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It is proved that the structure of the set of Borel exceptional vectors for a transcendental
entire curve is similar to that of the set of Nevanlinna deficient vectors for an entire curve
of finite order. Particularly, any admissible system of Borel exceptional vectors for every p-
dimensional transcendental entire curve with linearly independent components and without
common zeros cannot have more than p vectors.

In this paper, we use main results of theory of entire curves and notations from [1] and [5].
Let us remind these notations. Denote an entire curve G⃗ : C → Cp as G⃗(z) = (g1(z),

g2(z), . . . , gp(z)), where gk(z) is an entire function, k ∈ {1, 2, . . . , p}. Let us consider entire
curves with linearly independent components and without common zeros. In other words,
we assume that an entire curve G⃗ : C → Cp has linearly independent components gk(z) and
has no common zeros for all gk(z), k ∈ {1, 2, . . . , p}.

For a⃗ = (a1, a2, . . . , ap) ∈ Cp and b⃗ = (b1, b2, . . . , bp) ∈ Cp the notation a⃗⃗b means the dot
product of these vectors, that is a⃗⃗b =

∑p
j=1 ajbj, where bj is complex conjugate to bj.

For every p-dimensional vector a⃗ = (a1, a2, . . . , ap) ̸= 0⃗ the dot product G⃗(z)⃗a =∑p
k=1 gk(z)ak is an entire function. Denote by n(t, a⃗, G⃗) the number of zeros of the dot

product G⃗(z)⃗a in the disc {z : |z| ≤ t}, where each zero is counted according to its multi-
plicity. Every zero of the function G⃗(z)⃗a is called a-point of the entire curve G⃗(z). Let us
denote

N(r, a⃗, G⃗) =

∫ r

0

n(t, a⃗, G⃗)− n(0, a⃗, G⃗)

t
dt+ n(0, a⃗, G⃗) ln r,

where n(0, a⃗, G⃗) stands for the multiplicity of zero of the dot product G⃗(z)⃗a at the point
z = 0.

The growth characteristic T (r, G⃗) is defined as following

T (r, G⃗) =
1

2π

∫ 2π

0

ln ∥G⃗(reiφ)∥dφ =
1

2π

∫ 2π

0

ln

√√√√ p∑
k=1

|gk(reiφ)|2dφ.
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We will use the definition of the growth category from [2, p. 44]. Let α(r) be a function
defined for r > 0, which is non-negative and non-decreasing for sufficiently large r (if α(r)
satisfies this condition, we write α(r) ∈ Λ).

The number

ρ = ρ[α] = lim
r→+∞

ln+ α(r)

ln r

is called the order of α(r). The number

σ = σ[α] = lim
r→+∞

α(r)

rρ

is called the magnitude of type of the function α(r). If σ = 0, we say that α(r) has minimal
type; if 0 < σ < ∞, we say that α(r) has normal (or mean) type; if σ = ∞, we say that α(r)
has maximal type.

Let α(r) be a function of finite order ρ. We say that α(r) belongs to the convergence
class or to the divergence class depending on whether the integral

∫∞
1

α(r)
rρ+1dr converges or

diverges.
We say that functions α1(r), α2(r) ∈ Λ are of the same growth category if they have

the same order, and, if the order is finite, have the same type and either both belong to
the convergence class, or both belong to the divergence class. We say that α2(r) is of higher
growth category than α1(r) if one of the following conditions is satisfied:

1. ρ[α2] > ρ[α1].
2. ρ[α1] = ρ[α2] < ∞, α1(r) is of minimal type, and α2(r) is of normal or maximal type.
3. ρ[α1] = ρ[α2] < ∞, α1(r) is of normal type, and α2(r) is of maximal type.
4. ρ[α1]=ρ[α2] < ∞, α1(r) and α2(r) are of minimal type, α1(r) belongs to the convergence

class, and α2(r) belongs to the divergence class.

By analogy to a definition of a Borel exceptional value for a meromorphic function (see
[2, p. 49]) a vector a⃗ ∈ Cp \ {⃗0} is called a Borel exceptional vector of an entire curve
G⃗ : C → Cp, if the growth category of N(r, a⃗, G⃗) is lower than the growth category of
T (r, G⃗). In this paper, our main object of investigation is Borel exceptional vectors. Other
kinds of exceptional and deficient vectors for entire curves were considered in [9,10] (Valiron
deficient vectors) [6,7] (Nevanlinna deficient vectors), [3] (averaged deficiency). More modern
bibliography on this topic is listed in review paper of S. Mori [4].

