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In the paper, we use the adjoint operator method as well as technique of symmetric tensor
products to extended the Fourier transformation onto the spaces of so-called polynomial rapidly
decreasing test functions and polynomial tempered distributions. In such spaces it is possible to
solve some Cauchy problems, for example, infinite dimensional heat equation associated with
the Gross Laplacian.

Algebraic and differential properties of the polynomial Fourier transformation are investi-
gated. We prove some analogical to classical properties of this map. Unlike to the classic case,
the spaces of polynomial test and generalized functions have algebraic structure. We prove that
polynomial Fourier transformation acts as homomorphism of appropriate algebras. It is clear
that the classical analogue of such property is absent.

1. Introduction. Integral transformations of test and generalized functions have found
a wide range of applications in the theory of differential equations, mathematical physics
and other branches of mathematics. Various types of such transforms, their properties and
applications have been presented in [2, 11].

However, a numerous problems in applied mathematics require a polynomial (nonlinear)
generalization of distribution concept. Besides, an algebraic structure of a space of distri-
butions is desirable, which is needed, for example, in quantum field theory [1].

A new approach, that applies the theory of locally convex tensor products together with
techniques on symmetric tensor products, is proposed in the papers [5, 9] in order to obtain
different polynomial extensions of spaces of ultradifferentiable functions and ultradistributi-
ons. In such spaces it is possible to construct a functional calculus for functions of infinity
many variables [14] and to solve some Cauchy problems, for example, infinite dimensional
heat equation associated with the Gross Laplacian [13].

Note, that there are other known and widely used infinite-dimensional generalizations of
classical distribution spaces which are based on modern Gaussian analysis methods as well
as the concept of Gelfand triple (see e.g. [6, 8, 10]).

In [5, 15] the Fourier and Laplace transformations on the space of polynomial ultradi-
stributions are considered, in [15] an appropriate Paley-Wiener-type theorem is proved.
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In this paper, we extend the Fourier transformation on the spaces of polynomial rapidly
decreasing test functions and polynomial tempered distributions and prove some algebraic
and differential properties of the transformation.

It is known [16], that the Fourier transformation on the Schwartz space of rapidly decreasi-
ng functions (as well as on space of tempered distributions) has the following properties
DmF [f ] = F [(it)mf ] and F [Dmf ] = (−is)mF [f ], where Dm denotes the differentiation
operator of the order m ∈ Z+. In the paper, we prove analogical properties with m = 1 for
(generalized) polynomial Fourier transformation (see Theorems 3, 4 and Corollaries 1, 2).
On the other hand, classical Fourier transformation maps a convolution of distributions (if
it exists) into a multiplication of respect images, i.e. F [f ∗ g] = F [f ]F [g]. In Theorem 6 and
Corollary 3 we prove the polynomial analogue of this property. The spaces of polynomial
test and generalized functions have another algebraic operation, so called Wick product (see
formulas (5) and (6)). It is proved, that (generalized) polynomial Fourier transformation acts
as homomorphism of appropriate algebras (see Theorem 7 and Corollary 4). It is clear that
the classical analogue of this property is absent.
2. Preliminaries and definitions. In what follows L (X ,Y) denotes the space of all
continuous linear operators acting from a locally convex space X to another such space Y ,
endowed with the topology of uniform convergence on bounded subsets of X . Let L (X ) :=
L (X ,X ). The identity operator in L (X ) always be denoted by IX . The dual space X ′ :=
L (X ,C) is endowed with strong topology. The pairing between elements of X ′ and X we
denote ⟨ · , · ⟩.

