}\right)$ such that $z_{j} \neq z_{l}$ for $j \neq l$. Let M_{j} be a component of $f^{-1}\left(z_{j}\right)$ for each $j \in\{1, \ldots, n-1\}$ and let M_{n} be a component of $f^{-1}(y)$. By (3) of Lemma $1, \pi_{K}^{X}\left(\left\langle M_{1}, \ldots, M_{n}\right\rangle_{n}\right)$ is a component of $C_{K}^{n}(f)^{-1}\left(\pi_{f(K)}^{Y}\left(\left\{z_{1}, \ldots, z_{n-1}, y\right\}\right)\right)$. Since the sequence $\left\{\pi_{f(K)}^{Y}\left(\left\{z_{1}, \ldots, z_{n-1}, y_{i}\right\}\right)\right\}_{i \in \mathbb{N}}$ converges to $\pi_{f(K)}^{Y}\left(\left\{z_{1}, \ldots, z_{n-1}, y\right\}\right)$, by Lemma 4 ,

$$
\pi_{K}^{X}\left(\left\langle M_{1}, \ldots, M_{n}\right\rangle_{n}\right) \cap \limsup _{t \rightarrow \infty} C_{K}^{n}(f)^{-1}\left(\pi_{f(K)}^{Y}\left(\left\{z_{1}, \ldots, z_{n-1}, y_{t}\right\}\right)\right) \neq \varnothing
$$

Let $A \in\left\langle M_{1}, \ldots, M_{n}\right\rangle_{n}$ be such that $\pi_{K}^{X}(A) \in \lim \sup _{t \rightarrow \infty} C_{K}^{n}(f)^{-1}\left(\pi_{f(K)}^{Y}\left(\left\{z_{1}, \ldots, z_{n-1}, y_{t}\right\}\right)\right)$. Then, there exists a subsequence $\left\{\pi_{K}^{X}\left(A_{t_{r}}\right)\right\}_{r \in \mathbb{N}}$ such that for each $r \in \mathbb{N}, \pi_{K}^{X}\left(A_{t_{r}}\right) \in$ $C_{K}^{n}(f)^{-1}\left(\pi_{f(K)}^{Y}\left(\left\{z_{1}, \ldots, z_{n-1}, y_{t_{r}}\right\}\right)\right)$ and $\lim _{r \rightarrow \infty} \pi_{K}^{X}\left(A_{t_{r}}\right)=\pi_{K}^{X}(A)$. Let $a \in A \cap M_{n}$. Since $\lim _{r \rightarrow \infty} A_{t_{r}}=A_{n}$, there exists a sequence $\left\{a_{t_{r}}\right\}_{r \in \mathbb{N}}$, with $a_{t_{r}} \in A_{t_{r}}$, such that it converges to $a \in A$. Thus, there exists a positive integer m_{0} such that $f\left(a_{t_{r}}\right)=y_{t_{r}}$ for each $r \geq m_{0}$. Hence $a \in A \cap M_{n} \cap \limsup _{t \rightarrow \infty} f^{-1}\left(y_{t}\right)$. Therefore, by Lemma 4, f is OM.

The mapping $f: X \rightarrow Y$ of Example 1 is not OM but $C_{K}^{n}(f)$ is OM for some $K \in 2^{X}$.
Theorem 12. Let $f: X \rightarrow Y$ be a mapping between continua and $n \in \mathbb{N}$. We consider the following conditions:
(1) f is atriodic; (2) $C_{n}(f)$ is atriodic; (3) $C_{K}^{n}(f)$ is atriodic for each $K \in 2^{X}$; (4) $C_{K}^{n}(f)$ is atriodic for some $K \in 2^{X}$. Then following implications hold:

$$
(2) \Rightarrow(3),(2) \Rightarrow(4),(3) \Rightarrow(4),(2) \Rightarrow(1), \text { and }(3) \Rightarrow(1)
$$