It is known (for example, see [2, p. 98, Th. 2.2]), that any transcendental meromorphic
function cannot have more than two Borel exceptional values.

We will generalize the result for the case of entire curves.
Let L be some q-dimensional subspace in Cp. We call [6] the system of vectors M of

L admissible in L, if for cardM ≤ q all vectors of M are linearly independent and if for
cardM > q any q vectors of M are linearly independent.

Let the set S lie in a q-dimensional subspace of the space Cp and contain q linearly
independent vectors. We call [6] the subset M ⊂ S maximally admissible in S, if: a) any
q vectors of M are linearly independent; b) any vector of S \M is a linear combination of
some q − 1 vectors of M.

Theorem 1. For every transcendental entire curve G⃗ : C → Cp with linearly independent
components and without common zeros any admissible system of Borel exceptional vectors
cannot have more than p vectors.
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Proof. Let a⃗1, a⃗2, . . . , a⃗k be an admissible system of vectors in Cp. By the second main
theorem for entire curves one has

(k − p)T (r, G⃗) ≤
k∑

j=1

N(r, a⃗j, G⃗) +Q(r, G⃗), (1)

where Q(r, G⃗) is such a function that Q(r, G⃗) = O(ln r) as r → ∞, if G has finite order. If
G has infinite order then Q(r, G⃗) = O(lnT (r, G⃗) + ln r), as r tends to ∞, outside some set
of intervals on [0,∞), which has finite measure.

Assume that there exists a transcendental entire curve G⃗ having (p+1) admissible Borel
exceptional vectors a⃗1, a⃗2, . . . , a⃗p+1. Then (1) implies for k = p+ 1

T (r, G⃗) ≤
p+1∑
j=1

N(r, a⃗j, G⃗) +Q(r, G⃗) (2)

If an entire curve G⃗ has infinite order then N(r, a⃗j, G⃗), j = 1, 2, . . . , p+ 1, have finite order.
Therefore there exists C < ∞ such that for r ≥ r0 the following inequality

p+1∑
j=1

N(r, a⃗j, G⃗) ≤ rC

holds. Then outside some set E of finite measure L we have

T (r, G⃗) ≤ rC +O(lnT (r, G⃗+ ln r) ≤ rC +
1

2
T (r, G⃗),

whence T (r, G⃗) ≤ 2rC . If r /∈ E, then there exists a point r′ ∈ [r, r+L+1] such that r′ /∈ E.
Thus,

T (r, G⃗) ≤ T (r′, G⃗) ≤ 2r′C ≤ 2(r + L+ 1)C ≤ 3rC ,

if r is arbitrarily large. So, we conclude that T (r, G⃗) has finite order. It is a contradiction.
If an entire curve G⃗ has finite order then Q(r, G⃗) = o(T (r, G⃗)), and (2) can be rewritten

as follows:

(1 + o(1))T (r, G⃗) ≤
p+1∑
j=1

N(r, a⃗j, G⃗). (3)

From this inequality it follows that if G⃗ has positive order, then all functions N(r, a⃗j, G⃗),

j = 1, 2, . . . , p+1, cannot have lower growth category than growth category of T (r, G⃗), i.e.
we again obtain a contradiction.

If G⃗ has zero order then we consider the case, when n(r, a⃗j, G⃗) = O(1), i.e. N(r, a⃗j, G⃗) =

O(ln r), j = 1, 2, . . . , p+ 1. Then from (3) we obtain that T (r, G⃗) = O(ln r), i.e. G is not a
transcendental entire curve and it contradicts hypothesis of the theorem.

The proved theorem does not give a complete description of the structure of the set of
Borel exceptional vectors by analogy to description of structure of the set of Nevanlinna
deficient vectors in [6]. For example, let us consider an entire curve

G⃗(z) = (1, z, . . . , zp−2, ez). (4)
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Obviously, it has order one. So, ln r = o(T (r, G⃗)). For any non-zero vector a⃗ ∈ B1 = {⃗b =

(b1, b2, . . . , bp−1, 0) : bj ∈ C, j ∈ {1, 2, . . . , p−1}} we have n(r, a⃗, G⃗) = O(1), i.e. N(r, a⃗, G⃗) =
O(ln r). Therefore, all vectors from B1 \ {⃗0} are Borel exceptional for the entire curve of (4).
Also the vectors of the form a⃗ = (0, 0, . . . , 0, α), α ̸= 0 are Borel exceptional because for
every a⃗ one has n(r, a⃗, G⃗) = 0. It means that N(r, a⃗, G⃗) = 0. One should observe that B1 is
a subspace of dimenstion (p− 1) in Cp. Obviously, the system of p vectors e⃗1 = (1, 0, . . . , 0),
e⃗2 = (0, 1, 0, . . . , 0), . . . , e⃗p = (0, 0, . . . , 0, 1) is an orthonormal basis in Cp and they form an
admissible system in Cp. Every vector e⃗j is Borel exceptional for the curve G⃗ of form (4).