Let X⊗n (resp. X ⊗̂n), n ∈ N, be the usual (resp. symmetric) nth tensor degree of X ,
completed in the projective tensor topology. For any x ∈ X we denote x⊗n := x⊗ · · · ⊗ x︸ ︷︷ ︸

n

∈

X ⊗̂n, n ∈ N. Set X ⊗̂0 := C, x⊗0 := 1 ∈ C.
Let Sp be the Banach space of infinitely differentiable functions on R with the finite norm

∥φ∥p := sup
t∈R

sup
0≤m≤p

(1 + t2)p/2|Dmφ(t)|, p ∈ Z+ := {0} ∪ N,

where Dm denotes the differentiation operator of the order m ∈ Z+. Each inclusion Sp+1 ⊂
Sp, p ∈ Z+, is compact (see [16, 17]). So the Schwartz space S :=

∩
p∈Z+

Sp of all infinitely
differentiable rapidly decreasing functions on R we can endow with the topology of projecti-
ve limit lim prp Sp with respect to these inclusions. As a consequence we obtain that S is
Montel nuclear FS-space, and its dual space S ′ of tempered distributions is Montel nuclear
DFS-space (see [17]). Note that strong topology on S ′ coincides with Mackey topology and
inductive limit topology (see [12, IV.4, IV.5]).

To define the locally convex space Pn(S ′) of all continuous n-homogeneous polynomials
on S ′ we use the linear topological isomorphism Pn(S ′) ≃ (S ′⊗̂n)′ described in [4]. Indeed,
for any functional pn ∈ (S ′⊗̂n)′ let us define an n-homogeneous polynomial Pn ∈ Pn(S ′) by
the formula

Pn(f) := ⟨ pn, f⊗n ⟩, f ∈ S ′. (1)
The space Pn(S ′) will be endowed with the locally convex topology b of uniform convergence
on bounded subsets of S ′. By definition P0(S ′) := C. Define the space P(S ′) of all continuous
polynomials on S ′ as complex linear span of all Pn(S ′), n ∈ Z+, and endow it with the
topology b. Let P ′(S ′) be its strong dual space. In what follows we use the notations

Γ(S) :=
⊕
n∈Z+

S⊗̂n and Γ(S ′) := ×
n∈Z+

S ′⊗̂n,
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where
⊕

and × denote direct sum and cartesian product respectively. Note that we consider
the case when the elements of the direct sum consist of finite but not fixed number of addends.

From the results of the article [9] it follows that there exist the following linear topological
isomorphisms

Υn : Pn(S ′) −→ S⊗̂n, Ψn : Pn(S) −→ S ′⊗̂n, (2)

and
Υ: P(S ′) −→ Γ(S), Ψ: P ′(S ′) −→ Γ(S ′). (3)

Elements of the spaces P(S ′) and P ′(S ′) we call the polynomial rapidly decreasing test
functions and polynomial tempered distributions respectively. In what follows elements of
the spaces Γ(S) and Γ(S ′) will be respectively written as

m⊕
n=0

pn = (p0, p1, . . . , pm, 0, . . . ) and ×
n∈Z+

un = (u0, u1, . . . , un, . . . )

for some m ∈ N, where pk ∈ S⊗̂k and uk ∈ S ′⊗̂k, k ∈ Z+. To simplify, we write
(
pn
)

and(
un

)
instead of

⊕m
n=0 pn and ×n∈Z+ un respectively.

Note that the following systems of elements{(
φ⊗n

)
: φ ∈ S

}
,

{(
f⊗n

)
: f ∈ S ′} (4)

are total sets in the spaces Γ(S) and Γ(S ′) respectively.
The spaces P(S ′) and P ′(S ′) are multiplicative algebras with respect to the convolution

type operations

P ⋄Q :=
∑
n∈Z+

n∑
m=0

Pm ·Qn−m and U ⋄ V := ×
n∈Z+

n∑
m=0

Um · Vn−m (5)

respectively, where

P =
∑
n∈Z+

Pn, Q =
∑
n∈Z+

Qn, P,Q ∈ P(S ′), Pn, Qn ∈ Pn(S ′),

U = ×
n∈Z+

Un, V = ×
n∈Z+

Vn, U, V ∈ P ′(S ′), Un, Vn ∈ Pn(S).