Proof. Note that (2) implies (1) and (3) implies (4). By Proposition 1, (2) implies (3). Let B be a proper subcontinuum of Y. If $f^{-1}(B)=X$, then $C_{n}(f)(X)=B$. Now suppose that $f^{-1}(B) \subsetneq X$, let $K \in 2^{X}$ such that $K \cap f^{-1}(B)=\varnothing$. We consider $y_{1}, \ldots, y_{n-1} \in$ $Y-(B \cup f(K))$ with $y_{i} \neq y_{j}$ for $i \neq j$. Set $\mathcal{B}=\left\langle\left\{y_{1}\right\}, \ldots,\left\{y_{n-1}\right\}, B\right\rangle_{n}$. Since $C_{K}^{n}(f)$ is an atriodic mapping, there exist two components \mathfrak{D}_{1} and \mathfrak{D}_{2} of $C_{K}^{n}(f)^{-1}\left(\pi_{f(K)}^{Y}(\mathcal{B})\right)$ such that:
(a) $C_{K}^{n}(f)\left(\mathfrak{D}_{1}\right) \cup C_{K}^{n}(f)\left(\mathfrak{D}_{1}\right)=\pi_{f(K)}^{Y}(\mathcal{B})$,
(b) for each component \mathfrak{C} of $C_{K}^{n}(f)^{-1}\left(\pi_{f(K)}^{Y}(\mathcal{B})\right)$, we have either $C_{K}^{n}(f)(\mathfrak{C})=\pi_{f(K)}^{Y}(\mathcal{B})$, or $C_{K}^{n}(f)(\mathfrak{C}) \subset C_{K}^{n}(f)\left(\mathfrak{D}_{1}\right)$ or $C_{K}^{n}(f)(\mathfrak{C}) \subset C_{K}^{n}(f)\left(\mathfrak{D}_{2}\right)$.

For each $j=1,2$, we have that $\left(\pi_{K}^{X}\right)^{-1}\left(\mathfrak{D}_{j}\right) \cap C_{n K}(X)=\varnothing$. Then there exist $M_{1}^{j}, \ldots, M_{n}^{j}$ of X such that M_{i}^{j} is a component of $f^{-1}\left(y_{i}\right)$ for each $i=1, \ldots, n-1$ and M_{n}^{j} is a component of $f^{-1}(B)$. We may assume that $\mathfrak{D}_{j} \cap \pi_{K}^{X}\left(\left\langle M_{1}^{j}, \ldots, M_{n}^{j}\right\rangle_{n}\right) \neq \varnothing$. Since \mathfrak{D}_{j} is a component of $C_{K}^{n}(f)^{-1}\left(\pi_{f(K)}^{Y}(\mathcal{B})\right)$, by (3) of Lemma 1, $\mathfrak{D}_{j}=\pi_{K}^{X}\left(\left\langle M_{1}^{j}, \ldots, M_{n}^{j}\right\rangle_{n}\right)$. Thus, by (a), $f\left(M_{n}^{1}\right) \cup$ $f\left(M_{n}^{2}\right)=B$. Now, let C be a component of $f^{-1}(B)$. Since $\pi_{K}^{X}\left(\left\langle M_{1}^{1}, \ldots, M_{n-1}^{1}, C\right\rangle_{n}\right)$ is a
component of $C_{K}^{n}(f)^{-1}\left(\pi_{f(K)}^{Y}(\mathcal{B})\right)$, by (a), we have either $f(C)=B$, or $f(C) \subset f\left(M_{n}^{1}\right)$ or $f(C) \subset f\left(M_{n}^{2}\right)$.

Theorem 13. Let $f: X \rightarrow Y$ be a mapping between continua and $n \in \mathbb{N}$. We consider the following conditions:
(1) f is light; (2) $C_{n}(f)$ is light; (3) $C_{K}^{n}(f)$ is light for each $K \in 2^{X}$; (4) $C_{K}^{n}(f)$ is light for some $K \in 2^{X}$. Then following implications hold:

$$
(2) \Rightarrow(1),(3) \Rightarrow(1), \text { and }(3) \Rightarrow(4) .
$$

Proof. Clearly, (3) implies (4). It follows from [11, Theorem 3.10, p. 185] that (2) implies (1). Now, suppose that $C_{K}^{n}(f)$ is a light mapping. To prove that f is a light mapping, we may assume that exists $y \in Y$ such that $f^{-1}(y)$ is not totally disconnected. Note that $f^{-1}(y) \neq$ X, in the contrary case, $C_{K}^{n}(f)$ is a constant mapping. Now, let M be a nondegenerate component of $f^{-1}(y)$. Let $K \in 2^{X}$ such that $K \cap f^{-1}(y)=\varnothing$ and let $y_{1}, \ldots, y_{n-1} \in Y-$ $(f(K) \cup\{y\})$ such that $y_{i} \neq y_{j}$ for $i \neq j$. Let M_{i} be a component of $f^{-1}\left(y_{i}\right)$ for each $i=$ $1, \ldots, n-1$. By (3) of Lemma 1, $\pi_{K}^{X}\left(\left\langle M_{1}, \ldots, M_{n-1}, M\right\rangle_{n}\right)$ is a subcontinuum nondegenerate of $C_{K}^{n}(f)^{-1}\left(\pi_{f(K)}^{Y}\left(\left\{y_{1}, \ldots, y_{n-1}, y\right\}\right)\right)$, this is a contradiction.

Example 4. Let $f:[-1,1] \rightarrow I$ be the mapping defined by $f(t)=|t|$. Then, f is light. If $K=\{1\}$, then $C_{K}^{n}(f)$ is not light for every $n \geq 1$.

Proof. Since $f^{-1}(f(K))=\{-1,1\}$, by Lemma 3, $C_{K}^{n}(f)^{-1}\left(C_{n f(K)}^{I}\right)$ is nondegenerate. By Proposition 5, $C_{K}^{n}(f)^{-1}\left(C_{n f(K)}^{I}\right)$ is a connected subset of $C_{K}^{n}([-1,1])$. Therefore, $C_{K}^{n}(f)$ is not light.