A set of all Borel exceptional vectors of entire curve G⃗ will denote by B(G⃗). A main
result of the paper is following

Theorem 2. For any transcendental entire curve G⃗ : C → Cp with linearly independent
components and without common zeros the set B(G⃗) ∪ {⃗0} is a finite union of subspaces
Aj ⊂ Cp of dimension ≤ p− 1. Moreover, there exist no more p linearly independent vectors
such that every Aj is a linear span of these vectors.

Firstly, we will prove the following lemma.

Lemma 1. Let G⃗ : C → Cp be an entire transcendental curve with linearly independent
components and without common zeros, q ≤ p and b⃗1, b⃗2, . . . , b⃗q is a system of linearly
independent vectors of B(G⃗), B be the linear span of the vectors b⃗1, b⃗2, . . . , b⃗q; and B1, B2,

. . . , Bq be the linear spans of the vector systems b⃗2, b⃗3, . . . , b⃗q, b⃗1, b⃗3, b⃗4, . . . , b⃗q, . . . , b⃗1, b⃗2,

. . . , b⃗q−1, respectively. Then one has one of the following cases:

1. B ⊂ B(G⃗) ∪ {⃗0};

2. B ∩B(G⃗) ⊂
∪q

j=1 Bj.

Proof. Let us consider a vector-valued function in Cq

G⃗1(z) = (G⃗(z)⃗b1, G⃗(z)⃗b2, . . . , G⃗(z)⃗bq) · Φ(z),

where Φ(z) is some meromorphic function in C without zeros and whose poles are common
zeros of these functions G⃗(z)⃗b1, G⃗(z)⃗b2, . . . , G⃗(z)⃗bq. The components of p-dimensional entire
curve G⃗(z) are linearly independent by hypothesis of the theorem, the vectors b⃗1, . . . , bq are
also linearly independent and q ≤ p. Therefore, the functions G⃗(z)⃗b1, . . . , G⃗(z)⃗bq are linearly
independent. Thus, the curve G⃗1(z) is a q-dimensional entire curve.

Clearly, that the growth category of N(r,Φ) is lower than the growth category of T (r, G⃗).

It is obvious that for any vector λ⃗ = (λ1, . . . , λq) ∈ Cp \ {⃗0} and the vector b⃗ = λ1⃗b1 +

. . .+ λq⃗bq corresponding to it one has G⃗(z)⃗b = G⃗1(z)λ⃗/Φ(z). It follows that

N(r, b⃗, G⃗) = N(r, λ⃗, G⃗1) +N(r,Φ). (5)

We note that the growth category of T (r, G⃗1) cannot exceed growth category of T (r, G⃗),
because

T (r, G⃗1) +N(r,Φ) =
1

2π

∫ 2π

0

ln

{
q∑

j=1

|G⃗(reiφ)⃗bj|2
}1/2

+O(1) ≤
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≤ 1

2π

∫ 2π

0

ln

{
q∑

j=ω+1

∥G⃗(reiφ)∥2 · ∥⃗bj∥2
}1/2

dφ+O(1) = T (r, G⃗) +O(1), r → ∞.

There are two possible cases:

1. the growth category of T (r, G⃗1) is lower that the growth category of T (r, G⃗);

2. the growth category of T (r, G⃗1) is the same as the growth category of T (r, G⃗).