Note, that in the above formulas Pm · Qn−m and Um · Vn−m denote the usual pointwise
multiplication of polynomials.

The direct sum Γ(S) and the cartesian product Γ(S ′) are local convex algebras with
respect to the convolution type operations

p ⋄ q :=
⊕
n∈Z+

n∑
m=0

pm ⊗̂ qn−m and u ⋄ v := ×
n∈Z+

n∑
m=0

um ⊗̂ vn−m (6)

respectively, where p =
(
pn
)
, q =

(
qn
)
, p, q ∈ Γ(S), pn, qn ∈ S⊗̂n, u =

(
un

)
, v =

(
vn
)
,

u, v ∈ Γ(S ′), un, vn ∈ S ′⊗̂n.
Note that, the convolution type operations (5), (6) play an inportant role in stochastic

analysis, they are called the Wick product in the literature (see, e.g., [3, 7]).
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The mappings (3) act as algebraic isomorphisms, i.e.

Υ:
{
P(S ′), ⋄

}
−→

{
Γ(S), ⋄

}
, Ψ:

{
P ′(S ′), ⋄

}
−→

{
Γ(S ′), ⋄

}
.

3. Polynomial generalization of the Fourier transform. As is well known the usual
Fourier transformation

F : S ∈ φ(t) 7−→ [Fφ](ξ) :=
1√
2π

∫
R
e−itξφ(t) dt ∈ S

acts as continuous bijection from the space S onto itself. Let F ′ ∈ L (S ′) be the generalized
Fourier transformation on the space S ′, i.e. the map defined by the formula ⟨F ′f, φ ⟩ =
⟨ f, Fφ ⟩, f ∈ S ′, φ ∈ S.

For each natural n we define the operators F⊗n ∈ L (S⊗̂n) and F ′⊗n ∈ L (S ′⊗̂n) as linear
and continuous extensions of mappings

φ1 ⊗̂ . . . ⊗̂φn 7−→ Fφ1 ⊗̂ . . . ⊗̂Fφn, φi ∈ S, i = 1, . . . , n,

f1 ⊗̂ . . . ⊗̂ fn 7−→ F ′f1 ⊗̂ . . . ⊗̂F ′fn, fi ∈ S ′, i = 1, . . . , n,

respectively, and let F⊗0 := F ′⊗0 := IC by definition.
We define the operators F⊗ ∈ L

(
Γ(S)

)
and F ′⊗ ∈ L

(
Γ(S ′)

)
as follows:

F⊗ := ×
n∈Z+

F⊗n : Γ(S) ∋ p =
(
pn
)

7−→ F⊗p :=
(
F⊗npn

)
∈ Γ(S),

F ′⊗ := ×
n∈Z+

F ′⊗n : Γ(S ′) ∋ u =
(
un

)
7−→ F ′⊗u :=

(
F ′⊗nun

)
∈ Γ(S ′),

where pn ∈ S⊗̂n, un ∈ S ′⊗̂n.

Theorem 1. The following diagrams

Pn(S ′)

Υn
��

F⊗n
P // Pn(S ′)

Υn
��

Pn(S)

Ψn
��

F ′⊗n
P // Pn(S)

Ψn
��

S⊗̂n

Υ−1
n

OO

F⊗n
// S⊗̂n,

Υ−1
n

OO

S ′⊗̂n

Ψ−1
n

OO

F ′⊗n
// S ′⊗̂n

Ψ−1
n

OO

uniquely define linear continuous operators F⊗n
P ∈ L

(
Pn(S ′)

)
and F ′⊗n

P ∈ L
(
Pn(S)

)
, which

are adjoint to each other.