REFERENCES

1. J.G. Anaya, F. Capulín, M.A. Lara, F. Orozco-Zitli, Induced mappings between quotient spaces of n-fold hyperspaces of continua, Glas. Mat., III. Ser. 51 (2016), №2, 475-490. doi:10.3336/gm.51.2.13
2. J.G. Anaya, E. Castañeda-Alvarado, J.A. Martínez-Cortez, On the hyperspace $C_{n}(X) / C_{n K}(X)$, accepted for publication in Comment. Math. Univ. Carolin.
3. F. Barragán, Induced maps on n-fold symmetric product suspensions, Topology Appl. 158 (2011), №10, 1192-1205. doi.org/10.1016/j.topol.2011.04.006
4. F. Barragán, S. Macías, J.F. Tenorio, More on induced maps on n-fold symmetric product suspensions, Glas. Mat., III. Ser. 50 (2015), №2, 489-512. doi:10.3336/gm.50.2.15
5. J. Camargo, Openness of the induced map $C_{n}(f)$, Bol. Mat. (N.S.) 16 (2009), №2, 115-123. https: // revistas.unal.edu.co/index.php/bolma/article/view/40781
6. J. Camargo, Some relationships between induced mappings, Topology Appl. 157 (2010), №13, 2038-2047. doi.org/10.1016/j.topol.2010.04.014
7. J. Camargo, S. Macías, On freely decomposable maps, Topology Appl. 159 (2012), №3, 891-899. doi.org/10.1016/j.topol.2011.12.006
8. J. Camargo, S. Macías, On strongly freely decomposable and induced maps, Glas. Mat., III. Ser. 48 (2013), №2, 429-442. doi:10.3336/gm.48.2.14
9. J. Camargo, S. Macías, Quotients of n-fold hyperspaces, Topology Appl. 197 (2016) 154-166. doi.org/10.1016/j.topol.2015.10.001
10. E. Castañeda-Alvarado, F. Oozco-Zitli, J. Sánchez-Martínez, Induced mappings between quotient spaces of symmetric products of continua, Topology Appl. 163 (2014), 66-76. doi.10.1016/j.topol.2013.10.007
11. J.J. Charatonik, W.J. Charatonik, Lightness of induced mappings, Tsukuba J. Math. 22 (1998), №1, 179-192. doi:10.21099/tkbjm/1496163479
12. J.J. Charatonik, A. Illanes, S. Macías, Induced mappings on the hyperspaces $C_{n}(X)$ of a continuum X, Houston J. Math. 28 (2002), №4, 781-805.
13. J. Dugundji, Topology, ser. Allyn and Bacon series in advanced mathematics. Allyn and Bacon, 1966. https:// books.google.com.mx/books?id=FgFRAAAAMAAJ
14. R. Escobedo, Ma. de J. López and S. Macías, On the hyperspace suspension of a continuum, Topology Appl. 138 (2004), 109-124. doi.org/10.1016/j.topol.2003.08.024
15. R. Hernández-Gutiérrez, V. Martínez de la Vega, Rigidity of symmetric products, Topology Appl. 160 (2013), №13, 1577-1587. doi.org/10.1016/j.topol.2013.06.001
16. H. Hosokawa, Induced mappings on hyperspaces, Tsukuba J. Math. 21 (1997), №1, 239-259. doi:10.21099/tkbjm/1496163175
17. H. Hosokawa, Induced mappings on hyperspaces II, Tsukuba J. Math. 21 (1997), №3, 773-783. doi:10.21099/tkbjm/1496163380
18. A. Illanes, The hyperspace $C_{2}(X)$ for a finite graph X is unique, Glas. Mat., III. Ser. 37 (2002), №2, 347-363. https:// web.math.pmf.unizg.hr/glasnik/vol_37/no2_11.html
19. A. Illanes, A model for the hyperspace $C_{2}\left(S^{1}\right)$, Quest. Answers Gen. Topology 22 (2004), №2 117-130.
20. A. Illanes, S.B. Nadler Jr., Hyperspaces: fundamentals and recent advances, ser. Chapman \& Hall/CRC Pure and Applied Mathematics. Taylor \& Francis, 1999. https:// books.google.com.mx/books?id=TWo2h710HysC
21. J.C. Macías, On the n-fold pseudo-hyperspace suspension of continua, Glas. Mat., III. Ser. 43 (2008), №2, 439-449. doi:10.3336/gm.43.2.14
22. S. Macías, On the hyperspaces $C_{n}(X)$ of a continuum $X, I I$, Topology Proc. 25 (2000), 255-276. http:// topology.nipissingu.ca/tp/reprints/v25/tp25118.pdf
23. S. Macías, On the hyperspaces $C_{n}(X)$ of a continuum X, Topology Appl. 109 (2001), 237-256. doi.org/10.1016/S0166-8641(99)00151-0
24. S. Macías, On the n-fold hyperspace suspension of continua, Topology Appl. 138 (2004), №1-3, 125-138. doi.org/10.1016/j.topol.2003.08.023
25. S. Macías, On the n-fold hyperspace suspension of continua. II, Glas. Mat., III. Ser. 41 (2006), №2, 335-343. doi.org/10.3336/gm.41.2.16
26. T. Maćkowiak, Continuous mappings on continua, Dissertationes Math. (RozprawyMat.) 158 (1979). http:// eudml.org/doc/268590
27. S.B. Nadler Jr., Hyperspaces of Sets. A text with research questions, ser. Monographs and Textbooks in Pure and Applied Mathematics. Dekker, 1978. https:// books.google.com.mx/books?id=XTIOPQAACAAJ
28. S.B. Nadler Jr., A fixed point theorem for hyperspace suspensions, Houston J. Math. 5 (1979), 125-132.
29. S.B. Nadler Jr., Continuum Theory, An introduction, ser. Chapman \& Hall/CRC Pure and Applied Mathematics. Taylor \& Francis, 1992. https:// books.google.com.mx/books?id=QPVrKhv36ZAC

Universidad Autónoma del Estado de México, Facultad de Ciencias,
Instituto Literario No. 100, Col. Centro, C.P. 50000, Toluca, Estado de México, México
jgao@uaemex.mx
eca@uaemex.mx
jamartinezc@uaemex.mx