We will consider every case separately.
1) It is obvious that b⃗1, b⃗2, . . . , b⃗q is a basis in B. Thus, any vector b⃗ ∈ B \ {⃗0} admits a

representation b⃗ = λ1⃗b1+ . . .+λq⃗bq. Therefore, we put λ⃗ = (λ1, . . . , λq). Equality (5) implies
that N(r, b⃗, G⃗) has lower growth category than T (r, G⃗), because N(r, λ⃗, G⃗1) ≤ T (r, G⃗1) +

O(1). Hence, B ⊂ B(G⃗) ∪ {⃗0}.
2) Suppose that there exists b⃗0 = λ01⃗b1+ . . .+λ0q⃗bq ∈ B∩B(G⃗), b⃗0 /∈

∪q
j=1 Bj. Obviously,

that the system of vectors

λ⃗(0) = (λ01, . . . , λ0q), λ⃗(1) = (1, 0, . . . , 0), λ⃗(2) = (0, 1, 0, . . . , 0), λ⃗(q) = (0, . . . , 0, 1)

is admissible in Cq. In view of equality (5), we also have N(r, b⃗j, G⃗) = N(r, λ⃗(j), G⃗1)+N(r,Φ),

j = 0, 1, . . . , q. Thus, the growth category of every function N(r, λ⃗(j), G⃗1) is lower than the
growth category of T (r, G⃗), whence it is also lower than the growth category of T (r, G⃗1). It
means that all vectors λ⃗(0), λ⃗(1), . . . , λ⃗(q) are Borel exceptional for G⃗1, but by Theorem 1 it
is impossible. The obtained contradiction proves the statement of the lemma.

Proof of Theorem 2. Choose a maximally admissible system of Borel exceptional vectors (see
also [6]) in Cp of the given entire curve. By Theorem 1 there exist at most p such vectors.
Denote these vectors by

a⃗1, a⃗2, . . . , a⃗k. (6)

We note that for all j = 1, . . . , k any non-zero vector of one-dimensional space Lj =

{αa⃗1 : α ∈ C} is Borel exceptional for G⃗. Hence, Lj ⊂ B(G⃗) ∪ {⃗0}.
Let A be the linear span of a⃗1, a⃗2, . . . , a⃗k. Clearly, B(G⃗) ⊂ A. By Lemma 1 one of two

cases is possible.
1) A ⊂ B(G⃗) ∪ {⃗0}, i. e. A = B(G⃗) ∪ {⃗0}. It proves the statement of the theorem.

Obviously, this case is possible if k < n.
2) A ∩B(G⃗) = B(G⃗) ⊂

∪k
j=1 A

(j), that is B(G⃗) =
∪k

j=1(B(G⃗) ∩ A(j)), where A(1), A(2),

. . . , A(k) are subspaces of dimension (k − 1). Every such a subspace is generated as linear
spans of all collections of (k − 1) vectors with (6).

For A(j), for which B(G⃗)∩A(j) ̸= A(j)\{⃗0}, we carry out the arguments given above with
A, and obtain B(G⃗) ∩ A(j) =

∪k−1
s=1(B(G⃗) ∩ A(js)), where A(js) are subspaces of dimension

(k − 2), which are obtained from A(j) in the same way that A(j) was obtained from A.

At the next stage for such A(js) with B(G⃗) ∩ A(js) ̸= A(js) \ {⃗0} we find B(G⃗) ∩ A(js) =∪k−2
i=1 (B(G⃗) ∩ A(jsi)), where A(jsi) are subspaces of dimension (k − 3).

Finally, in no more than (k − 1)-th stage we get B(G⃗) =
∪

j(B(G⃗) ∩ Aj), whereby Aj

we denote those A(j), A(js), A(jsi), . . . , which in view of above given remark are contained in
B(G⃗) ∪ {⃗0}. Hence, B(G⃗) ∩ Aj = Aj \ {⃗0}. Therefore, B(G⃗) ∪ {⃗0} =

∪
j Aj.
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It is known (for example, see [2, p. 114, Th.1.1]) that any transcendental meromorphic
function of non-integer or zero order cannot have more than one Borel exceptional value.
The property was generalized for case of entire curves.

Theorem 3. Any transcendental entire curve G⃗ : C → Cp of non-integer or zero order cannot
have more than (p− 1) linearly independent Borel exceptional vectors.

Proof. Assume the contrary, that is, there exists an entire transcendental curve G⃗(z) =
(g1(z), g2(z), . . . , gp(z)) of non-integer or zero order, which has p linearly independent Borel
exceptional vectors. We denote these vectors by a⃗1, a⃗2, . . . , a⃗p. Obviously, the entire functions
g̃1(z) = G⃗(z)⃗a1, g̃2(z) = G⃗(z)⃗a2, . . . , g̃p(z) = G⃗(z)⃗ap are linearly independent and have no
common zeros. Let us consider an entire curve G⃗p(z) = (g̃1(z), g̃2(z), . . . , g̃p(z)). It is easy to
check that

T (r, G⃗p) = T (r, G⃗) +O(1). (7)