Proof. Isomorphisms (2) imply that above diagrams are commutative. So, linear mappings
F⊗n
P := Υ−1

n ◦F⊗n ◦Υn and F ′⊗n
P := Ψ−1

n ◦F ′⊗n ◦Ψn uniquely can be defined by the following
equalities (see formula (1))[

F⊗n
P Pn

]
(f) := ⟨pn, F ′⊗nf⊗n⟩, f ∈ S ′, Pn ∈ Pn(S ′),[

F ′⊗n
P Un

]
(φ) := ⟨un, F⊗nφ⊗n⟩, φ ∈ S, Un ∈ Pn(S),

where pn := ΥnPn ∈ S⊗̂n ≃ (S ′⊗̂n)′, un := ΨnUn ∈ S ′⊗̂n ≃ (S⊗̂n)′.
What is left to show that the operators F⊗n and F ′⊗n are continuous. Note, that these

operators are mutually adjoint, i.e.

⟨F ′f1 ⊗̂ . . . ⊗̂F ′fn, φ1 ⊗̂ . . . ⊗̂φn⟩ = ⟨f1 ⊗̂ . . . ⊗̂ fn, Fφ1 ⊗̂ . . . ⊗̂Fφn⟩,
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where f1 ⊗̂ . . . ⊗̂ fn ∈ S ′⊗̂n, φ1 ⊗̂ . . . ⊗̂φn ∈ S⊗̂n, fi ∈ S ′, φi ∈ S, i = 1, . . . , n.
The continuity of the Fourier transformation on S is well known (see [16]): for anym ∈ Z+

there exists a constant Cm such that ∥Fφ∥m ≤ Cm∥φ∥m+2. So, for any continuous seminorm
q1⊗ . . .⊗ qn on S⊗n there exist constants Ci1 , . . . , Cin and indexes mi1 , . . . ,min , i = 1, . . . , k,
such that

(q1 ⊗ . . .⊗ qn)(F
⊗nφ) = inf

k∑
i=1

∥Fφi1∥mi1
· · · ∥Fφin∥min

≤

≤ inf
k∑

i=1

Ci1∥φi1∥mi1
+2 · · ·Cin∥φin∥min+2 = C(p1 ⊗ . . .⊗ pn)(φ),

where the infimum is taken over all representations of an element φ ∈ S⊗n in the form
φ =

∑k
i=1 φi1 ⊗ · · · ⊗ φin , φij ∈ S, i = 1, . . . , k, j = 1, . . . , n. It implies the continuity of the

operator F⊗n : S⊗n −→ S⊗n.
The symmetrization projector

sn : S⊗n ∋ φ1 ⊗ · · · ⊗ φn 7−→ φ1⊗̂ · · · ⊗̂φn :=
1

n!

∑
σ

φσ(1) ⊗ · · · ⊗ φσ(n),

where the sum is taken over all permutations σ of the set {1, 2, . . . , n}, is continuous. It easy
to see, that sn ◦F⊗n = F⊗n ◦ sn, since the set of symmetric tensors is invariant with respect
to the action of the operator F⊗n. Hence, the restriction F⊗n : S⊗̂n −→ S⊗̂n is continuous.

The proof of continuity of the adjoint operator F ′⊗n : S ′⊗̂n −→ S ′⊗̂n is similar.

Theorem 2. The following diagrams

P(S ′)

Υ
��

F⊗
P // P(S ′)

Υ
��

P ′(S ′)

Ψ
��

F ′⊗
P // P ′(S ′)

Ψ
��

Γ(S)

Υ−1

OO

F⊗
// Γ(S),

Υ−1

OO

Γ(S ′)

Ψ−1

OO

F ′⊗
// Γ(S ′)

Ψ−1

OO

uniquely define linear continuous operators F⊗
P ∈ L

(
P(S ′)

)
, F ′⊗

P ∈ L
(
P ′(S ′)

)
, which are

adjoint to each other.

Proof. Isomorphisms (3) imply that above diagrams are commutative. So, linear mappings
F⊗
P := Υ−1 ◦ F⊗ ◦ Υ and F ′⊗

P := Ψ−1 ◦ F ′⊗ ◦ Ψ uniquely can be defined by the following
equalities

F⊗
P P :=

∑
n∈Z+

F⊗n
P Pn, F ′⊗

P U := ×
n∈Z+

F ′⊗n
P Un,

where

P =
∑
n∈Z+

Pn ∈ P(S ′), Pn ∈ Pn(S ′), U = ×
n∈Z+

Un ∈ P ′(S ′), Un ∈ Pn(S).

Theorem 1 implies the following equalities⟨
U,F⊗

P P
⟩
=

⟨
×

n∈Z+

Un,
∑
n∈Z+

F⊗n
P Pn

⟩
=

∑
n∈Z+

⟨
Un, F

⊗n
P Pn

⟩
=

=
∑
n∈Z+

⟨
F ′⊗n
P Un, Pn

⟩
=

⟨
×

n∈Z+

F ′⊗n
P Un,

∑
n∈Z+

Pn

⟩
=

⟨
F ′⊗
P U, P

⟩
,
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therefore the operators F⊗
P and F ′⊗

P are mutually adjoint.
In the proof of the Theorem 1 we have shown continuity of the operators F⊗n

P and F ′⊗n
P .

Hence, from the definitions of locally convex topologies of direct sum and cartesian product
it follows the continuity of the operators F⊗

P ∈ L
(
P(S ′)

)
and F ′⊗

P ∈ L
(
P ′(S ′)

)
.

The mapping F⊗
P ∈ L

(
P(S ′)

)
(respectively F ′⊗

P ∈ L
(
P ′(S ′)

)
), defined in Theorem 2,

we will call (respectively generalized) polynomial Fourier transformation.

4. Auxilary operations. Let D′ ∈ L (S ′) be the operator of generalized differentiation, i.e.
the map defined by the formula ⟨D′f, φ ⟩ = −⟨ f,Dφ ⟩, f ∈ S ′, φ ∈ S, where D denotes the
operator of usual differentiation in S. Let us extend the operatorsD ∈ L (S) andD′ ∈ L (S ′)
onto the spaces Γ(S) and Γ(S ′) respectively. Namely, define the operators D ∈ L

(
Γ(S)

)
and

D′ ∈ L
(
Γ(S ′)

)
by the following formulas

Dp :=
⊕
n∈Z+

D{⊗}nφ⊗n, p =
(
φ⊗n

)
∈ Γ(S), φ ∈ S,

D′u := ×
n∈Z+

D′{⊗}nf⊗n, u =
(
f⊗n

)
∈ Γ(S ′), f ∈ S ′,

where D{⊗}0 and D′{⊗}0 are null operators and

D{⊗}nφ⊗n :=
n∑

j=1

φ⊗(j−1) ⊗ Dφ ⊗ φ⊗(n−j), n ∈ N

D′{⊗}nf⊗n :=
n∑

j=1

f⊗(j−1) ⊗ D′f ⊗ f⊗(n−j), n ∈ N.

Let us define the operator M ∈ L (S) of multiplication on the independent variable by
M : S ∋ φ(t) 7−→ −itφ(t) ∈ S and let M ′ ∈ L (S ′) be its adjoint map, i.e. ⟨M ′f, φ⟩ =
⟨f,Mφ⟩, f ∈ S ′, φ ∈ S. Next we extend these operators onto the spaces Γ(S) and Γ(S ′) in
analogous way. Namely, define the operators M ∈ L

(
Γ(S)

)
and M′ ∈ L

(
Γ(S ′)

)
by

Mp :=
⊕
n∈Z+

M{⊗}nφ⊗n, p =
(
φ⊗n

)
∈ Γ(S), φ ∈ S,

M′u := ×
n∈Z+

M ′{⊗}nf⊗n, u =
(
f⊗n

)
∈ Γ(S ′), f ∈ S ′,

where M{⊗}0 and M ′{⊗}0 are null operators and

M{⊗}nφ⊗n :=
n∑

j=1

φ⊗(j−1) ⊗ Mφ ⊗ φ⊗(n−j), n ∈ N

M ′{⊗}nf⊗n :=
n∑

j=1

f⊗(j−1) ⊗ M ′f ⊗ f⊗(n−j), n ∈ N.