Clearly that N(r, a⃗j, G⃗) = N(r, e⃗jG⃗p) = N(r, 0, g̃j), j = 1, 2, . . . , n. Taking into account
(7), the vectors e⃗1 = (1, 0, . . . , 0), e⃗2 = (0, 1, 0, . . . , 0), . . . , e⃗p = (0, 0, . . . , 0, 1) are Borel
exceptional for G⃗p. From the obvious inequality ln(α1 + α2 + . . . + αn) ≤ ln+ α1 + ln+ α2 +
. . .+ ln+ αn + lnn for arbitrary positive numbers α1, α2, . . . , αn we easy deduce

T (r, G⃗p) =
1

2π

∫ 2π

0

ln ∥G⃗p(re
iφ)∥dφ =

=
1

2π

∫ 2π

0

ln(|g̃1(reiφ)|2 + |g̃2(reiφ)|2 + . . .+ |g̃p(reiφ)|2)1/2ddφ ≤

≤ 1

2π

∫ 2π

0

ln(|g̃1(reiφ)|+ |g̃2(reiφ)|+ . . .+ |g̃p(reiφ)|)dφ =

=
1

2π

∫ 2π

0

ln |g̃1(reiφ)|dφ+
1

2π

∫ 2π

0

ln

(
1 +

|g̃2(reiφ)|
|g̃1(reiφ)|

+ . . .+
|g̃p(reiφ)|
|g̃1(reiφ)|

)
dφ ≤

≤ 1

2π

∫ 2π

0

ln |g̃1(reiφ)|dφ+
1

2π

∫ 2π

0

ln+ |g̃2(reiφ)|
|g̃1(reiφ)|

dφ+ . . .
1

2π

∫ 2π

0

ln+ |g̃p(reiφ)|
|g̃1(reiφ)|

dφ+O(1) =

= N(r, 0, g̃) +m
(
r,
g̃2
g̃1

)
+ . . .+m

(
r,
g̃p
g̃1

)
+O(1). (8)

Here we used Jensen’s formula ([2, p. 13]). The functions g̃1(z), g̃2(z), . . . , g̃p(z) have no
common zeros. Therefore,

N(r, 0, g̃1) ≤ N
(
r,
g̃2
g̃1

)
+ . . .+N

(
r,
g̃p
g̃1

)
.

Then (8) yields

T (r, G⃗p) ≤
p∑

j=2

(
m
(
r,
g̃j
g̃1

)
+N

(
r,
g̃j
g̃1

))
+O(1) =

p∑
j=2

T
(
r,
g̃j
g̃1

)
+O(1).

This inequality implies that at least one of the functions T (r,
g̃j
g̃1
) (for example, T (r, g̃k

g̃1
))

has the growth category which is not lower than T (r, G⃗p). From the other hand (see [5,
p. 7]), T (r, g̃k

g̃1
) ≤ T (r, G⃗p) + C. Thus, T (r, g̃k

g̃1
) has the same growth category as T (r, G⃗p). In
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particular, the meromorphic function g̃k
g̃1

has non-integer or zero order. Above we noted that
all functions N(r, 0, g̃j) have lower growth category than T (r, G⃗p). Since N(r, g̃k

g̃1
) ≤ N(r, 0, g̃1)

and N(r, 0, g̃k
g̃1
) ≤ N(r, 0, g̃k), the values 0 and ∞ are Borel exceptional values of g̃k

g̃1
, and it

is impossible. This contradiction proves the theorem.

Let us consider entire curve G⃗(z) = (1, z, . . . , zn−2, f(z)), where f(z) is an entire trans-
cendental function of non-integer or zero order. It is easy to check that T (r, G⃗) = T (r, f) +

O(ln r). Thus, G⃗ has the same order as f, and ln r = o(T (r, G⃗)). Obviously, every with
(p − 1) linearly independent vectors e⃗1 = (1, 0, . . . , 0), e⃗2 = (0, 1, 0, . . . , 0), . . . , e⃗p−1 =

(0, 0, . . . , 0, 1, 0) is Borel exceptional for entire curve of form G⃗(z) = (1, z, . . . , zn−2, f(z)).
The example demonstrates that Theorem 3 cannot be improved.
Finally, we pose the following open problem.

Problem 1. Is it possible to solve the inverse problem for the set of Borel exceptional vectors
of entire curve by analogy to [7, 8], where the problem is solved for the set of Nevanlinna
deficient vectors?
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