The following commutative diagrams

P(S ′)

Υ
��

DP MP // P(S ′)

Υ
��

P ′(S ′)

Ψ
��

D′
P M′

P // P ′(S ′)

Ψ
��

Γ(S)

Υ−1

OO

D M // Γ(S),

Υ−1

OO

Γ(S ′)

Ψ−1

OO

D′ M′
// Γ(S ′)

Ψ−1

OO
(7)
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uniquely define linear continuous operators DP := Υ−1 ◦ D ◦ Υ ∈ L (P(S ′)), MP := Υ−1 ◦
M ◦Υ ∈ L (P(S ′)), D′

P := Ψ−1 ◦D′ ◦Ψ ∈ L (P ′(S ′)) and M′
P := Ψ−1 ◦M′ ◦Ψ ∈ L (P ′(S ′)).

5. Differential properties.

Theorem 3. For any elements p ∈ Γ(S) and u ∈ Γ(S ′) the following equalities are valid

D[F⊗p] = F⊗[Mp], D′[F ′⊗u] = F ′⊗[M′u]. (8)

Proof. It easy to see, that for any φ ∈ S we have

D[Fφ](ξ) =
1√
2π

∫
R
(−it)e−itξφ(t) dt = F [Mφ],

F [Dφ](ξ) =
1√
2π

∫
R
e−itξφ′(t) dt =

iξ√
2π

∫
R
e−itξφ(t) dt = −M [Fφ].

It follows

⟨D′[F ′f ], φ⟩ = −⟨F ′f,Dφ⟩ = −⟨f, F [Dφ]⟩ = ⟨f,M [Fφ]⟩ = ⟨M ′f, Fφ⟩ = ⟨F ′[M ′f ], φ⟩,

so, D′[F ′f ] = F ′[M ′f ].
It is clear, that we only need to check the equalities (8) on total subsets (4) in Γ(S) and

Γ(S ′). Let p =
(
φ⊗n

)
and u =

(
f⊗n

)
with φ ∈ S and f ∈ S ′.

Then we have

D[F⊗p] = D
[ ⊕
n∈Z+

F⊗nφ⊗n
]
= D

[ ⊕
n∈Z+

(Fφ)⊗n
]
=

⊕
n∈Z+

D{⊗}n(Fφ)⊗n =

= 0⊕
⊕
n∈N

n∑
j=1

(Fφ)⊗(j−1) ⊗D[Fφ]⊗ (Fφ)⊗(n−j) =

= 0⊕
⊕
n∈N

n∑
j=1

(Fφ)⊗(j−1) ⊗ F [Mφ]⊗ (Fφ)⊗(n−j) =

= 0⊕
⊕
n∈N

F⊗n

n∑
j=1

φ⊗(j−1) ⊗Mφ⊗ φ⊗(n−j) = 0⊕
⊕
n∈N

F⊗nM{⊗}nφ⊗n = F⊗[Mp],

and

D′[F ′⊗u] = D′
[

×
n∈Z+

F ′⊗nf⊗n
]
= D′

[
×

n∈Z+

(F ′f)⊗n
]
= ×

n∈Z+

D′{⊗}n(F ′f)⊗n

= 0× ×
n∈N

n∑
j=1

(F ′f)⊗(j−1) ⊗D′[F ′f ]⊗ (F ′f)⊗(n−j)

= 0× ×
n∈N

n∑
j=1

(F ′f)⊗(j−1) ⊗ F ′[M ′f ]⊗ (F ′f)⊗(n−j)

= 0× ×
n∈N

F ′⊗n

n∑
j=1

f⊗(j−1) ⊗M ′f ⊗ f⊗(n−j) = 0× ×
n∈N

F ′⊗nM ′{⊗}nf⊗n = F ′⊗[M′u].
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Corollary 1. For any elements P ∈ P(S ′) and U ∈ P ′(S ′) the following equalities are valid

DP [F
⊗
P P ] = F⊗

P [MPP ], D′
P [F

′⊗
P U ] = F ′⊗

P [M′
PU ].

Theorem 4. For any elements p ∈ Γ(S) and u ∈ Γ(S ′) the following equalities are valid

F⊗[Dp] = −M[F⊗p], F ′⊗[D′u] = −M′[F ′⊗u].

Proof. For any elements p =
(
φ⊗n

)
and u =

(
f⊗n

)
with φ ∈ S and f ∈ S ′ from the

respective total subsets (4) we have

F⊗[Dp] = F⊗
[
0⊕

⊕
n∈N

D{⊗}nφ⊗n
]
= 0⊕

⊕
n∈N

F⊗nD{⊗}nφ⊗n =

= 0⊕
⊕
n∈N

F⊗n

n∑
j=1

φ⊗(j−1) ⊗Dφ⊗ φ⊗(n−j) =

= 0⊕
⊕
n∈N

n∑
j=1

(Fφ)⊗(j−1) ⊗ F [Dφ]⊗ (Fφ)⊗(n−j) =

= −0⊕
⊕
n∈N

n∑
j=1

(Fφ)⊗(j−1) ⊗M [Fφ]⊗ (Fφ)⊗(n−j) = −0⊕
⊕
n∈N

M{⊗}n(Fφ)⊗n = −M[F⊗p].

It easy to check that for any f ∈ S ′ and φ ∈ S the following is true

⟨F ′[D′f ], φ⟩ = ⟨D′f, Fφ⟩ = −⟨f,D[Fφ]⟩ = −⟨f, F [Mφ]⟩ = −⟨F ′f,Mφ⟩ = −⟨M ′[F ′f ], φ⟩.

It implies

F ′⊗[D′u] = F ′⊗
[
0× ×

n∈N
D′{⊗}nf⊗n

]
= 0× ×

n∈N
F ′⊗nD′{⊗}nf⊗n =

= 0× ×
n∈N

F ′⊗n

n∑
j=1

f⊗(j−1) ⊗D′f ⊗ f⊗(n−j) =

= 0× ×
n∈N

n∑
j=1

(F ′f)⊗(j−1) ⊗ F ′[D′f ]⊗ (F ′f)⊗(n−j) =

= −0× ×
n∈N

n∑
j=1

(F ′f)⊗(j−1) ⊗M ′[F ′f ]⊗ (F ′f)⊗(n−j) =

= −0× ×
n∈N

M ′{⊗}nF ′⊗nf⊗n = −M′[F ′⊗u].

Corollary 2. For any elements P ∈ P(S ′) and U ∈ P ′(S ′) the following equalities are valid

F⊗
P [DPP ] = −MP [F

⊗
P P ], F ′⊗

P [D′
PU ] = −M′

P [F
′⊗
P U ].

6. Algebraic properties. Let E ′ ⊂ S ′ be the space of generalized functions with compact
supports. Denote Γ(E ′) := ×n∈Z+ E ′⊗̂n. It is clear that Γ(E ′) ⊂ Γ(S ′).

In [16] it is proved the following assertion.
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Theorem 5 ([16]). Let f ∈ S ′ and g ∈ E ′. Then f ∗ g ∈ S ′ is well defined, moreover
F ′[f ∗ g] = F ′[f ] · F ′[g].

Let us generalize this property onto the space Γ(S ′).
For elements

(
f⊗n

)
,
(
g⊗n

)
, f, g ∈ S ′, from total subset of Γ(S ′) we define two operations(

f⊗n
)
~
(
g⊗n

)
:=

(
(f ∗ g)⊗n

)
and

(
f⊗n

)
⊙

(
g⊗n

)
:=

(
(f · g)⊗n

)
and extend them on Γ(S ′) by linearity and continuity. Note, that these operations are not
well defined on whole space Γ(S ′). But the following result is true, it is a consequence of the
Theorem 5.

Theorem 6. Let u ∈ Γ(S ′) and v ∈ Γ(E ′). Then u~ v ∈ Γ(S ′) is well defined, moreover

F ′⊗[u~ v] = F ′⊗[u]⊙ F ′⊗[v].

Proof. It is enough to prove the assertion only on the elements of total subsets (4). Let
u =

(
f⊗n

)
∈ Γ(S ′), v =

(
g⊗n

)
∈ Γ(E ′), where f ∈ S ′, g ∈ E ′. Then

F ′⊗[u~v] = ×
n∈Z+

F ′⊗n(f ∗g)⊗n = ×
n∈Z+

(F ′[f ∗g])⊗n = ×
n∈Z+

(F ′[f ] ·F ′[g])⊗n = F ′⊗[u]⊙F ′⊗[v].

Using the second of the diagrams (7) we can “extend” the operations ~ and ⊙ onto the
space P ′(S ′) of polynomial distributions.

Corollary 3. Let U ∈ P ′(S ′) and V ∈ P ′(E ′). Then U~V ∈ P ′(S ′) is well defined, moreover
F ′⊗
P [U ~ V ] = F ′⊗

P [U ]⊙ F ′⊗
P [V ].

Remind, that spaces Γ(S) and Γ(S ′) are topological algebras wit respect to operations
(6). Polynomial generalization of the Fourier transformation acts as a homomorphism on
these algebras. Namely, the following assertion is valid.

Theorem 7. The mappings F⊗ and F ′⊗ are homomorphisms on algebras {Γ(S), ⋄} and
{Γ(S ′), ⋄} respectively, i.e.

F⊗[p ⋄ q] = F⊗p ⋄ F⊗q, ∀ p, q ∈ Γ(S),
F ′⊗[u ⋄ v] = F ′⊗u ⋄ F ′⊗v, ∀u, v ∈ Γ(S ′).

Proof. The following equalities

F⊗[p ⋄ q] = F⊗
[ ⊕
n∈Z+

n∑
k=0

φ⊗k⊗̂ψ⊗(n−k)
]
=

⊕
n∈Z+

F⊗n
[ n∑

k=0

φ⊗k⊗̂ψ⊗(n−k)
]
=

=
⊕
n∈Z+

n∑
k=0

(Fφ)⊗k⊗̂(Fψ)⊗(n−k) = F⊗p ⋄ F⊗q,

F ′⊗[u ⋄ v] = F ′⊗
[

×
n∈Z+

n∑
k=0

f⊗k⊗̂g⊗(n−k)
]
= ×

n∈Z+

F ′⊗n
[ n∑

k=0

f⊗k⊗̂g⊗(n−k)
]
=

= ×
n∈Z+

n∑
k=0

(F ′f)⊗k⊗̂(F ′g)⊗(n−k) = F ′⊗u ⋄ F ′⊗v,

are valid for any p =
(
φ⊗n

)
∈ Γ(S), q =

(
ψ⊗n

)
∈ Γ(S), u =

(
f⊗n

)
∈ Γ(S ′), v =

(
g⊗n

)
∈

Γ(S ′), where φ, ψ ∈ S, f, g ∈ S ′.
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Using the formula (5) following assertion can be proved analogically as the Theorem 7.

Corollary 4. The mappings F⊗
P and F ′⊗

P are homomorphisms on algebras {P(S ′), · } and
{P ′(S ′), · } respectively, i.e.

F⊗
P [P ·Q] = F⊗

P P · F⊗
P Q, ∀P,Q ∈ P(S ′),

F ′⊗
P [U · V ] = F ′⊗

P U · F ′⊗
P V, ∀U, V ∈ P ′(S ′).
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